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Differential Equations - End of Topic Test Solutions Section A 

 

Section A 
Multiple Choice Questions 

15 points available 

 

Answer Key 

Question A1 A2 A3 A4 A5 A6 A7 A8 

Answer ② ② ③ ④ ③ ① ④ ② 

Points 1 1 1 1 2 2 2 5 

 

Worked Solutions: 

 
A1. Answer: ② I only       [1 pt] 

 Working: 

 I: First order because the highest order derivative is . 𝑑𝑦
𝑑𝑥

 II: Not second order because there are no  terms. 𝑑2𝑦

𝑑𝑥2

 III: Non-linear because the  term is squared. 𝑑𝑦
𝑑𝑥

 IV: Non-homogeneous due to the 2-x term. 

 V: Second degree due to the  term. 𝑑𝑦
𝑑𝑥( )2

 VI: Not autonomous due to the 2-x term. 
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A2. Answer: ② All Cauchy-Euler differential equations are linear and  
second-order.     [1 pt] 

 Working: 

 Bernoulli DEs ( ) are first-order and nonlinear. 𝑦' + 𝑃(𝑥) 𝑦 = 𝑄(𝑥) 𝑦𝑛

 Cauchy-Euler DEs ( ) are second-order and linear. 𝑥2𝑦'' + 𝑏 𝑥𝑦' + 𝑐 𝑦 = 0
 Autonomous DEs  may contain constants so may be nonhomogeneous. 𝑦' = 𝑓(𝑦)
 Nonlinear DEs may be any degree, and first-degree does not imply linear. 

  

A3. Answer: ③ 2 sinh       [1 pt] 
π
2

 Working: 

 Expand: 

 𝐼 =
−∞

∞

∫ δ 𝑥 + π
2( ) 𝑒𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥 +

−∞

∞

∫ δ 𝑥 − π
2( ) 𝑒𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥

 Apply the sifting theorem, where the Dirac delta functions will ‘spike’ at x =   − π
2

and x =  respectively, both of which are within the interval of integration: π
2

 𝐼 = 𝑒π/2 𝑠𝑖𝑛( π
2 ) + 𝑒−π/2 𝑠𝑖𝑛(− π

2 ) = 𝑒π/2 − 𝑒−π/2 = 2 × 𝑒π/2 − 𝑒−π/2

2 = 2 𝑠𝑖𝑛ℎ π
2 .

 
A4. Answer: ④ 2.50       [1 pt] 

 Working: 

 This is a separable differential equation. Separate and integrate with initial conditions: 

 𝑑𝑦
𝑑𝑥 = 10 − 4𝑦  ⇒   

0

𝑦

∫ 1
10 − 4𝑦  𝑑𝑦 =

0

𝑥

∫ 𝑑𝑥

 Evaluating these integrals gives the particular solution: 

 ⇒   − 1
4  𝑙𝑛 1 − 2

5 𝑦( ) = 𝑥  ⇒   𝑦 = 5
2 1 − 𝑒−4𝑥( )

 Therefore, 

 ⇒   𝑦(2) = 5
2 1 − 𝑒−8( ) ≈ 2. 50.
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A5. Answer: ③      [2 pts] 𝑥 𝑡𝑎𝑛−1 𝐶 − 𝑙𝑛 𝑥( )

 Working: 

 Observe that   =      is a homogeneous DE, since the RHS is  𝑑𝑦
𝑑𝑥

𝑦
𝑥 − 𝑐𝑜𝑠2 𝑦

𝑥

purely a function of . Therefore, substituting    will lead to the solution. 𝑦
𝑥 𝑢(𝑥) = 𝑦

𝑥

From the substitution, we have  . 𝑦 = 𝑢𝑥  ⇒   𝑑𝑦
𝑑𝑥 = 𝑥 𝑑𝑢

𝑑𝑥 + 𝑢

Sub into the DE:  . 𝑥 𝑑𝑢
𝑑𝑥 + 𝑢 = 𝑢 − 𝑐𝑜𝑠2 𝑢  ⇒   𝑑𝑢

𝑑𝑥 = − 𝑐𝑜𝑠2 𝑢
𝑥

This is a separable DE:  ∫ 𝑠𝑒𝑐2 𝑢 𝑑𝑢 = ∫ −1
𝑥  𝑑𝑥  ⇒   𝑡𝑎𝑛 𝑢 = 𝐶 − 𝑙𝑛 𝑥

Rearrange for u:   𝑢 = 𝑡𝑎𝑛−1 𝐶 − 𝑙𝑛 𝑥( )

Unsubstitute for y:   for any arbitrary constant C. 𝑦 = 𝑥 𝑡𝑎𝑛−1(𝐶 − 𝑙𝑛 𝑥)

(This is also equal to  , since tan-1 x is an odd function.) 𝑦 =  − 𝑥 𝑡𝑎𝑛−1(𝑙𝑛 𝑥 − 𝐶)

 

A6. Answer: ① proportional to the square of   [2 pts] 
𝑥

1 + 𝑥

 Working: 

 This is a separable DE: 

  ∫ 𝑦 𝑑𝑦 = ∫ 1
𝑥(𝑥 + 1)  𝑑𝑥  ⇒   1

2 𝑦2 = ∫ 1
𝑥 − 1

𝑥 + 1( ) 𝑑𝑥 = 𝑙𝑛 𝑥
𝑥 + 1 + 𝐶

    . ⇒   𝑦2 = 2 𝑙𝑛 𝑥
𝑥 + 1 + 2𝐶 ⇒   𝑒𝑦2

= 𝑒2𝐶 𝑥
𝑥 + 1( )2

  ⇒   𝑒𝑦2

 ∝ 𝑥
𝑥 + 1( )2

 

A7. Answer: ④       [2 pts] 
± 8

𝑠2 + 16
 Working: 

 The LHS is a convolution of f with itself:      
0

𝑡

∫ 𝑓(τ) 𝑓(𝑡 − τ) 𝑑τ = (𝑓 * 𝑓)(𝑡) = 16 𝑠𝑖𝑛 4𝑡

 Convolution theorem on the LHS:       .𝐹(𝑠) 𝐹(𝑠) = 64

𝑠2 + 16
  ⇒   𝐹(𝑠) = ± 8

𝑠2 + 16
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A8. Answer: ②      [5 pts] 5 × 250 + 1( )
 Working: 

 The given difference equation is . 𝑢
𝑛+2

− 2𝑢
𝑛+1

+ 2𝑢
𝑛

= 0

 Observe that  . 𝑢
𝑛

=
𝑘=1

𝑛

∑ 𝑢
𝑘

−
𝑘=1

𝑛−1

∑ 𝑢
𝑘

= 𝑆
𝑛

− 𝑆
𝑛−1

 Substituting this into the difference equation, we get 

 𝑆
𝑛+2

− 𝑆
𝑛+1

− 2(𝑆
𝑛+1

− 𝑆
𝑛
) + 2(𝑆

𝑛
− 𝑆

𝑛−1
) = 0

 𝑆
𝑛+2

− 3 𝑆
𝑛+1

+ 4 𝑆
𝑛

− 2 𝑆
𝑛−1

= 0

By iteration, we can find  . 𝑢
1

= 1,   𝑢
2

= 6,   𝑢
3

= 10  ⇒   𝑆
1

= 1,   𝑆
2

= 7,   𝑆
3

= 17

The characteristic equation is  . λ3 − 3λ2 + 4λ − 2 = 0

By the rational root/factor theorem, we can observe that  is a factor of this (λ − 1)
cubic polynomial. By synthetic division, we can complete the factorisation as 

. (λ − 1)(λ2 − 2λ + 2) = 0   ⇒    λ = 1,   λ = 1 ± 𝑖 = 2 𝑒
± π

4 𝑖

General solution:    𝑆
𝑛

= 𝐴 × 1𝑛 + ( 2)𝑛 𝐵 × 𝑐𝑜𝑠 π𝑛
4 + 𝐶 × 𝑠𝑖𝑛 π𝑛

4( )
Initial conditions:    1 = 𝐴 + 𝐵 + 𝐶
      7 = 𝐴 + 2𝐶
      17 = 𝐴 − 2𝐵 + 2𝐶

Solving the system gives:   𝐴 = 5,   𝐵 =  − 5,   𝐶 = 1

Particular solution:    𝑆
𝑛

= 5 + 2𝑛/2 𝑠𝑖𝑛 π𝑛
4 − 5 𝑐𝑜𝑠 π𝑛

4( )
Let n = 100:    , 𝑠𝑖𝑛 25π = 0,    𝑐𝑜𝑠 25π = 𝑐𝑜𝑠 π =  − 1

. 𝑆
100

= 5 + 250 × 5 = 5 250 + 1( )
 Alternative methods: 

1) Find  and evaluate  on a calculator. 𝑢
𝑛

= 2𝑛/2 3 𝑠𝑖𝑛 π𝑛
4 − 2 𝑐𝑜𝑠 π𝑛

4( )
𝑘=1

100

∑ 𝑢
𝑘

2) Using the Z-transform,    find Sn. 𝑈(𝑧) = 5𝑧 − 2𝑧2

𝑧2 − 2𝑧 + 2
 ⇒  𝑆(𝑧) = 1

1 − 𝑧−1 𝑈(𝑧)  ⇒
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Section B 
Short-Form Questions 

135 points available 

 

 
B1.  

a. This is a linear 2nd order nonhomogeneous DE with constant coefficients: 

 Characteristic equation:    [1 pt] λ2 − 2λ − 3 = 0   ⇒    λ = 3,   λ =  − 1
 Complementary solution:    [1 pt] 𝑦

𝐶𝐹
(𝑥) = 𝐴 𝑒3𝑥 + 𝐵 𝑒−𝑥

 Particular integral:   . [1 pt] 𝑦
𝑃𝐼

(𝑥) = 𝐶𝑥 + 𝐷  ⇒   𝑦
𝑃𝐼

'(𝑥) = 𝐶  ⇒   𝑦
𝑃𝐼

''(𝑥) = 0
       ⇒   − 2𝐶 − 3(𝐶𝑥 + 𝐷) = 𝑥
       ⇒   − 3𝐶𝑥 + (− 2𝐶 − 3𝐷) = 𝑥
 Equate like terms:   .  [1 pt] ⇒   𝐶 =  − 1

3 ,   𝐷 = 2
9

 General solution:   .  [1 pt] 𝑦(𝑥) = 𝐴 𝑒3𝑥 + 𝐵 𝑒−𝑥 − 1
3 𝑥 + 2

9
 (Total: 5 points) 

b. This is a Cauchy-Euler differential equation. We substitute . 𝑥 = 𝑒𝑢  ⇒   𝑢 = 𝑙𝑛 𝑥
 We may derive the expressions for the new derivatives of y as follows: 

  First derivative:  . 𝑑𝑢
𝑑𝑥 = 1

𝑥   ⇒   𝑑𝑦
𝑑𝑥 = 𝑑𝑦

𝑑𝑢  𝑑𝑢
𝑑𝑥 = 1

𝑥
𝑑𝑦
𝑑𝑢   ⇒   𝑑𝑦

𝑑𝑢 = 𝑥 𝑑𝑦
𝑑𝑥

  Second derivative:   𝑑
𝑑𝑥  𝑑𝑦

𝑑𝑢 = 𝑑
𝑑𝑥 𝑥 𝑑𝑦

𝑑𝑥( )  ⇒   𝑑2𝑦

𝑑𝑢2
𝑑𝑢
𝑑𝑥 = 𝑑𝑦

𝑑𝑥 + 𝑥 𝑑2𝑦

𝑑𝑥2

. ⇒   1
𝑥

𝑑2𝑦

𝑑𝑢2 = 1
𝑥

𝑑𝑦
𝑑𝑢 + 𝑥 𝑑2𝑦

𝑑𝑥2   ⇒   𝑑2𝑦

𝑑𝑥2 = 1

𝑥2
𝑑2𝑦

𝑑𝑢2 − 𝑑𝑦
𝑑𝑢( )

On substitution into our DE, or by recalling the formula for the transformation, 

  [2 pts] 𝑑2𝑦

𝑑𝑢2 − 2 𝑑𝑦
𝑑𝑢 − 3𝑦 = 𝑢.

 This is the same DE as in part a), so  .  [2 pts] 𝑦(𝑢) = 𝐴 𝑒3𝑢 + 𝐵 𝑒−𝑢 − 1
3 𝑢 + 2

9

 Undo substitution u = ln x:  .  [1 pt] 𝑦(𝑥) = 𝐴 𝑥3 + 𝐵
𝑥 − 1

3  𝑙𝑛 𝑥 + 2
9

 (Total: 5 points) 
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B2. Let u(y) = . 
𝑑𝑦
𝑑𝑥( )2

Differentiate both sides w.r.t. x:   𝑑𝑢
𝑑𝑥 = 2 𝑑𝑦

𝑑𝑥  𝑑
𝑑𝑥

𝑑𝑦
𝑑𝑥( ) = 2 𝑑𝑦

𝑑𝑥  𝑑2𝑦

𝑑𝑥2

Chain rule:     𝑑𝑢
𝑑𝑦 = 𝑑𝑢

𝑑𝑥  𝑑𝑥
𝑑𝑦 = 𝑑𝑢

𝑑𝑥 ÷ 𝑑𝑦
𝑑𝑥 = 2 𝑑𝑦

𝑑𝑥  𝑑2𝑦

𝑑𝑥2 ÷ 𝑑𝑦
𝑑𝑥 = 2 𝑑2𝑦

𝑑𝑥2

      ⇒   𝑑2𝑦

𝑑𝑥2 = 1
2  𝑑𝑢

𝑑𝑦

Substitute into DE:     [3 pts] 1
2 𝑢 = 4𝑦2 + 1

2 𝑦 𝑑𝑢
𝑑𝑦   ⇒   𝑑𝑢

𝑑𝑦 = 𝑢
𝑦 − 8𝑦

     . 𝑑𝑢
𝑑𝑦 − 1

𝑦 𝑢 =  − 8𝑦

This is a linear first-order DE in u(y). 

Integrating factor:    exp  𝐼(𝑦) = ∫− 1
𝑦  𝑑𝑦 = 𝑒−𝑙𝑛 𝑦 = 1

𝑦

General solution:    𝐼(𝑦) 𝑢(𝑦) = ∫ 𝐼(𝑦) ×  − 8𝑦 𝑑𝑦

      ⇒  𝑢(𝑦)
𝑦 = ∫− 8 𝑑𝑦 =  − 8𝑦 + 𝐴

     ⇒   𝑢(𝑦) =  𝐴𝑦 − 8𝑦2

Unsubstitute:      [4 pts] 𝑑𝑦
𝑑𝑥( )2

= 𝐴𝑦 − 8𝑦2  ⇒   𝑑𝑦
𝑑𝑥 =  ± 𝐴𝑦 − 8𝑦2

This is a separable DE in y(x). . ± ∫ 1

𝐴𝑦 − 8𝑦2
 𝑑𝑦 =  ∫ 𝑑𝑥 =  𝑥 + 𝐵

To evaluate the integral on the LHS, complete the square and use trig substitution: 

 1

𝐴𝑦 − 8𝑦2
= 1

−8 𝑦2 − 𝐴
8 𝑦( )

= 1

−8 𝑦 − 𝐴
16( )2

 − 𝐴2

256( )
= 1

𝐴2

32  − 8 𝑦 − 𝐴
16( )2

 
= 1

2 2
 1

𝐴
16( )2

 − 𝑦 − 𝐴
16( )2

Using the result    with  z = y   and  a = , ∫ 1

𝑎2 − 𝑧2
 𝑑𝑧 = 𝑠𝑖𝑛−1 𝑧

𝑎 − 𝐴
16

𝐴
16

 ± 1
2 2

 𝑠𝑖𝑛−1 
𝑦 − 𝐴

16
𝐴

16

=  𝑥 + 𝐵  ⇒   𝑦 = 𝐴
16 1 ± 𝑠𝑖𝑛 2 2(𝑥 + 𝐵)( )

 ⇒   𝑦(𝑥) = 𝐴
8  1 ± 𝑠𝑖𝑛 2 2(𝑥 + 𝐵)

2 = 𝐴
8  

1 ± 𝑐𝑜𝑠 2 2(𝑥 + 𝐵) − π
2( )

2

  or    (double angle formula) ⇒   𝑦(𝑥) = 𝐴
8  𝑐𝑜𝑠2 2(𝑥 + 𝐵) − π

4( ) 𝐴
8  𝑠𝑖𝑛2 2(𝑥 + 𝐵) − π

4( )
Since  sin2 x = cos2(x  π / 2), these two solutions are not linearly independent, so the  −
constants A and B can be chosen to make them the same. Therefore, we can take  
either one solution as the general solution. 

Redefine constants:   :    .  [3 pts] 𝐴 ← 𝐴
8 ,     𝐵 ← 2𝐵 − π

4 𝑦(𝑥) = 𝐴 𝑐𝑜𝑠2 2𝑥 + 𝐵( )
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B3. Let x(t) be the displacement of the mass into the buffer (positive to the left) at time t. 

 While in contact with the buffer, the dashpot exerts a viscous force  . 𝐹 = − λ 𝑑𝑥
𝑑𝑡

 Since x << l, we can assume the motion is almost horizontal (no vertical component of  
motion) and we can also neglect the weight force [1 pt]. 

By Newton’s second law in the horizontal direction, the equation of motion is  

. [2 pts] 𝐹 = 𝑚𝑎  ⇒   − λ 𝑑𝑥
𝑑𝑡 = 𝑚 𝑑2𝑥

𝑑𝑡2   ⇒   𝑚𝑥'' + λ𝑥' = 0

Characteristic equation:  𝑚α2 + λα = 0  ⇒  α α + λ
𝑚( ) = 0  ⇒   α = 0,   α =  − λ

𝑚

General solution:   [2 pts] 𝑥(𝑡) = 𝐴 + 𝐵 𝑒
− λ

𝑚 𝑡

Initial conditions:   𝑥(0) = 0  ⇒   0 = 𝐴 + 𝐵

     𝑥'(0) = 2𝑔𝑙  ⇒   2𝑔𝑙 = −λ
𝑚 𝐵

     ⇒   𝐴 = 𝑚
λ 2𝑔𝑙,   𝐵 =  − 𝑚

λ 2𝑔𝑙

 Particular solution:    [3 pts] 𝑥(𝑡) = 𝑚
λ 2𝑔𝑙 1 − 𝑒

− λ
𝑚 𝑡( )

 x(t) approaches a horizontal asymptote at . 
𝑡 ∞
lim
→

𝑥(𝑡) = 𝑚
λ 2𝑔𝑙

 Maximum displacement:  [2 pts] 𝑥 ≈ 𝑚 2𝑔𝑙
λ

 (Total: 10 points) 
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B4. Draw the state transition diagram, showing the probabilities of changing states: 

 

 For the bit to be in a given state (suppose, state “0” without loss of generality as this is  
a symmetric problem) at cycle n, the bit must have: 

1. Either been in the same state (state “0”) at cycle n - 1 and then stayed the same, 
2. Or been in the other state (state “1”) at cycle n - 1 and then flipped. 

 Using the ‘AND’ rule of probability for independent events: 

 P(Case 1) = P(same state at n - 1 AND did not flip) 
   = P(same state at n - 1) × P(did not flip) 
 = P(same state at n - 1) × (1 - P(flipped))  (complementary events) 
 = yn-1 × (1 - p) 

P(Case 2)  = P(opposite state at n - 1 AND flipped) 
   = P(opposite state at n - 1) × P(flipped) 
   = (1 - P(same state at n - 1)) × P(flipped)  (complementary events) 
   = (1 - yn-1) × p 

 Using the ‘OR’ rule of probability for disjoint events: 

 P(same state at n)  = P(Case 1 OR Case 2) 
    = P(Case 1) + P(Case 2) 

  [4 pts] ⇒   𝑦
𝑛

= 𝑦
𝑛−1

(1 − 𝑝) + (1 − 𝑦
𝑛−1

)𝑝
  ⇒   𝑦

𝑛
+ (2𝑝 − 1)𝑦

𝑛−1
= 𝑝

 This is a linear nonhomogeneous first-order difference equation. 
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B4. (continued) 

 Characteristic equation:  λ + (2𝑝 − 1) = 0  ⇒   λ = 1 − 2𝑝

 Complementary solution:  𝑦
𝑛

(𝐶𝐹) = 𝐴 (1 − 2𝑝)𝑛

 Particular integral:   𝑦
𝑛

(𝑃𝐼) = 𝐵  ⇒   𝐵 + (2𝑝 − 1)𝐵 = 𝑝  ⇒   𝐵 = 1
2

 General solution:   𝑦
𝑛

= 𝐴 (1 − 2𝑝)𝑛 + 1
2

 Initial condition:    (since the initial state is the same by definition) 𝑦
0

= 1

      ⇒   1 = 𝐴 + 1
2   ⇒   𝐴 = 1

2

 Particular solution:  , for all integers n ≥ 0.  [6 pts] 𝑦
𝑛

= 1
2 (1 − 2𝑝)𝑛 + 1( )

 (Total: 10 points)
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B5. IVP:  . 𝑦'' + 14𝑦' + 49𝑦 = 𝑓(𝑥),    𝑦(0) = 𝑦'(0) = 0

The input is  , where  is the Heaviside step function. 𝑓(𝑥) = 𝑢(𝑥) − 𝑢(𝑥 − 1) 𝑢(𝑡)

To find the step response,  let   (for x > 0, otherwise 0) 𝑓(𝑥) = 𝑢(𝑥) = 1

Characteristic equation:  (repeated)  [1 pt] λ2 + 14λ + 49 = 0  ⇒   λ =  − 7

Complementary solution:  𝑦
𝐶𝐹

(𝑥) = 𝑒−7𝑥(𝐴 + 𝐵𝑥)

Particular integral:   𝑦
𝑃𝐼

(𝑥) = 𝐶  ⇒   49𝐶 = 1  ⇒   𝐶 = 1
49

General solution:    [1 pt] 𝑦
𝑠𝑡𝑒𝑝

(𝑥) = 𝑒−7𝑥(𝐴 + 𝐵𝑥) + 1
49

Initial conditions:   𝑦(0) = 0  ⇒   0 = 𝐴 + 1
49   ⇒   𝐴 = −1

49

     𝑦'(0) = 0  ⇒   0 =  − 7𝐴 + 𝐵  ⇒   𝐵 = −1
7

Step response:   𝑦
𝑠𝑡𝑒𝑝

(𝑥) =  − 1
49 𝑒−7𝑥 − 1

7 𝑥 𝑒−7𝑥 + 1
49 = 1

49 1 − (1 + 7𝑥( )𝑒−7𝑥)
    if x ≥ 0, else 0.  [1 pt] 

 

Method 1: Linear Superposition 

Using the principles of linear superposition, the solutions  with   𝑦(𝑥) 𝑓(𝑥) = 𝑢(𝑥)
can be found, shifted by 1 unit in x to find the solution with , then subtracted. 𝑢(𝑥 − 1)

Forced input:    𝑓(𝑥) = 𝑢(𝑥) − 𝑢(𝑥 − 1)

Forced response:   𝑦(𝑥) = 𝑦
𝑠𝑡𝑒𝑝

(𝑥) − 𝑦
𝑠𝑡𝑒𝑝

(𝑥 − 1)

If x < 0, then  and  are both zero, so . 𝑦
𝑠𝑡𝑒𝑝

(𝑥) 𝑦
𝑠𝑡𝑒𝑝

(𝑥) 𝑦(𝑥) = 0;   𝑖𝑓 𝑥 < 0{ }

If 0 ≤ x < 1, then  but , so 𝑦
𝑠𝑡𝑒𝑝

(𝑥) = 1
49 1 − (1 + 7𝑥( )𝑒−7𝑥) 𝑦

𝑠𝑡𝑒𝑝
(𝑥 − 1) = 0

  [2 pts] 𝑦(𝑥) = 1
49 1 − (1 + 7𝑥( )𝑒−7𝑥);   𝑖𝑓 0 ≤ 𝑥 < 1{ }.

If x ≥ 1, then  and  𝑦
𝑠𝑡𝑒𝑝

(𝑥) = 1
49 1 − (1 + 7𝑥( )𝑒−7𝑥) 𝑦

𝑠𝑡𝑒𝑝
(𝑥 − 1) = 1

49 1 − (7𝑥 − 6) 𝑒7 𝑒−7𝑥( )

  [3 pts] 𝑦(𝑥) = 1
49  𝑒−7𝑥 (7𝑥 − 6) 𝑒7 − (1 + 7𝑥)( );   𝑖𝑓 𝑥 ≥ 1{ }
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 Method 2: Convolution integral 

Impulse response:    [1 pt] 𝑔(𝑥) =
𝑑𝑦

𝑠𝑡𝑒𝑝

𝑑𝑥 = 𝑥 𝑒−7𝑥

Forcing function:   𝑓(𝑥) = 𝑢(𝑥) − 𝑢(𝑥 − 1)

Forced response:   𝑦(𝑥) = (𝑓 * 𝑔)(𝑥) =
0

𝑥

∫ 𝑓(τ) 𝑔(𝑥 − τ) 𝑑τ

If  0 ≤ 𝑥 ≤ 1  ⇒   𝑦(𝑥) =
0

𝑥

∫(𝑥 − τ) 𝑒−7(𝑥 − τ) 𝑑τ = 𝑥𝑒−7𝑥

0

𝑥

∫ 𝑒7τ 𝑑τ − 𝑒−7𝑥

0

𝑥

∫ τ𝑒7τ 𝑑τ

   .  [2 pts] = 𝑥
7 − 𝑥

7 𝑒−7𝑥 + 1
49 − 𝑥

7 − 1
49 𝑒−7𝑥 = −𝑥

7 𝑒−7𝑥 + 1
49 − 1

49 𝑒−7𝑥

If  .)  [2 pts] 𝑥 > 1  ⇒   𝑦(𝑥) =
0

1

∫(𝑥 − τ) 𝑒−7(𝑥 − τ) 𝑑τ = 1
49 𝑒−7𝑥 − 1 − 7𝑥 + 𝑒7(7𝑥 − 6)( )

 
Therefore, y(x) is a piecewise function with 

 

Sketch of y(x):  [1 pt] 

 

The maximum value of y occurs at x = 1, at which  . 𝑦(1) =
1 − 8 𝑒−7

49

           [1 pt] 

 (Total: 10 points) 

 

 

https://www.codecogs.com/eqnedit.php?latex=%20y(x)%20%3D%20%5Cbegin%7Bcases%7D%20%200%2C%20%26%20x%20%3C%200%20%5C%5C%20%20%20%20%5Cfrac%7B1%7D%7B49%7D%5Cleft%20(%201%20-%20e%5E%7B-7x%7D(1%20%2B%207x)%20%5Cright%20)%2C%20%20%26%200%20%5Cleq%20x%20%5Cleq%201%20%5C%5C%20%20%20%5Cfrac%7B1%7D%7B49%7D%20e%5E%7B-7x%7D%5Cleft%20(%20-1%20-%207x%20%2B%20e%5E7(7x%20-%206)%20%5Cright%20)%2C%20%26%20x%20%3E%201%20%5C%5C%20%20%20%5Cend%7Bcases%7D%20#0
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B6.  

a. The intersections of the curve with the horizontal line y = t are given by 

   [1 pt] 𝑥3 + 2𝑥2 − 15𝑥 + 5 = 𝑡

 The solutions x satisfy  and , so the above is the implicit  𝑥
1

= 𝑓(𝑡) 𝑥
3

= 𝑔(𝑡)
solution to a differential equation satisfied by these functions. 

Implicitly differentiating both sides with respect to t: 

  [1 pt] ⇒   3𝑥2 𝑑𝑥
𝑑𝑡 + 4𝑥 𝑑𝑥

𝑑𝑡 − 15 𝑑𝑥
𝑑𝑡 = 1

 ⇒   𝑑𝑥
𝑑𝑡 3𝑥2 + 4𝑥 − 15( ) = 1

   [1 pt] ⇒   𝑑𝑥
𝑑𝑡 = 1

3𝑥2 + 4𝑥 − 15

This differential equation has solutions x = f (t) and x = g(t). (Total: 3 points) 
 

 
b. The differential equation is nonlinear, so it does not satisfy the superposition principle.  

Therefore, in general, x(t) = a f (t) + b g(t) is not a solution. 
We know that x = f (t) and x = g(t) are solutions, so (a, b, c) = (1, 0, 0) or (0, 1, 0).  [2 pts] 

However, we know that the curve intersects the line three times, and two of  
them are given by f (t) and g(t), therefore there must exist one further solution.  
We need to find out whether we can express this solution in the form a f (t) + b g(t). 

By Vieta’s formula, the sum of the cubic polynomial roots is:   -2 𝑓(𝑡) + 𝑔(𝑡) + 𝑥(𝑡) =

 ⇒   𝑥(𝑡) =  − (𝑓(𝑡) + 𝑔(𝑡) + 2) =  − 𝑓(𝑡) − 𝑔(𝑡) − 2

This cannot be written in the form a f (t) + b g(t), so there are no other solutions with c = 0. 
However, when we allow c ≠ 0, we get one more solution (a, b, c) = (-1, -1, -2).  [2 pts] 

 (Total: 4 points) 

c. Find the intersection points for the case t = 5: 

 𝑥3 + 2𝑥2 − 15𝑥 = 0  ⇒   𝑥(𝑥 − 3)(𝑥 + 5) = 0  ⇒ 𝑥 = 0,  3,  − 5
  ⇒ 𝑓(5) = 3,   𝑔(5) =  − 5

 Using the DE,    and  . 𝑓'(5) = 1

3 𝑓(5)2 + 4 𝑓(5) − 15
= 1

24 𝑔'(5) = 1

3 𝑔(5)2 + 4 𝑔(5) − 15
= 1

40

 By product rule,    so   ℎ'(𝑡) = 𝑡(𝑓'(𝑡) − 𝑔'(𝑡)) + 𝑓(𝑡) − 𝑔(𝑡),

 . (Total: 3 points) ℎ'(5) = 8 + 5 × 1
60 = 97

12
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B7.  

a. Characteristic equation:   λ2 + 1 = 0  ⇒   λ =  ± 𝑖

Complementary solution:    [1 pt] 𝑦
𝐶𝐹

(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥

The linearly independent basis solutions are  y1 = cos x  and  y2 = sin x. 

 The Wronskian determinant is .  [1 pt] 𝑊(𝑥) = 𝑦
1
𝑦

2
' − 𝑦

1
'𝑦

2
= 𝑐𝑜𝑠2 𝑥 + 𝑠𝑖𝑛2 𝑥 = 1

 By variation of parameters, the particular integral is   

 𝑦
𝑃𝐼

(𝑥) =  − 𝑐𝑜𝑠 𝑥 ∫  𝑠𝑖𝑛 𝑥 𝑡𝑎𝑛 𝑥 𝑑𝑥 + 𝑠𝑖𝑛 𝑥 ∫  𝑐𝑜𝑠 𝑥 𝑡𝑎𝑛 𝑥 𝑑𝑥

 =  − 𝑐𝑜𝑠 𝑥 ∫(𝑠𝑒𝑐 𝑥 − 𝑐𝑜𝑠 𝑥) 𝑑𝑥 + 𝑠𝑖𝑛 𝑥 ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥

 =  − 𝑐𝑜𝑠 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥| − 𝑠𝑖𝑛 𝑥( ) − 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥
.  [3 pts] =  − 𝑐𝑜𝑠 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥|

General solution: . 𝑦(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥|

 First derivative of particular integral: 
  𝑑

𝑑𝑥  𝑐𝑜𝑠 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥| = 1 − 𝑠𝑖𝑛 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥|

Initial conditions:   𝑦(0) = 0  ⇒   0 = 𝐴
     𝑦'(0) = 0  ⇒   0 = 𝐵 − 1  ⇒   𝐵 = 1

Particular solution: .  [2 pts] 𝑦(𝑥) = 𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥 𝑙𝑛|𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥|
 (Total: 7 points) 

 
b. Observe that the series expansion of tan x has all positive terms. Therefore, the  

series approximation to tan x always underestimates the true value of tan x [1 pt]. 

Therefore, the nonhomogeneous part of the DE has  . 𝑥 + 1
3 𝑥3 + 2

15 𝑥5 < 𝑡𝑎𝑛 𝑥

We can interpret the DEs as an undamped simple harmonic oscillator subjected  
to these applied external forces. The period of the motion is  ,  𝑇 = 2π

ω = 2π
1

= 2π

so in the interval , we are looking at the first quarter-period of the  0 < 𝑥 < π
2

motion, where the unforced solution is monotonically increasing [1 pt]. 

Therefore, the smaller force value gives a smaller displacement. So, z(x) is an  
underapproximation to y(x) on the interval  [1 pt]. 0 < 𝑥 < π

2
 (Total: 3 points) 
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B8.  

a. Let A =  . Observe that the system is described by zn+1 = Azn.  [1 pt] 

 We are given that the eigenvalues of A are λ1 = 1 and λ2 = α . − 1
2

 Eigenvector for λ1 = 1:   (α - 1)x + y = 0,   let  x = 1 → y = 2(1 - α)  →  v1 = [1, 2(1 - α)]T. 1
2

 Eigenvector for λ2 = α :   x + y = 0,   let x = 1 → y = -1  →  v2 = [1, -1]T.  [2 pts] − 1
2

1
2

1
2

 By iteration, we have  zn = An z0. Since v1 and v2 are linearly independent and span R2,  
 we can always find a unique β, γ such that z0 = βv1 + γv2. Substituting this in, we get 

 zn = Anz0 = βAnv1 + γAnv2 = β λ1
nv1 + γ λ2

nv2    (by definition of eigenvector: Av = λv). 

 In the limit as n → ∞, since |λ2| < 1, we have γ λ2
nv2 → 0, and since λ1 = 1, zn → β v1.  [2 pts] 

 We are given that z0 = [1, 0]T, so equating components in z0 = βv1 + γv2 gives 

 . β + γ = 1,    2(1 − α)β − γ = 0{ }

 Add the equations together to eliminate γ: . (3 − 2α)β = 1  ⇒   β = 1
3 − 2α

 Therefore,  zn =  [1, 2(1 - α)]T. 
𝑛 ∞
lim
→

1
3 − 2α

 In component form,    and  .  [2 pts] 
𝑛 ∞
lim
→

𝑥
𝑛

= 1
3 − 2α

𝑛 ∞
lim
→

𝑦
𝑛

= 2 − 2α
3 − 2α

 (Total: 7 points) 

b. Let M = Ak. We have zk = Mz0 = 0 for some finite k. 

The eigenvalues of M are λ1
k, λ2

k, with corresponding eigenvectors v1, v2. 

For M to map z0 to the origin, z0 must be parallel to the eigenvector v2, and the  
corresponding eigenvalue λ2 must be zero.  [2 pts] 

Therefore, .  [1 pt] λ
2

= α − 1
2 = 0  ⇒   α = 1

2

Alternative method:  If  Mz0 = 0  then  M-1 is a singular matrix, so the  

determinant of A must be zero. This condition leads to . α = 1
2

 (Total: 3 points) 
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B9. 

a. Substitute .  [1 pt] 𝑣(𝑧) = 𝑑𝑧
𝑑𝑡   ⇒   𝑑𝑣

𝑑𝑧 = 𝑑
𝑑𝑧

𝑑𝑧
𝑑𝑡( )

 Since  , this is equal to  .  [1 pt] 𝑑𝑧 = 𝑣 𝑑𝑡 𝑑𝑣
𝑑𝑧 = 𝑑

𝑑𝑧
𝑑𝑧
𝑑𝑡( ) = 1

𝑣
𝑑
𝑑𝑡

𝑑𝑧
𝑑𝑡( ) = 1

𝑣  𝑑2𝑧

𝑑𝑡2

 Since , z(t) is a monotonically increasing function, so z(t) is invertible.  𝑣 = 𝑑𝑧
𝑑𝑡 > 0

Therefore, there exists a single-valued function F(z) for the force at elevation z. 

Applying the substitutions to the DE, we get 

   [2 pts] 𝑧𝑣 𝑑𝑣
𝑑𝑧 + 𝑣2 + 𝑔𝑧 = 𝐹(𝑧)

ρ    ⇒    𝑑𝑣
𝑑𝑧 + 1

𝑧 𝑣 = 𝐹(𝑧)
ρ𝑧 − 𝑔( )𝑣−1

 This is a Bernoulli DE for v(z) with n = -1. 
 (Total: 4 points) 

b. Let F(z) = F0. The Bernoulli DE to be solved is  . 𝑑𝑣
𝑑𝑧 + 1

𝑧 𝑣 =
𝐹

0

ρ𝑧 − 𝑔( )𝑣−1

 Let  . The DE becomes    [1 pt]. This is a linear DE. 𝑢 = 𝑣2 𝑑𝑢
𝑑𝑧 + 2

𝑧 𝑢 = 2
𝐹

0

ρ𝑧 − 𝑔( )
 The integrating factor is  , so the solution is given by  . 𝐼(𝑧) = 𝑧2 𝑧2 𝑢 = 2∫

𝐹
0

ρ 𝑧 − 𝑔𝑧2( ) 𝑑𝑧

 Therefore,  .  [1 pt] 𝑧2𝑢 =
𝐹

0

ρ 𝑧2 − 2
3 𝑔𝑧3 + 𝐶  ⇒   𝑢 =

𝐹
0

ρ − 2
3 𝑔𝑧 + 𝐶

𝑧2

 Undoing the substitution,  .  [1 pt] 𝑣 = 𝑢 =
𝐹

0

ρ − 2
3 𝑔𝑧 + 𝐶

𝑧2

 Since  must be finite for all t, including at t = 0 when z = 0, we must have C = 0. 𝑣 = 𝑑𝑧
𝑑𝑡

 To lift the chain fully, we must have v ≥ 0 when z = L, so .  [1 pt] 
𝐹

0

ρ ≥ 2
3 𝑔𝐿  ⇒   𝐹

0
≥ 2

3 ρ𝑔𝐿
 Since the weight of the chain is , so: ρ𝑔𝐿

● If , then the chain slightly falls back down after lifting.  [1 pt] 2
3 ρ𝑔𝐿 ≤ 𝐹

0
< ρ𝑔𝐿

● If , then the chain continues being lifted upwards away from the table.  [1 pt] 𝐹
0

≥ ρ𝑔𝐿

 (Total: 6 points) 
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B10.  

a. I: False. Asymptotic stability requires all the poles of H(s) (the transfer  
function; Laplace transform of the impulse response) to have negative  
real part. There is no condition on the poles of Y(s). [1 pt] 

II: True. If  then . By the definition of the transfer  𝑥(𝑡) = δ(𝑡) 𝑋(𝑠) = 1
function, . [1 pt] 𝑌(𝑠) = 𝐻(𝑠) 𝑋(𝑠) = 𝐻(𝑠)

III: True. By the final value theorem, . 
𝑡 ∞
lim
→

𝑦(𝑡) =
𝑠 0
lim
→

𝑠 𝑌(𝑠) =
𝑠 0
lim
→

𝑠 𝐻(𝑠) 𝑋(𝑠)

Since H(s) is asymptotically stable, H(s) cannot have a pole at s = 0, so H(0) is a  
finite value. Therefore,  

. [1 pt] 
𝑡 ∞
lim
→

𝑦(𝑡) = 𝐻(0) 
𝑠 0
lim
→

 𝑠 𝑋(𝑠) = 𝐻(0) 
𝑡 ∞
lim
→

𝑥(𝑡) = 𝐻(0) 
𝑡 ∞
lim
→

𝑥(𝑡) = 0

IV: True. By the convolution theorem, . 𝐿 (𝑥 * ℎ)(𝑡){ } = 𝑋(𝑠) 𝐻(𝑠)
 Since  , taking ILTs, we have . [1 pt] 𝑌(𝑠) = 𝑋(𝑠) 𝐻(𝑠) 𝑦(𝑡) = (𝑥 * ℎ)(𝑡)

 

b. Let  , where a and b are real-valued functions. 𝑥(𝑡) = 𝑎(𝑡) + 𝑖 𝑏(𝑡)

By linearity, the system response is  , where ya and yb are  𝑦(𝑡) = 𝑦
𝑎
(𝑡) + 𝑖 𝑦

𝑏
(𝑡)

the system responses to inputs a(t) and b(t) respectively.  [1 pt] 

Since a(t) and b(t) are real, and the impulse response h(t) is also real, the  

responses ya and yb are also real, so  . 𝑅𝑒 𝑦(𝑡)[ ] = 𝑦
𝑎
(𝑡)

Since  ,  the system response to  is .  [1 pt] 𝑎(𝑡) = 𝑅𝑒 𝑥(𝑡)[ ] 𝑅𝑒 𝑥(𝑡)[ ] 𝑅𝑒 𝑦(𝑡)[ ]
 (Total: 2 points) 
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c. Let  . By Euler’s formula, observe that  .  [1 pt] 𝑥(𝑡) = 𝑒𝑖ω𝑡 𝑥(𝑡) = 𝑐𝑜𝑠 ω𝑡 = 𝑅𝑒 𝑥(𝑡)[ ]
 The Laplace transform is  , so the system response is given by 𝑋(𝑠) = 1

𝑠 − 𝑖ω

  .  [1 pt] 𝑌(𝑠) = 𝐻(𝑠) 𝑋(𝑠) =
𝐻(𝑠)

𝑠 − 𝑖ω

 Since this is an LTI system, H(s) must be a rational function of s, with numerator  

order less than the denominator order. Consider a partial fraction decomposition of : 𝑌(𝑠)

     +      where all  Re(sr) < 0    [1 pt] 𝑌(𝑠) =
𝐻(𝑠)

𝑠 − 𝑖ω =
𝑟=1

𝑁

∑
𝑝

𝑟
(𝑠)

(𝑠 − 𝑠
𝑟
)

𝑚
𝑟

𝐶
𝑠 − 𝑖ω

( pr(s): polynomial functions in s of order up to mr – 1,  sr: rth pole of H(s),  
mr: multiplicity of the pole sr,  N: number of poles in H(s).).  

Using the cover-up method, we can let s = iω to get  .  [1 pt] 𝐶 = 𝐻(𝑖ω)

The inverse Laplace transform of  contains terms of the form , and  𝑎(𝑠)

(𝑠 − 𝑠
𝑟
)𝑚 𝑡𝑚−1 𝑒

𝑠
𝑟
𝑡

since   for all Re(sr) < 0, the inverse Laplace transform of the  
𝑡 ∞
lim
→

𝑡𝑚−1 𝑒
𝑠

𝑟
𝑡

= 0

function  tends to zero as t → ∞, with the ‘slowest’ exponential having  
𝑟=1

𝑁

∑
𝑎

𝑟
(𝑠)

(𝑠 − 𝑠
𝑟
)

𝑚
𝑟

time constant  ( : least negative real part of poles sr). 
1

−σ σ

Therefore, when t → ∞ (with  the function .  [1 pt] 𝑡 >> 1
|σ| 𝑌(𝑠) ≈ 𝐶

𝑠 − 𝑖ω = 𝐻(𝑖ω)
𝑠 − 𝑖ω

Taking the inverse Laplace transform,  .  [1 pt] 𝑦(𝑡) ≈ 𝐻(𝑖ω) 𝑒𝑖ω𝑡

From the result in part b), the asymptotic solution is , so 𝑦(𝑡) = 𝑅𝑒 𝑦(𝑡)[ ]
.  [1 pt] 𝑦(𝑡) ≈ 𝑅𝑒 𝐻(𝑖ω) 𝑒𝑖ω𝑡[ ]

Writing  in modulus-argument form, , so   𝐻(𝑖ω) 𝐻(𝑖ω) = 𝐻(𝑖ω)| | 𝑒𝑖 𝑎𝑟𝑔 𝐻(𝑖ω)

 𝑦(𝑡) ≈ 𝐻(𝑖ω)| | 𝑅𝑒 𝑒𝑖 (ω𝑡 + 𝑎𝑟𝑔 𝐻(𝑖ω))[ ]
  [1 pt] ⇒   𝑦(𝑡) ≈ 𝐻(𝑖ω)| | 𝑐𝑜𝑠 ω𝑡 + 𝑎𝑟𝑔 𝐻(𝑖ω)( )

 ⇒   𝑦(𝑡) ≈ 𝐻(𝑖ω)| | 𝑐𝑜𝑠 ω 𝑡 − − 1
ω 𝑎𝑟𝑔 𝐻(𝑖ω)⎡⎣ ⎤⎦( )( ) = 𝐴 𝑥(𝑡 − τ)

where    and     arg .  [1 pt] (Total: 9 points) 𝐴 = 𝐻(𝑖ω)| | τ = −
1
ω 𝐻(𝑖ω)
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B11.  

a. The differential equations are    and  . 𝑑𝑥
𝑑𝑡 =  − α𝑥 𝑑𝑦

𝑑𝑡 = α𝑥 − (β + γ)𝑦

The solution to the first DE is  . 𝑑𝑥
𝑑𝑡 =  − α𝑥  ⇒   𝑥(𝑡) = 𝑥

0
 𝑒−α𝑡

Using the initial condition,  . 𝑥
0

= 𝑁  ⇒   𝑥(𝑡) = 𝑁 𝑒−α𝑡

Subbing in the first DE and this solution for x, 

 𝑑𝑦
𝑑𝑡 + (β + γ)𝑦 = α𝑁 𝑒−α𝑡

This is a linear DE. The integrating factor is   and the solution is 𝑒
∫(β + γ) 𝑑𝑡

= 𝑒(β + γ)𝑡

 𝑒(β + γ)𝑡 𝑦 = ∫ α𝑁 𝑒(β + γ − α)𝑡  ⇒   𝑦 = 𝑒−(β + γ)𝑡 α𝑁
β + γ − α  𝑒(β + γ − α)𝑡 + 𝐶( )

Initial condition: y(0) = 0 →  𝐶 = −α𝑁
β + γ − α

. ⇒   𝑦 = α𝑁
β + γ − α  𝑒

−(β + γ)𝑡 
𝑒(β + γ − α)𝑡 − 1( ) = α𝑁

β + γ − α 𝑒−α𝑡 − 𝑒−(β + γ)𝑡 ( )
To find the number of deaths z, use  , so we integrate y: 𝑑𝑧

𝑑𝑡 = γ𝑦

 𝑧 = αγ𝑁
β + γ − α

1
β + γ 𝑒−(β + γ)𝑡 − 1

α 𝑒−α𝑡( ) + 𝐶

The initial condition is z(0) = 0, so C = 0. Therefore, 

. 𝑧(𝑡) = αγ𝑁
β + γ − α

1
β + γ 𝑒−(β + γ)𝑡 − 1

α 𝑒−α𝑡( )
 (Total: 7 points) 
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B11. (continued) 

b. Return to the differential equation for y, let β + γ = α: 

  𝑑𝑦
𝑑𝑡 + α 𝑦 = α𝑁 𝑒−α𝑡,     𝑦(0) = 0

 This is a linear differential equation. We could use the integrating factor method,  
but since the RHS Q(x) is an exponential, we can use the easier method of  
undetermined coefficients. 

 Characteristic equation:  λ + α = 0  ⇒   λ =  − α
 Complementary solution:  𝑦

𝐶𝐹
= 𝐴 𝑒−α𝑡

 Particular integral:    (since  is not linearly independent) 𝑦
𝑃𝐼

= 𝐵 𝑡 𝑒−α𝑡 𝑒−α𝑡

  ⇒   𝑦
𝑃𝐼

' = 𝐵 𝑒−α𝑡 − α𝐵𝑡 𝑒−α𝑡

 Subbing into the DE,  𝐵 𝑒−α𝑡 = α𝑁 𝑒−α𝑡  ⇒   𝐵 = α𝑁

 General solution:   𝑦 = 𝐴 𝑒−α𝑡 + α𝑁 𝑡 𝑒−α𝑡

 Initial condition:   𝑦(0) = 0  ⇒   𝐴 = 0

 Particular solution:   𝑦(𝑡) = α𝑁 𝑡 𝑒−α𝑡

 By integration,   𝑧(𝑡) = γ∫ 𝑦(𝑡) 𝑑𝑡 = αγ𝑁 ∫ 𝑡 𝑒−α𝑡 𝑑𝑡

 Using integration by parts,   ∫ 𝑡 𝑒−α𝑡 𝑑𝑡 =  − 𝑡
α 𝑒−α𝑡 − 1

α2 𝑒−α𝑡 + 𝐶

 So,     𝑧(𝑡) = − γ𝑁
α (1 + α𝑡) 𝑒−α𝑡 + 𝐶'( )

 Initial conditions:   𝑧(0) = 0  ⇒   𝐶' = γ𝑁
α

 Therefore,   . 𝑧(𝑡) = γ𝑁
α 1 − 𝑒−α𝑡(1 + α𝑡)( )

 (Total: 8 points) 
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B12.  

a. Laplace transform of both sides:   𝑠2 + 𝑅
𝐿 𝑠 + 1

𝐿𝐶( ) 𝑌(𝑠) = 1
𝐿𝐶  𝑋(𝑠)

 From the table of Laplace transforms, .  [1 pt] 𝑋(𝑠) = 𝑥
0
 𝐿 𝑠𝑖𝑛 β𝑡{ } =

𝑥
0
 β

𝑠2 + β2

 Therefore,     ,  [1 pt] 𝑌(𝑠) = 1
𝐿𝐶

𝑥
0
 β

𝑠2 + β2( ) 𝑠2 + 𝑅
𝐿 𝑠 + 1

𝐿𝐶( )
       .  [1 pt] 𝑍(𝑠) = 𝑌(𝑠)

𝑋(𝑠) = 1
𝐿𝐶

1

𝑠2 + 𝑅
𝐿  𝑠 + 1

𝐿𝐶

 (Total: 3 points) 

b. We are given that the step response contains stable oscillations with a finite  
steady-state value. Since the impulse response is the time derivative of this, it must  
also contain stable oscillations, so we know that this is an underdamped system.  
Therefore, the poles of Z(s) must be complex values. 

For complex poles, the discriminant of the characteristic polynomial must be negative: 

.  [2 pts] 𝑅2

𝐿2 − 4
𝐿𝐶 < 0  ⇒   1

𝐿𝐶 > 𝑅2

4𝐿2

Therefore, the value of R is bounded from above by  .  [1 pt] 𝑅 < 2 𝐿
𝐶

 (Total: 3 points) 

c. To find the poles of Z(s), we need to set its denominator to zero. 

.  [1 pt] 𝑠2 + 𝑅
𝐿 𝑠 + 1

𝐿𝐶 = 0  ⇒   𝑠 =
− 𝑅

𝐿  ± 𝑅2

𝐿2  − 4
𝐿𝐶

2 =  − 𝑅
2𝐿  ±  𝑖 1

𝐿𝐶 − 𝑅2

4𝐿2

As R varies, the real and imaginary parts of the poles  are 𝑠 = σ ± ω𝑖

  and   σ(𝑅) = 𝑅𝑒(𝑠) = −𝑅
2𝐿 ω(𝑅) = 𝐼𝑚(𝑠) = 1

𝐿𝐶 − 𝑅2

4𝐿2

Observe that , so the locus of the poles is a circle in σ2 + ω2 = 1
𝐿𝐶

the complex plane with radius , in the left half plane since .  1
𝐿𝐶

σ < 0

Therefore, the pole-zero plot is as shown on the left.  [1 pt] 
As R increases from 0 to , the poles move further left.  [1 pt] 2 𝐿/𝐶

As R → 0, if  then resonance occurs, and the system β = ω = 1
𝐿𝐶

response y(t) contains unstable oscillations that increase in 
amplitude (diverge) with time.  [1 pt] (Total: 4 points) 
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B12. (continued) 

d. In general, we know that any forced parallel mass-spring-dashpot linear system  
can be modelled by the nonhomogeneous 2nd order DE: 

 𝑚𝑦'' + µ𝑦' + 𝑘𝑦 = 𝐹(𝑡)

where y is the displacement of the mass from its equilibrium position and F is an  
input force applied to the mass. 

Considering our electrical system DE,  ,  we get 𝑦'' + 𝑅
𝐿  𝑦' + 1

𝐿𝐶  𝑦 = 1
𝐿𝐶  𝑥

 𝑚𝑦'' + µ𝑦' + 𝑘𝑦 = 𝐹(𝑡)    ⇔     𝐿 𝑦'' + 𝑅 𝑦' + 1
𝐶  𝑦 = 1

𝐶  𝑥

These DEs are the same if all of the following conditions are met:  [3 pts] 

● the mass m is proportional to the inductance L, 
● the damping rate μ is proportional to the resistance R, 

● the spring constant k is proportional to the reciprocal of the capacitance , 1
𝐶

● the input force F(t) is proportional to the input current divided by capacitance , 𝑥(𝑡)
𝐶

● the constant of proportionality must be the same in all four above cases. 

 Observe that in the electrical system, the coefficients of the input x and output y  
are the same, and x and y both represent the same type of quantity (current). We  
can mirror this in the mechanical system by using both x and y to represent  
lengths and adding another spring of the same spring constant. 

One possible realisation of a mechanical system with the same dynamics is therefore: 
(assumes no collisions with walls, perfectly smooth horizontal ground, no air resistance) 

 

 𝑚𝑦'' + µ𝑦' + 𝑘𝑦 = 𝑘𝑥        ⇔         𝐿 𝑦'' + 𝑅 𝑦' + 1
𝐶  𝑦 = 1

𝐶  𝑥

where x is the extension of the spring on the right-hand side.  [2 pts] 

This must be an underdamped system, so we also require    for oscillations. µ < 2 𝑚𝑘

Other systems are also possible - be creative! (Total: 5 points) 
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Section C 
Long-Form Questions 

250 points available 

 

C1.  

a. This is a Bernoulli differential equation. 

 Write in standard form:   𝑑𝑦
𝑑𝑥 − 1

𝑥 𝑦 = 𝑦9

 Let   𝑢 = 𝑦1−9 = 𝑦−8  ⇒   𝑑𝑢
𝑑𝑥 =  − 8𝑦−9 𝑑𝑦

𝑑𝑥   ⇒   𝑑𝑦
𝑑𝑥 = −1

8 𝑦9 𝑑𝑢
𝑑𝑥

  𝑦 = 𝑢−1/8  ⇒   𝑦9 = 𝑢−9/8  ⇒   𝑑𝑦
𝑑𝑥 = −1

8 𝑢−9/8 𝑑𝑢
𝑑𝑥

 Substitute into the DE:   −1
8 𝑢−9/8 𝑑𝑢

𝑑𝑥 − 1
𝑥 𝑢−1/8 = 𝑢−9/8

 Multiply both sides by -8u9/8:    [5 pts] 𝑑𝑢
𝑑𝑥 + 8

𝑥 𝑢 =  − 8

 This is a linear DE. Use the integrating factor . 𝐼(𝑥) = 𝑒
∫ 8

𝑥  𝑑𝑥
= 𝑒8 𝑙𝑛 𝑥 = 𝑥8

General solution:   . 𝑥8 𝑢 = ∫− 8𝑥8 𝑑𝑥 = −8
9 𝑥9 + 𝐴  ⇒   𝑢 = −8𝑥

9 + 𝐴

𝑥8

           [2 pts] 

 Unsubstitute:       [1 pt] 𝑦 = −8𝑥
9 + 𝐴

𝑥8( )−1/8

 (Total: 8 points) 
 

b. Initial condition:   .  [2 pt] 1 = − 8
9 + 𝐴( )−1/8

  ⇒   𝐴 = 17
9

 Particular solution:   . [1 pt] 𝑦 = −8𝑥
9 − 17

9𝑥8( )−1/8

= 9𝑥8

17 − 8𝑥9( )1/8

=
4 3 𝑥

8
17 − 8𝑥9

 (Total: 3 points) 
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C1. (continued) 

c. Use a step size  (moving to the left), starting at x0 = 1, y0 = 1.  [1 pt] ℎ =  − 0. 1

 The gradient satisfies  . 𝑓(𝑥,  𝑦) = 𝑦
𝑥 + 𝑦9

 Step 1:   [1 pt] 𝑦
1

= 1 + ℎ 𝑓(1,  1) = 0. 8

     [1 pt] 𝑦
1

= 1 + ℎ
2 (𝑓(1,  1) + 𝑓(0. 9,  0. 8)) = 0. 8488446692...

 Step 2:   [1 pt] 𝑦
2

= 0. 8488446692 + ℎ 𝑓(0. 9,  0. 8488446692) = 0. 7316486996...

    𝑦
2

= 0. 8488446692 + ℎ
2 (𝑓(0. 9,  0. 8488446692) + 𝑓(0. 8,  0. 7316486996))

    = 0. 7415146855...

    (6 sf)   [1 pt] ⇒   𝑦(0. 8) ≈ 0. 741515

 (Total: 5 points) 

 

d. Exact value:    [1 pt] 𝑦(0. 8) =
4 3 × 0.8

8
17 − 8 × 0.89

= 0. 744913906...

 Percentage error: 0.46% error.  [1 pt] 0.744913906 − 0.741515
0.744913906 = 0. 004584158  ⇒   

 (Total: 2 points) 

 

e. Any two of the following: 

● Use a larger number of steps or smaller step size. 
● Use a more accurate numerical method e.g. Runge-Kutta 4th order (RK4). 
● Use a higher floating point precision in the computations (keep more sig figs). 

 (Total: 2 points) 

 

 



Differential Equations - End of Topic Test Solutions Section C 

 

C2.  

a. Cross-multiply:  [1 pt] 𝑐𝑜𝑡 𝑥 𝑑𝑦 = (𝑦 + 𝑐𝑜𝑡 𝑥 − 1) 𝑑𝑥

 Subtract:   [1 pt] (1 − 𝑦 − 𝑐𝑜𝑡 𝑥) 𝑑𝑥 + (𝑐𝑜𝑡 𝑥) 𝑑𝑦 = 0

 Therefore    and  . [1 pt] 𝑀(𝑥,  𝑦) = 1 − 𝑦 − 𝑐𝑜𝑡 𝑥 𝑁(𝑥,  𝑦) = 𝑐𝑜𝑡 𝑥

    (Alternative answer: the negatives of these.) 

 (Total: 3 points) 

 

b. Condition for exactness:   ∂𝑀
∂𝑦 = ∂𝑁

∂𝑥

 Check each partial derivative:   [1 pt] ∂𝑀
∂𝑦 = ∂

∂𝑦 (1 − 𝑦 − 𝑐𝑜𝑡 𝑥) =  − 1

        [1 pt] ∂𝑁
∂𝑥 = ∂

∂𝑥 (𝑐𝑜𝑡 𝑥) =  − 𝑐𝑠𝑐2 𝑥

 Since the partial derivatives are different, the DE is not exact.  [1 pt] 

 (Total: 3 points) 

 

c. Condition for exactness:    [1 pt] ∂
∂𝑦 ( 𝐼(𝑥) (1 − 𝑦 − 𝑐𝑜𝑡 𝑥) ) =  − 𝐼(𝑥)

        [1 pt] ∂
∂𝑥  ( 𝐼(𝑥) 𝑐𝑜𝑡 𝑥 ) =  − 𝑐𝑠𝑐2 𝑥 𝐼(𝑥) + 𝐼'(𝑥) 𝑐𝑜𝑡 𝑥

 These must be equal, so   − 𝑐𝑠𝑐2 𝑥 𝐼(𝑥) + 𝐼'(𝑥) 𝑐𝑜𝑡 𝑥 =  − 𝐼(𝑥)

  ⇒   𝐼'(𝑥) 𝑐𝑜𝑡 𝑥 = 𝐼(𝑥) (𝑐𝑠𝑐2 𝑥 − 1) = 𝐼(𝑥) 𝑐𝑜𝑡2 𝑥
   [2 pts] ⇒   𝐼'(𝑥) = 𝐼(𝑥) 𝑐𝑜𝑡 𝑥

This is a separable DE:     [2 pts] ∫ 1
𝐼  𝑑𝐼 = ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥  ⇒   𝑙𝑛 𝐼 = 𝑙𝑛 𝑠𝑖𝑛 𝑥 + 𝐶

       [1 pt] (redefine ) 𝐼(𝑥) = 𝐶 𝑠𝑖𝑛 𝑥 𝐶 ← 𝑒𝐶

     for any real constant C. 

 (Total: 7 points) 
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C2. (continued) 

d. Exact DE:    and     [1 pt] 𝑀(𝑥,  𝑦) = (1 − 𝑦 − 𝑐𝑜𝑡 𝑥) 𝑠𝑖𝑛 𝑥 𝑁(𝑥,  𝑦) = 𝑐𝑜𝑠 𝑥.

 Potential function:   [1 pt] 𝐹(𝑥,  𝑦) = ∫ 𝑀(𝑥,  𝑦) 𝑑𝑥 =  (𝑦 − 1) 𝑐𝑜𝑠 𝑥 − 𝑠𝑖𝑛 𝑥 + 𝑓(𝑦)

      [1 pt] 𝐹(𝑥,  𝑦) = ∫ 𝑁(𝑥,  𝑦) 𝑑𝑦 = 𝑦 𝑐𝑜𝑠 𝑥 + 𝑓(𝑥)

 Equate:   and     [1 pt] 𝑓(𝑥) =  − 𝑐𝑜𝑠 𝑥 − 𝑠𝑖𝑛 𝑥 𝑓(𝑦) = 0

 General solution:   [1 pt] 𝐹(𝑥,  𝑦) = 𝑦 𝑐𝑜𝑠 𝑥 − 𝑐𝑜𝑠 𝑥 − 𝑠𝑖𝑛 𝑥 = 𝐶

      [1 pt] ⇒   𝑦 = 𝐶 + 𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥
𝑐𝑜𝑠 𝑥 = 𝐶 𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥 + 1

 Particular solution:  𝑦 − π
4( ) = 0  ⇒   0 = 2𝐶 − 1 + 1  ⇒   𝐶 = 0

      [1 pt] ⇒   𝑦 = 1 + 𝑡𝑎𝑛 𝑥.

 (Total: 7 points) 

 

 

 



Differential Equations - End of Topic Test Solutions Section C 

 

C3.  

a. Let   𝑦 = 𝑧 𝑠𝑖𝑛 𝑥  ⇒   𝑑𝑦
𝑑𝑥 = 𝑑𝑧

𝑑𝑥  𝑠𝑖𝑛 𝑥 + 𝑧 𝑐𝑜𝑠 𝑥

  ⇒   𝑑2𝑦

𝑑𝑥2 = 𝑑2𝑧

𝑑𝑥2  𝑠𝑖𝑛 𝑥 + 2 𝑑𝑧
𝑑𝑥  𝑐𝑜𝑠 𝑥 − 𝑧 𝑠𝑖𝑛 𝑥

 Substitute into the given DE: 

 𝑑2𝑧

𝑑𝑥2  𝑠𝑖𝑛 𝑥 + 2 𝑑𝑧
𝑑𝑥  𝑐𝑜𝑠 𝑥 − 𝑧 𝑠𝑖𝑛 𝑥 − 2 𝑑𝑧

𝑑𝑥  𝑠𝑖𝑛 𝑥 + 𝑧 𝑐𝑜𝑠 𝑥( ) 𝑐𝑜𝑡 𝑥 + 2𝑧 𝑠𝑖𝑛 𝑥 𝑐𝑠𝑐2 𝑥

  [3 pts] = 2 𝑐𝑜𝑠 𝑥 − 2 𝑐𝑜𝑠3 𝑥

 Simplify   and  : 𝑠𝑖𝑛 𝑥 𝑐𝑠𝑐2 𝑥 = 𝑐𝑠𝑐 𝑥,   𝑠𝑖𝑛 𝑥 𝑐𝑜𝑡 𝑥 = 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑡 𝑥 = 𝑐𝑜𝑠2 𝑥 𝑐𝑠𝑐 𝑥

  𝑑2𝑧

𝑑𝑥2  𝑠𝑖𝑛 𝑥 − 𝑧 𝑠𝑖𝑛 𝑥 − 2𝑧 𝑐𝑜𝑠2 𝑥 𝑐𝑠𝑐 𝑥 + 2𝑧 𝑐𝑠𝑐 𝑥 = 2 𝑐𝑜𝑠 𝑥 − 2 𝑐𝑜𝑠3 𝑥

 Factorise:  𝑑2𝑧

𝑑𝑥2  𝑠𝑖𝑛 𝑥 + 𝑧 2 𝑐𝑠𝑐 𝑥 − 2 𝑐𝑜𝑠2 𝑥 𝑐𝑠𝑐 𝑥 − 𝑠𝑖𝑛 𝑥( ) = 2 𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛2 𝑥

 Divide by sin x:  𝑑2𝑧

𝑑𝑥2 + 𝑧 2 𝑐𝑠𝑐2 𝑥 − 2 𝑐𝑜𝑡2 𝑥 − 1( ) = 2 𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑥

 Trig identities:  𝑑2𝑧

𝑑𝑥2 + 𝑧 2 − 1( ) = 𝑠𝑖𝑛 2𝑥

    .  [4 pts] 𝑑2𝑧

𝑑𝑥2 + 𝑧 = 𝑠𝑖𝑛 2𝑥

 Initial conditions:   [1 pt] 𝑧 = 𝑦 𝑐𝑠𝑐 𝑥  ⇒   𝑧( π
2 ) = 𝑦( π

2 ) 𝑐𝑠𝑐 π
2 = 1 × 1 = 1

     𝑑𝑧
𝑑𝑥 = 𝑐𝑠𝑐 𝑥( 𝑑𝑦

𝑑𝑥 − 𝑧 𝑐𝑜𝑠 𝑥)

      [1 pt] ⇒   𝑧'( π
2 ) = 𝑐𝑠𝑐 π

2  (𝑦'( π
2 ) − 𝑧( π

2 ) 𝑐𝑜𝑠 π
2 ) = 0.

      and  . ⇒  𝑧 π
2( ) = 1 𝑧' π

2( ) = 0

 (Total: 9 points)
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C3. (continued) 

b. To solve  : 𝑧'' + 𝑧 = 𝑠𝑖𝑛 2𝑥

 Complementary solution:   [2 pts] 𝑧
𝐶𝐹

(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥

 Particular integral:   𝑧
𝑃𝐼

(𝑥) = 𝐶 𝑐𝑜𝑠 2𝑥 + 𝐷 𝑠𝑖𝑛 2𝑥

      ⇒   − 4𝐶 𝑐𝑜𝑠 2𝑥 − 4𝐷 𝑠𝑖𝑛 2𝑥 + 𝐶 𝑐𝑜𝑠 2𝑥 + 𝐷 𝑠𝑖𝑛 2𝑥 = 𝑠𝑖𝑛 2𝑥

  ⇒   𝐶 = 0,   − 3𝐷 = 1  ⇒   𝐷 = −1
3

 General solution:    [3 pts] 𝑧(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥 − 1
3  𝑠𝑖𝑛 2𝑥

 Initial conditions:    [1 pt] 𝑧 π
2( ) = 1  ⇒   𝐵 = 1

       [1 pt] 𝑧' π
2( ) = 0  ⇒   − 𝐴 + 2

3 = 0  ⇒   𝐴 = 2
3

 Particular solution:     𝑧(𝑥) = 2
3  𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥 − 1

3  𝑠𝑖𝑛 2𝑥

 (Total: 7 points) 
 

c. Unsubstitute:     [1 pt] 𝑦 = 𝑧 𝑠𝑖𝑛 𝑥  ⇒   𝑦 = 2
3  𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥 − 1

3  𝑠𝑖𝑛 2𝑥( ) 𝑠𝑖𝑛 𝑥

       [1 pt] 𝑦 = 2
3  𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛2 𝑥 − 1

3  𝑠𝑖𝑛 2𝑥 𝑠𝑖𝑛 𝑥

      𝑦 = 1
3  𝑠𝑖𝑛 2𝑥 + 𝑠𝑖𝑛2 𝑥 − 1

3  𝑠𝑖𝑛 2𝑥 𝑠𝑖𝑛 𝑥

       [2 pts] 𝑦 = 𝑠𝑖𝑛2 𝑥 + 1
3 (1 − 𝑠𝑖𝑛 𝑥) 𝑠𝑖𝑛 2𝑥.

 (Total: 4 points) 
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C4. 

a. The system contains the product terms xy and y2, which are nonlinear in the  
dependent variables. Therefore, they cannot be expressed using matrix  
multiplication with the given state vector x = [x    y]T. [1 pt] 

 (Total: 1 point) 

b. The system is   𝑑𝑥
𝑑𝑡 =  − 𝑘

1
𝑥𝑦,   𝑑𝑦

𝑑𝑡 = 𝑘
1
𝑥𝑦  ⇒   𝑑𝑥

𝑑𝑡 =  − 𝑑𝑦
𝑑𝑡   ⇒   𝑥 + 𝑦 = 𝐴

(or from conservation of mass) 

 Eliminate y from the system  𝑥 + 𝑦 = 𝐴  ⇒   𝑦 = 𝐴 − 𝑥

       𝑑𝑥
𝑑𝑡 =  − 𝑘

1
𝑥(𝐴 − 𝑥) = 𝑘

1
𝑥(𝑥 − 𝐴)

 This is a separable DE:     [2 pts] 
𝑥

0

𝑥

∫ 1
𝑥(𝑥 − 𝐴)  𝑑𝑥 =

0

𝑡

∫ 𝑘
1
 𝑑𝑡

 Integration by partial fractions:  
𝑥

0

𝑥

∫ −1/𝐴
𝑥 + 1/𝐴

𝑥 − 𝐴( ) 𝑑𝑥 = 𝑘
1
𝑡

       1
𝐴  𝑙𝑛 𝑥−𝐴

𝑥
0
−𝐴

𝑥
0

𝑥 = 𝑘
1
𝑡

       𝑥−𝐴
𝑥

0
−𝐴

𝑥
0

𝑥 = 𝑒
𝐴𝑘

1
𝑡
  ⇒   

𝑥
0

𝑥
0
 − 𝐴 1 − 𝐴

𝑥( ) = 𝑒
𝐴𝑘

1
𝑡

 General solution:     [2 pts] 𝑥 =
𝐴𝑥

0

𝑥
0
 − (𝑥

0
 − 𝐴)𝑒

𝐴𝑘
1
𝑡

 Particular solution:   . 𝐴 = 𝑥
0

+ 𝑦
0
  ⇒   𝑥(𝑡) =

𝑥
0
(𝑥

0
 + 𝑦

0
)

𝑥
0
 + 𝑦

0
 𝑒

(𝑥
0
 + 𝑦

0
)𝑘

1
𝑡 =

𝑥
0
 + 𝑦

0

1 + 
𝑦

0

𝑥
0

 𝑒
(𝑥

0
 + 𝑦

0
)𝑘

1
𝑡

            [1 pts] 
       𝑦(𝑡) = 𝐴 − 𝑥(𝑡) = 𝑥

0
+ 𝑦

0
− 𝑥(𝑡)

       𝑦(𝑡) = (𝑥
0

+ 𝑦
0
) 1 − 1

1 + 
𝑦

0

𝑥
0

 𝑒
(𝑥

0
 + 𝑦

0
)𝑘

1
𝑡( )

      .  [2 pts] 𝑦(𝑡) =
 (𝑥

0
+𝑦

0
) 𝑦

0
 𝑒

(𝑥
0
 + 𝑦

0
)𝑘

1
𝑡

𝑥
0
 + 𝑦

0
 𝑒

(𝑥
0
 + 𝑦

0
)𝑘

1
𝑡 =

𝑥
0
 + 𝑦

0

1 + 
𝑥

0

𝑦
0

 𝑒
−(𝑥

0
 + 𝑦

0
)𝑘

1
𝑡

 (Total: 7 points) 
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C4. (continued) 

c. Phase plane for : 𝑥' =  − 𝑘
1
𝑥𝑦,    𝑦' = 𝑘

1
𝑥𝑦

[1 pt] 
 
 Nullclines: x-nullcline:  (𝑥 = 0  𝑜𝑟  𝑦 = 0)
   y-nullcline:   [1 pt] (𝑥 = 0  𝑜𝑟  𝑦 = 0)

 Equilibrium points:    [1 pt] (𝑥 = 0 𝑜𝑟 𝑦 = 0)
 (any point on the coordinate axes is an equilibrium point.) 

 The equilibrium points with    and    are stable. (𝑥 < 0,   𝑦 = 0) (𝑥 = 0,   𝑦 > 0)
 The equilibrium points with    and    are unstable.  [1 pt] (𝑥 > 0,   𝑦 = 0) (𝑥 = 0,   𝑦 < 0)

 Only the region x, y ≥ 0 is physically meaningful. 

 (Total: 4 points) 
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C4. (continued) 

d. i)  𝑥' =  − 𝑘
1
𝑥𝑦 + 𝑘

2
𝑦2,    𝑦' = 𝑘

1
𝑥𝑦 − 𝑘

2
𝑦2   ⇒    𝑥' + 𝑦' = 0

  , for some constant A. This is the same as the case k2 = 0. ⇒   𝑥 + 𝑦 = 𝐴
The system trajectories satisfy    at all times [1 pt], due to  𝑥 + 𝑦 = 𝐴
conservation of mass [1 pt]. 

 (Total: 2 points) 

ii) For the system  , 𝑑𝑥
𝑑𝑡 =  − 𝑘

1
𝑥𝑦 + 𝑘

2
𝑦2,    𝑑𝑦

𝑑𝑡 = 𝑘
1
𝑥𝑦 − 𝑘

2
𝑦2

        x-nullcline:  𝑦(𝑘
2
𝑦 − 𝑘

1
𝑥) = 0  ⇒   (𝑦 = 0  𝑜𝑟  𝑦 =

𝑘
1

𝑘
2

𝑥)

        y-nullcline:  𝑦(𝑘
1
𝑥 − 𝑘

2
𝑦) = 0  ⇒   (𝑦 = 0  𝑜𝑟  𝑦 =

𝑘
1

𝑘
2

𝑥)

 The equilibrium regions are the lines    and  .  [1 pt] 𝑦 = 0 𝑦 =
𝑘

1

𝑘
2

𝑥  ⇒   𝑘
2
𝑦 = 𝑘

1
𝑥

To prove stability, we can linearise the system and apply eigenvalue theory. 

Let  x1 =  be an arbitrary point on the equilibrium line, where x1 > 0. 𝑥
1
,  

𝑘
1

𝑘
2

𝑥
1( )

Let  . 𝑓(𝑥,  𝑦) =  − 𝑘
1
𝑥𝑦 + 𝑘

2
𝑦2  ⇒   ∂𝑓

∂𝑥 =  − 𝑘
1
𝑦,     ∂𝑓

∂𝑦 =  − 𝑘
1
𝑥 + 2𝑘

2
𝑦

Let  . 𝑔(𝑥,  𝑦) = 𝑘
1
𝑥𝑦 − 𝑘

2
𝑦2  ⇒   ∂𝑔

∂𝑥 = 𝑘
1
𝑦,     ∂𝑔

∂𝑦 = 𝑘
1
𝑥 − 2𝑘

2
𝑦

Therefore, the Jacobian matrix of the system is 

  [2 pts] 

Let  x = x1  and  y =   to get the linearised system matrix A: 
𝑘

1

𝑘
2

𝑥
1

  [1 pt] 

tr A =   and  det A = 0  → eigenvalues  . − 𝑘
1
𝑥

1

𝑘
1

𝑘
2

+ 1( ) λ
1

= 0,   λ
2

=  − 𝑘
1
𝑥

1

𝑘
1

𝑘
2

+ 1( )
[1 pt] 

Since all eigenvalues have , these equilibria are stable*. 𝑅𝑒(λ) ≤ 0
Since one of the eigenvalues is zero, they are degenerate fixed points. [1 pt] 

*Technicality: the ‘Hartman-Grobman linearisation theorem’, which allows us to 
use eigenvalue theory to infer the stability of nonlinear systems, does not strictly 
hold in our case since Re(λ) = 0. However, we have chosen to neglect this detail 
because we can already see that we have stability by inspecting the phase plane. 
‘Centre manifold theory’ can be used for a formal proof. (Total: 6 points) 

 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BJ%7D_%7B%5Cmathbf%7Bf%7D%7D(x%2C%20y)%20%3D%20%5Cbegin%7Bbmatrix%7D%20f_x%20%26%20f_y%20%5C%5C%20g_x%20%26%20g_y%20%5C%5C%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20-k_1%20y%20%26%20-k_1%20x%20%2B%202%20k_2%20y%20%5C%5C%20k_1%20y%20%26%20k_1%20x%20-%202%20k_2%20y%20%5C%5C%20%5Cend%7Bbmatrix%7D.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BA%7D%20%3D%20%5Cmathbf%7BJ%7D_%7B%5Cmathbf%7Bf%7D%7D(x_1%2C%20%5Cfrac%7Bk_1%7D%7Bk_2%7D%20x_1)%20%5Cbegin%7Bbmatrix%7D%20-%5Cfrac%7Bk_1%5E2%7D%7Bk_2%7D%20x_1%20%26%20k_1%20x_1%20%5C%5C%20%5Cfrac%7Bk_1%5E2%7D%7Bk_2%7D%20x_1%20%26%20-k_1%20x_1%20%5C%5C%20%5Cend%7Bbmatrix%7D%20%3D%20k_1%20x_1%20%5Cbegin%7Bbmatrix%7D%20-k_1%2Fk_2%20%26%201%20%5C%5C%20k_1%2Fk_2%20%26%20-1%20%5C%5C%20%5Cend%7Bbmatrix%7D.%20#0
https://en.wikipedia.org/wiki/Hartman%E2%80%93Grobman_theorem
https://en.wikipedia.org/wiki/Center_manifold
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C5.  

a. Let   where . 𝑢 = 1
𝑟   ⇒   𝑑2𝑢

𝑑θ2 + 𝑢 = 𝑘 𝑘 = 𝑔𝑅2

𝑟
0

2 𝑣
0

2

 General solution:   [4 pts] 𝑢(θ) = 𝐴 𝑐𝑜𝑠 θ + 𝐵 𝑠𝑖𝑛 θ + 𝑘
 Initial conditions:  𝑢(0) = 1

𝑟(0) = 1
𝑟

0
  ⇒   1

𝑟
0

= 𝐴 + 𝑘  ⇒   𝐴 = 1
𝑟

0
− 𝑘

     𝑢'(0) = −𝑟'(0)
𝑟(0) = 0  ⇒   𝐵 = 0

 Particular solution:    [2 pts] 𝑢(θ) = 1
𝑟

0
− 𝑘( ) 𝑐𝑜𝑠 θ + 𝑘 = 𝑘 1 − 𝑐𝑜𝑠 θ( ) + 1

𝑟
0

 𝑐𝑜𝑠 θ

 Unsubstitute:  .  [1 pt] 𝑟(θ) = 1
𝑢(θ) = 1

𝑘 1 − 𝑐𝑜𝑠 θ( ) + 1
𝑟

0
 𝑐𝑜𝑠 θ

=
𝑟

0
2 𝑣

0
2

𝑔𝑅2 1 − 𝑐𝑜𝑠 θ( ) + 𝑟
0
𝑣

0
2 𝑐𝑜𝑠 θ

 (Total: 7 points) 

b.   at maximum and minimum values of r   𝑑𝑢
𝑑θ = 𝑘 − 1

𝑟
0

( ) 𝑠𝑖𝑛 θ = 0 ⇒   θ = 0  𝑜𝑟  θ = π

 When ,   (minimum)  [1 pt] θ = 0 𝑟(0) = 𝑟
0

 When ,   (maximum)  [2 pts] θ = π 𝑟(π) =
𝑟

0

2𝑘𝑟
0
 − 1 =

𝑟
0

2𝑣
0

2

2𝑔𝑅2 − 𝑟
0
𝑣

0
2

 (Total: 3 points) 
c. i) Writing the 2nd order DE as a system of 1st order DEs, 

,  let  𝑑2𝑢

𝑑θ2 + 𝑢 = 𝑘 𝑣 = 𝑑𝑢
𝑑θ   ⇒   𝑑𝑢

𝑑θ = 𝑣,    𝑑𝑣
𝑑θ = 𝑘 − 𝑢,   𝑢(0) = 1

𝑟
0

,    𝑣(0) = 0
⎰
⎱

⎱
⎰

 From Euler’s method, we have    and  .  [1 pt] 𝑢
𝑛+1

= 𝑢
𝑛

+ ℎ𝑣
𝑛

𝑣
𝑛+1

= 𝑣
𝑛

+ ℎ 𝑘 − 𝑢
𝑛( )

 This is a system of difference equations. Take the Z-transform of both equations: 
   and    [1 pt] 𝑧 𝑈(𝑧) − 𝑧

𝑟
0

= 𝑈(𝑧) + ℎ 𝑉(𝑧) 𝑧 𝑉(𝑧) = 𝑉(𝑧) − ℎ 𝑈(𝑧) + ℎ𝑘

1 − 𝑧−1

 Rearrange the second equation for V(z):   𝑉(𝑧) = ℎ𝑘 𝑧

(𝑧 − 1)2 − ℎ 𝑈(𝑧)
𝑧 − 1

 Substitute into the first equation to eliminate V(z):   𝑧 𝑈(𝑧) − 𝑧
𝑟

0
= 𝑈(𝑧) + ℎ2𝑘 𝑧

(𝑧 − 1)2 − ℎ2 𝑈(𝑧)
𝑧 − 1

 Solve for U(z) and factorise:     [3 pts] 𝑈(𝑧) =
𝑧 (𝑧 − 1)2 + ℎ2𝑘𝑟

0( )
𝑟

0
(𝑧 − 1) (𝑧 − 1)2 + ℎ2( )

 The poles of U(z) are at    and  . 𝑧 = 1 𝑧 = 1 ± 𝑖ℎ
 The zeroes of U(z) are at    and  .  [1 pt] 𝑧 = 0 𝑧 = 1 ± 𝑖ℎ 𝑘𝑟

0
 

 If pole and zero cancel → .  [1 pt] 𝑔𝑅2 = 𝑟
0
𝑣

0
2  ⇒   𝑘𝑟

0
= 1  ⇒   𝑈(𝑧) = 𝑧

𝑟
0
(𝑧 − 1)

 This corresponds to a circular orbit around the Earth, where un = 1/r0 is a constant. 
The approximation for un is exact in this case (un = u(nh)). (Total: 9 points) 

     ii) Initial value theorem:  .  [1 pt] 
𝑧 ∞
lim
→

𝑧(𝑧 − 1)2 + ℎ2𝑘𝑟
0
𝑧

𝑟
0
(𝑧 − 1) (𝑧 − 1)2 + ℎ2( ) =

𝑧 ∞
lim
→

𝑧3 1 + 𝑂(𝑧−1)( )
𝑟

0
𝑧3 1 + 𝑂(𝑧−1)( ) = 1

𝑟
0

= 𝑢
0

(where O(・) is the ‘Big O asymptotic notation’.) (Total: 1 point) 
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C6.  

a. Resolving forces on mass m1: 

 𝑚
1
𝑦

1
'' = 𝑘

2
(𝑦

2
− 𝑦

1
) + λ(𝑦

2
' − 𝑦

1
') − 𝑘

1
𝑦

1
− λ𝑦

1
' + 𝑓

1
(𝑡)

 Resolving forces on mass m2: 

 𝑚
2
𝑦

2
'' =  − 𝑘

1
𝑦

2
+ 𝑘

2
(𝑦

1
− 𝑦

2
) + λ(𝑦

1
' − 𝑦

2
')

 Expand and convert to standard form: 

  [3 pts] 𝑚
1
𝑦

1
'' + 2λ𝑦

1
' − λ𝑦

2
' + (𝑘

1
+ 𝑘

2
)𝑦

1
− 𝑘

2
𝑦

2
= 𝑓

1
(𝑡)

  [2 pts] 𝑚
2
𝑦

2
'' − λ𝑦

1
' + λ𝑦

2
' − 𝑘

2
𝑦

1
+ (𝑘

1
+ 𝑘

2
)𝑦

2
= 0

 Writing in matrix form:      [3 pts] 

 
 (Total: 8 points) 

 
b. Let    and  .  [1 pts] 𝑣

1
= 𝑦

1
' 𝑣

2
= 𝑦

2
'

  ⇒       𝑚
1
𝑣

1
' =  − 2λ𝑣

1
+ λ𝑣

2
− (𝑘

1
+ 𝑘

2
)𝑦

1
+ 𝑘

2
𝑦

2
+ 𝑓

1
(𝑡)

 and    . 𝑚
2
𝑣

2
' = λ𝑣

1
− λ𝑣

2
+ 𝑘

2
𝑦

1
− (𝑘

1
+ 𝑘

2
)𝑦

2
 Therefore, 

  [5 pts] 

 (Total: 6 points) 
 

 

 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20m_1%20%26%200%20%5C%5C%200%20%26%20m_2%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BM%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1''%20%5C%5C%20y_2''%20%5Cend%7Bbmatrix%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%202%20%5Clambda%20%26%20-%5Clambda%20%20%5C%5C%20-%5Clambda%20%26%20%5Clambda%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BC%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1'%20%5C%5C%20y_2'%20%5Cend%7Bbmatrix%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20k_1%2Bk_2%20%26%20-k_2%20%5C%5C%20-k_2%20%26%20k_1%2Bk_2%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BK%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1%20%5C%5C%20y_2%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f_1(t)%20%5C%5C%200%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20y_1'%20%5C%5C%20y_2'%20%5C%5C%20v_1'%20%5C%5C%20v_2'%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%200%20%26%200%20%26%201%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%201%20%5C%5C%20-%5Cfrac%7Bk_1%20%2B%20k_2%7D%7Bm_1%7D%20%26%20%5Cfrac%7Bk_2%7D%7Bm_1%7D%20%26%20-%5Cfrac%7B2%20%5Clambda%7D%7Bm_1%7D%20%26%20%5Cfrac%7B%5Clambda%7D%7Bm_1%7D%20%5C%5C%20%5Cfrac%7Bk_2%7D%7Bm_2%7D%20%26%20-%5Cfrac%7Bk_1%20%2B%20k_2%7D%7Bm_2%7D%20%26%20%5Cfrac%7B%5Clambda%7D%7Bm_2%7D%20%26%20-%5Cfrac%7B%5Clambda%7D%7Bm_2%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BA%7D%7D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20y_1%20%5C%5C%20y_2%20%5C%5C%20v_1%20%5C%5C%20v_2%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7Bx%7D%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%200%20%5C%5C%200%20%5C%5C%20%5Cfrac%7Bf_1(t)%7D%7Bm_1%7D%20%5C%5C%200%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7Bf%7D%7D%20#0
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C6. (continued) 

c. i. 

For a system of DEs, the complementary solution is given by 

 

 Given that there are two pairs of unequal complex conjugate eigenvalues, we have 

 

where c1, c2, c3, c4 are arbitrary real constants.     [4 pts] 

 (Total: 4 points) 
 ii. 

 Let 

 

 These are the four linearly independent vector-valued basis functions for xCF(t). 

 Let X be the 4 × 4 matrix with columns [x1    x2    x3    x4].   [1 pt] 

 Then, by variation of parameters for systems, 

    [1 pt] 

 (Total: 2 points) 
 

 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Bx%7D(t)%20%3D%20%5Cbegin%7Bcases%7D%20c_1%20e%5E%7B%5Clambda_1%20t%7D%20%5Cmathbf%7Bu%7D_1%20%2B%20c_2%20e%5E%7B%5Clambda_2%20t%7D%20%5Cmathbf%7Bu%7D_2%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%5C%20%5Ctext%7Bare%20real%7D%20%5C%5C%20c_1%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20%2B%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%2B%20c_2%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20-%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%3D%20%5Calpha%20%5Cpm%20%5Cbeta%20i%20%5C%20%5Ctext%7Bare%20complex%7D%20%5C%5C%20c_1%20e%5E%7B%5Clambda%20t%7D%20%5Cmathbf%7Bu%7D%20%2B%20c_2%20e%5E%7B%5Clambda%20t%7D%20(%5Cmathbf%7Bu%7Dt%20%2B%20%5Cmathbf%7Bv%7D)%2C%20%5C%20%5Ctext%7Bfor%20any%7D%20%5C%20%5Cmathbf%7Bv%7D%20%3A%20(%5Cmathbf%7BA%7D%20-%20%5Clambda%20%5Cmathbf%7BI%7D)%20%5Cmathbf%7Bv%7D%20%3D%20%5Cmathbf%7Bu%7D%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda%20%5C%20%5Ctext%7Bis%20a%20repeated%20defective%20eigenvalue%7D%20%5Cend%7Bcases%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Bx%7D_%7BPI%7D(t)%20%3D%20%5Cmathbf%7BX%7D%20%5Cint%20%5Cmathbf%7BX%7D%5E%7B-1%7D%20%5C%20%5Cmathbf%7Bf%7D(t)%20%5C%20dt%20#0
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C7. 

a. Let  . This function is continuous for all real x. 𝑓(𝑥,  𝑦) = |𝑥|

 We need to prove that there exists some x1, x2 such that  diverges. 
|𝑓(𝑥

1
) − 𝑓(𝑥

2
)|

|𝑥
1
 − 𝑥

2
|

 Observe that if we let x2 = x1 + h, then the expression is . 
𝑓(𝑥

1
 + ℎ) − 𝑓(𝑥

1
)

ℎ
|||

|||

 If we let x1 = 0 and take the limit as h → 0, we get  

  (diverges).  [3 pts] 
ℎ 0
lim
→

𝑓(𝑥
1
 + ℎ) − 𝑓(𝑥

1
)

ℎ
|||

||| =
ℎ 0
lim
→

|ℎ|
ℎ

|||
||| =

ℎ 0
lim
→

 1
|ℎ|

= ∞

(Alternatively, this expression is the definition of the derivative f ’(0), which is 
undefined.) 

 Therefore, it is impossible to find a finite K such that  in this case. 
|𝑓(𝑥

1
) − 𝑓(𝑥

2
)|

|𝑥
1
 − 𝑥

2
| ≤ 𝐾

Therefore, the function f (x) =  is not Lipschitz continuous.  [1 pt] |𝑥|
 (Total: 4 points) 
 

b. Starting with  ,  substitute    to convert to a  𝑟'' = |𝑟|,    𝑟(0) = 𝑟'(0) = 0 𝑣 = 𝑟'
system of two 1st-order DEs: 

.  [1 pt] ⇒   𝑣' = |𝑟|,    𝑟' = 𝑣,    𝑣(0) = 0,   𝑟(0) = 0{ }
Let the vector x = [v, r]T. Then the system is  x = f(x, t),  where 𝑑

𝑑𝑡

is a multivariable vector-valued function.  [1 pt] 

f(v, r, t) is continuous in t, since it is independent of t. 
To prove that f is not Lipschitz continuous in x, we need to prove that there exists  

some v1, v2, r1, r2 such that  diverges. 

Choose v1 = v2 = 0, let r1 = 0 and take r2 = r1 + h in the limit as h → 0. This leads to  
the same expression as in part a), so this function is not Lipschitz continuous. [2 pts] 

Therefore, the Picard-Lindelöf theorem is not satisfied (no unique solution).  [1 pt] 

 (Total: 5 points) 
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c.  

i) Differentiate the given candidate solution: 

  𝑟(𝑡) = 0,   𝑡 ≤ 𝑇;      1
144 (𝑡 − 𝑇)4,    𝑡 > 𝑇{ }

  ⇒   𝑟'(𝑡) = 0,   𝑡 ≤ 𝑇;      1
36 (𝑡 − 𝑇)3,    𝑡 > 𝑇{ }

    [1 pt] ⇒   𝑟''(𝑡) = 0,   𝑡 ≤ 𝑇;      1
12 (𝑡 − 𝑇)2,    𝑡 > 𝑇{ }

 For t ≤ T, the differential equation is 

  (correct: DE is satisfied)  [1 pt] 𝑟'' = |𝑟|  ⇒   0 = |0| = 0

 For t > T, the differential equation is 

   (correct: DE is satisfied) 𝑟'' = |𝑟|  ⇒   1
12 (𝑡 − 𝑇)2 = 1

144 (𝑡 − 𝑇)4|
|

|
| = 1

12 (𝑡 − 𝑇)2

 Therefore, for all t, LHS = RHS, so the given solution satisfies the DE for all t.  [1 pt] 

 (Total: 3 points) 
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ii) ‘Causal’ means that a system’s behaviour at time t = a is not dependent on its  
behaviour at any times t > a. 

However, for Norton’s dome, if we suppose that  

 

 is a physically valid solution for the particle under Newtonian mechanics, then  
the behaviour at time t = a is dependent on whether a < T or a > T, and since T is  
unknown, the system is non-deterministic, and appears to be non-causal. 

However, it is fallacious to claim that Newtonian mechanics does permit this  
solution. The violation of the Picard-Lindelöf theorem in part b) is what gives  
multiple possible solutions to this DE, but this is a purely mathematical model  
and it is not the case that physical reality (nor reality as modelled by Newtonian  
mechanics) can follow any of these solutions. 

It can only be said that Newton’s second law (used to derive the DE) is not fully  
descriptive of physical reality. This statement is obvious when we consider that  
reality is also bound by Newton’s first law as well. When we apply Newton’s first  
law, we see that r(t) = 0 is the only solution satisfying both constraints for all time t. 

Therefore, we may say that under Newton’s second law only, the system is  
non-causal, but Newtonian mechanics as a whole is causal and deterministic 
(at least, in this case!). 

 
There is room for subjectivity and opinion in this answer - additionally, this  
answer in itself can be scrutinised: Norton’s dome has caused considerable  
debate! You may find the following discussions interesting: 

● John Norton’s claim about Norton’s dome: here 
● A refutation by Gruff Davies: here 

 Mark this question according to how many of the various talking points you  
considered in these articles. 

 (Total: 8 points) 
 

 

 

 

https://sites.pitt.edu/~jdnorton/Goodies/Dome/index.html
https://blog.gruffdavies.com/2017/12/24/newtonian-physics-is-deterministic-sorry-norton/
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C8.  

a. In standard form, Bessel’s equation for the zeroth order is  . 𝑦'' + 1
𝑥  𝑦' + 𝑦 = 0

 There is one singular point at x = 0. 

 Since    and    are both smooth functions,  𝑢(𝑥) = 𝑥 × 1
𝑥 = 1 𝑣(𝑥) = 𝑥2 × 1 = 𝑥2

the point at x = 0 is a regular singular point. Therefore, the Frobenius method  
can be used about x = 0. 

Taylor series:   and    . 𝑢(𝑥) = 1 𝑣(𝑥) = 0 + 𝑥2   ⇒    𝑢
0

= 1,    𝑣
0

= 0

Indicial equation:  𝑟(𝑟 − 1) + 𝑢
0
𝑟 + 𝑣

0
= 0   ⇒    𝑟2 = 0

      (repeated root). ⇒    𝑟 = 0

General solution:  for x > 0. 𝑦 = 𝐴 + 𝐵 𝑙𝑛 𝑥( )
𝑘=0

∞

∑ 𝑎
𝑘
𝑥𝑘 + 𝐵

𝑘=1

∞

∑ 𝑏
𝑘
𝑥𝑘

First basis function:   [1 pt] 𝑦
1

=
𝑘=0

∞

∑ 𝑎
𝑘
𝑥𝑘

To find ak, since the root is r = 0, the first basis solution is equivalent to a Maclaurin series,  
so we can use the Leibniz-Maclaurin method. Differentiate both sides of the given DE with  
respect to x, k times using the general Leibniz rule for product terms: 

 𝑑𝑘

𝑑𝑥𝑘 𝑥2 𝑦(2) + 𝑥𝑦(1) + 𝑥2𝑦( ) = 𝑥2𝑦(𝑘+2) + 2𝑘𝑥𝑦(𝑘+1) + 𝑘(𝑘 − 1)𝑦(𝑘)( )
     + 𝑥𝑦(𝑘+1) + 𝑘𝑦(𝑘)( ) + 𝑥2𝑦(𝑘) + 2𝑘𝑥𝑦(𝑘−1) + 𝑘(𝑘 − 1)𝑦(𝑘−2)( )
              = 𝑥2𝑦(𝑘+2) + (2𝑘 + 1)𝑥𝑦(𝑘+1) + (𝑘2 + 𝑥2)𝑦(𝑘)

     + 2𝑘𝑥𝑦(𝑘−1) + 𝑘(𝑘 − 1)𝑦(𝑘−2) = 0

Let x = 0:   𝑘2 𝑦(𝑘)(0) + 𝑘(𝑘 − 1) 𝑦(𝑘−2)(0) = 0

Coefficients:   𝑘2 𝑘!  𝑎
𝑘

+ 𝑘(𝑘 − 1)(𝑘 − 2)!  𝑎
𝑘−2

= 0

   .  [4 pts] ⇒   𝑘2 𝑘!  𝑎
𝑘

+ 𝑘!  𝑎
𝑘−2

= 0  ⇒   𝑎
𝑘

= −1

𝑘2  𝑎
𝑘−2

Initial conditions: all odd terms are zero.  [1 pt] 𝑎
0

= 1,   𝑎
1

= 0  ⇒   

 Therefore,   𝑎
0

= 1,   𝑎
2

= −1

22 ,    𝑎
4

= −1

42 × −1

22 ,   𝑎
6

= −1

62 × −1

42 × −1

22 ...

 The pattern is  .  [1 pt] 𝑎
2𝑘

= (−1)𝑘

(2𝑘!!)2 = (−1)𝑘

(2𝑘 𝑘!)2 = (−1)𝑘

4𝑘 (𝑘!)2   ⇒   𝐽
0
(𝑥) =

𝑘=0

∞

∑ (−1)𝑘

4𝑘 𝑘!( )2  𝑥2𝑘

 (Total: 7 points) 
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C8. (continued) 

b. First basis solution:   𝑦
1

=
𝑘=0

∞

∑ 𝑎
𝑘
 𝑥𝑘+𝑟

 Differentiate:    ⇒  𝑦
1
' =

𝑘=0

∞

∑ (𝑘 + 𝑟) 𝑎
𝑘
𝑥𝑘+𝑟−1

      ⇒ 𝑦
1
'' =

𝑘=0

∞

∑ (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘
 𝑥𝑘+𝑟−2

 Sub into DE: 

  ⇒
𝑘=0

∞

∑ (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘
 𝑥𝑘+𝑟−2 + 1

𝑥
𝑘=0

∞

∑ (𝑘 + 𝑟)𝑎
𝑘
𝑥𝑘+𝑟−1 +

𝑘=0

∞

∑ 𝑎
𝑘
𝑥𝑘+𝑟 = 0

 Absorb powers of x: 

  ⇒
𝑘=0

∞

∑ (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘
 𝑥𝑘+𝑟−2 +

𝑘=0

∞

∑ (𝑘 + 𝑟)𝑎
𝑘
𝑥𝑘+𝑟−2 +

𝑘=0

∞

∑ 𝑎
𝑘
𝑥𝑘+𝑟 = 0

 Re-index to make exponents of x all the same: 

  ⇒
𝑘=0

∞

∑ (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘
 𝑥𝑘+𝑟−2 +

𝑘=0

∞

∑ (𝑘 + 𝑟)𝑎
𝑘
𝑥𝑘+𝑟−2 +

𝑘=2

∞

∑ 𝑎
𝑘−2

𝑥𝑘+𝑟−2 = 0

 Pull out first two terms to make index k start at the same value in all summations: 

  ⇒  𝑟(𝑟 − 1)𝑎
0
𝑥𝑟−2 + (𝑟 + 1)𝑟𝑎

1
𝑥𝑟−1 + 𝑟𝑎

0
𝑥𝑟−2 + (𝑟 + 1)𝑎

1
𝑥𝑟−1 +

𝑘=2

∞

∑ ... +
𝑘=2

∞

∑ ... +
𝑘=2

∞

∑ ... = 0

 The indicial equation for the  coefficient is  ,  𝑥𝑟−1 𝑟2 + 2𝑟 + 1( )𝑎
1

= 0

so  a1(r) = 0  for all values of r (except r = -1, where a1 is free). 
 
 Combine summations: 

  ⇒  ... +
𝑘=2

∞

∑ (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘

+ (𝑘 + 𝑟)𝑎
𝑘

+ 𝑎
𝑘−2( ) 𝑥𝑘+𝑟−2 = 0

 General recurrence relation:  (𝑘 + 𝑟)(𝑘 + 𝑟 − 1) 𝑎
𝑘

+ (𝑘 + 𝑟)𝑎
𝑘

+ 𝑎
𝑘−2

= 0

   [8 pts] ⇒   (𝑘 + 𝑟)2𝑎
𝑘

+ 𝑎
𝑘−2

= 0  ⇒   𝑎
𝑘

= −1

(𝑘 + 𝑟)2  𝑎
𝑘−2

 Therefore, for even k = 2m,  . 𝑎
2𝑚

= −1

(2𝑚 + 𝑟)2  −1

(2(𝑚−1) + 𝑟)2  ...  −1

(2 + 𝑟)2  𝑎
0

From part a), we found a0 = 1: .  [1 pt] 𝑎
2𝑚

= 1

(2𝑚 + 𝑟)2  1

(2(𝑚−1) + 𝑟)2  ...  1

(2 + 𝑟)2  (− 1)𝑚
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C8. (continued) 

 To find the coefficients of the second basis solutions, we use  . 𝑏
𝑘

=
𝑑𝑎

𝑘

𝑑𝑟 (0)

 From the indicial equation, we have  . 𝑏
1

= 𝑑
𝑑𝑟 (𝑎

1
(0)) = 0

 For odd k, we have ak = 0, so bk = 0. 

 For even k = 2m, we have     at  r = 0. 𝑏
2𝑚

= 𝑑
𝑑𝑟

1

(2𝑚 + 𝑟)2  1

(2(𝑚−1) + 𝑟)2  ...  1

(2 + 𝑟)2( ) (− 1)𝑚 𝑎
0

 We need to differentiate this product. However, it will be easier to use  

logarithmic differentiation. Consider  . 𝑑
𝑑𝑟  𝑙𝑛 𝑎

2𝑚
(𝑟)| | =

𝑎
2𝑚

'(𝑟)

𝑎
2𝑚

(𝑟) =
𝑏

2𝑚
(𝑟)

𝑎
2𝑚

(𝑟)

By log identities, we have 
 𝑙𝑛 𝑎

2𝑚
(𝑟)| | =  − 2 𝑙𝑛 2𝑚 + 𝑟| | + 𝑙𝑛 2(𝑚 − 1) + 𝑟| | +... + 𝑙𝑛 2 + 𝑟| |( )

Differentiating,   𝑑
𝑑𝑟  𝑙𝑛 𝑎

2𝑚
(𝑟)| | =  − 2 1

2𝑚 + 𝑟 + 1
2(𝑚−1) + 𝑟 +... + 1

2 + 𝑟( )
At  r = 0,  we get   and  . 𝑑

𝑑𝑟  𝑙𝑛 𝑎
2𝑚

(0)| | =  −  
𝑖=1

𝑚

∑ 1
𝑖 =  − 𝐻

𝑚
𝑎

2𝑚
(0) = (−1)𝑚

4𝑚 (𝑚!)2

Therefore,  .  [4 pts] 𝑏
2𝑚

= (−1)𝑚

4𝑚 (𝑚!)2 ×  −  𝐻
𝑚

= (−1)𝑚+1

4𝑚 (𝑚!)2  𝐻
𝑚

Our coefficients are therefore  

 
 (Total: 13 points) 
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C8. (continued) 

c.  

i) No. Despite both being linearly independent of J0(x), the basis solutions y2(x) and  
Y0(x) are not necessarily equal because the boundary conditions for Y0(x) are  
not specified, so the undetermined coefficients for Y0(x) may be different from  
those of y2(x). [1 pt] 

(In reality, Y0(x) is defined as Y0(x) ≈ 0.63662 y2(x) - 0.07381 J0(x)  so Y0(x) ≠ y2(x).) 
 (Total: 1 point) 

ii) No. The Bessel DE for order 0 can be written  . 𝑦'' + 1
𝑥  𝑦' + 1

𝑥2  𝑦 = 0

 It can be seen that x = 0 is the only singular point, and x = 0 is a regular singular  
point. So by Fuchs’ theorem, the radius of convergence for the series 

   and    
𝑘=0

∞

∑ 𝑎
𝑘
 𝑥𝑘

𝑘=1

∞

∑ 𝑏
𝑘
 𝑥𝑘

are both infinity (i.e. all x ∈ C). However, since y2 includes a ln x term, which has  
a branch point at x = 0, this solution is only defined for real x > 0. [1 pt] 

(If the complex definition of the logarithm was used: ln z = ln r + i(θ + 2πn), then  
the solution for y2(z) would be defined for all complex z ≠ 0.) 
 (Total: 1 point) 
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C8. (continued) 

d.  

i) Since y = Jn(x) satisfies the first differential equation, let z = xn y. 

 Differentiate:  𝑧 = 𝑥𝑛 𝑦  ⇒   𝑧' = 𝑛𝑥𝑛−1 𝑦 + 𝑥𝑛 𝑦'

   [1 pt] ⇒   𝑧'' = 𝑛(𝑛 − 1) 𝑥𝑛−2𝑦 + 2𝑛𝑥𝑛−1𝑦' + 𝑥𝑛𝑦''

 Substitute into the given DE: 

  ⇒   𝑥 𝑛(𝑛 − 1) 𝑥𝑛−2𝑦 + 2𝑛𝑥𝑛−1𝑦' + 𝑥𝑛𝑦''( ) + (1 − 2𝑛) 𝑛𝑥𝑛−1 𝑦 + 𝑥𝑛 𝑦'( ) + 𝑥𝑛+1𝑦 = 0

  ⇒   𝑛(𝑛 − 1) 𝑥𝑛−1𝑦 + 2𝑛𝑥𝑛𝑦' + 𝑥𝑛+1𝑦'' + 𝑛(1 − 2𝑛)𝑥𝑛−1𝑦 + (1 − 2𝑛)𝑥𝑛𝑦' + 𝑥𝑛+1𝑦 = 0

  ⇒   𝑛(𝑛 − 1)𝑦 + 2𝑛𝑥𝑦' + 𝑥2𝑦'' + 𝑛(1 − 2𝑛)𝑦 + (1 − 2𝑛)𝑥𝑦' + 𝑥2𝑦 = 0

    [3 pts] ⇒   𝑥2 𝑦'' + 𝑥𝑦' + 𝑥2 − 𝑛2( )𝑦 = 0

 This is the original Bessel differential equation, which y = Jn(x) is defined to satisfy,  
so the original substitution also satisfied the given differential equation. 
 (Total: 4 points) 

ii) Let  in the given DE. Then, for suitable boundary conditions,   𝑛 = 1
2 𝑧(𝑥) = 𝑥 𝐽

1/2
(𝑥)

is the particular solution to the differential equation  . 𝑥 𝑧'' + 𝑥 𝑧 = 0

If we remove x = 0 from the domain of z(x), we can simplify this to  . 𝑧'' + 𝑧 = 0
This is the simple harmonic motion DE. The general solution is  . 𝑧(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥

Therefore,    for some real constants A and B.  [2 pts] 𝐽
1/2

(𝑥) = 𝐴 𝑐𝑜𝑠 𝑥
𝑥

+ 𝐵 𝑠𝑖𝑛 𝑥
𝑥

Since  is not an integer, we cannot use the given initial conditions for Jn(x). 𝑛 = 1
2

However, we are given that   is finite. 
𝑥 0+
lim
→

𝐽
1/2

(𝑥)

Therefore,  . 
𝑥 0+
lim
→

𝐴 𝑐𝑜𝑠 𝑥
𝑥

+ 𝐵 𝑠𝑖𝑛 𝑥
𝑥( ) = 𝐴

𝑥 0+
lim
→

𝑐𝑜𝑠 𝑥
𝑥

+ 𝐵
𝑥 0+
lim
→

𝑠𝑖𝑛 𝑥
𝑥

Since  does not exist (diverges to ∞), we must have A = 0.  [1 pt] 
𝑥 0+
lim
→

𝑐𝑜𝑠 𝑥
𝑥

Since , B may be any constant. 
𝑥 0+
lim
→

𝑠𝑖𝑛 𝑥
𝑥

=
𝑥 0+
lim
→

𝑥 − 𝑂(𝑥3)

𝑥1/2 =
𝑥 0+
lim
→

𝑥1/2 + 𝑂(𝑥5/2) = 0

Therefore,  , which is proportional to .  [1 pt] 𝐽
1/2

(𝑥) = 𝐵 𝑠𝑖𝑛 𝑥
𝑥

𝑠𝑖𝑛 𝑥
𝑥

 (Total: 4 points) 
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C9  

a. In spherical coordinates, we have  . 

 Therefore, the arc length differential element is   

 |dr|2  𝑑𝑆2 = = 𝑑𝑟2 + (𝑟 𝑠𝑖𝑛 ϕ)2 𝑑θ2 + (𝑟 𝑑ϕ)2

 The total arc length is then    [2 pts] 𝑆 =
0

2π

∫ 𝑑𝑆
𝑑θ  𝑑θ =

0

2π

∫ 𝑑𝑟
𝑑θ( )2

+ 𝑟2 𝑠𝑖𝑛2 ϕ + 𝑟2 𝑑ϕ
𝑑θ( )2

 𝑑θ

 On the cone’s surface,  is constant so  ϕ 𝑑ϕ
𝑑θ = 0  ⇒   𝑆 =

0

2π

∫ 𝑑𝑟
𝑑θ( )2

+ 𝑟2 𝑠𝑖𝑛2 ϕ 𝑑θ

 The value of  is the half-angle of the cone, which is , so ϕ ϕ = 𝑠𝑖𝑛−1 1
3

  𝑆 =
0

2π

∫ 𝑑𝑟
𝑑θ( )2

+ 1
9 𝑟2 𝑑θ

 Substitute . 𝑢 = 𝑑𝑟
𝑑θ   ⇒   𝑆 =

0

2π

∫ 𝑢2 + 1
9 𝑟2 𝑑θ =

0

2π

∫ 1
3 9𝑢2 + 𝑟2 𝑑θ

 Therefore    where  .  [2 pts] 𝑆 =
0

2π

∫ 𝑔(𝑟,  𝑢) 𝑑θ 𝑔(𝑟,  𝑢) = 1
3 9𝑢2 + 𝑟2

 (Total: 4 points) 
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C9. (continued) 

b. Starting with  , 𝑔(𝑟,  𝑢) = 1
3 9𝑢2 + 𝑟2

 Evaluate the partial derivatives of g:     and    [2 pts] ∂𝑔
∂𝑟 = 1

3 × 𝑟

9𝑢2 + 𝑟2

∂𝑔
∂𝑢 = 1

3 × 9𝑢

9𝑢2 + 𝑟2

 Substitute into the Euler-Lagrange differential equation: 

 . 1
3 × 𝑟

9𝑢2 + 𝑟2
= 𝑑

𝑑θ
1
3 × 9𝑢

9𝑢2 + 𝑟2( )  ⇒   𝑟

9𝑢2 + 𝑟2
= 𝑑

𝑑θ
9𝑢

9𝑢2 + 𝑟2( )
 Using the quotient rule,  , so the equation is 𝑑

𝑑θ
9𝑢

9𝑢2 + 𝑟2( ) =
9 𝑑𝑢

𝑑θ  9𝑢2 + 𝑟2 − 9𝑢 
18𝑢 𝑑𝑢

𝑑θ  + 2𝑟 𝑑𝑟
𝑑θ

2 9𝑢2 + 𝑟2

9𝑢2 + 𝑟2

  ⇒   𝑟

9𝑢2 + 𝑟2
=

9 𝑑𝑢
𝑑θ  9𝑢2 + 𝑟2 − 9𝑢 

18𝑢 𝑑𝑢
𝑑θ  + 2𝑟 𝑑𝑟

𝑑θ

2 9𝑢2 + 𝑟2

9𝑢2 + 𝑟2

 Multiply both sides by : 9𝑢2 + 𝑟2( )
3/2

   [3 pts] ⇒   𝑟 9𝑢2 + 𝑟2( ) = 9 𝑑𝑢
𝑑θ 9𝑢2 + 𝑟2( ) − 9

2 𝑢 18𝑢 𝑑𝑢
𝑑θ + 2𝑟 𝑑𝑟

𝑑θ( )
 Unsubstitute  , and denote these as  and : 𝑢 = 𝑑𝑟

𝑑θ   ⇒   𝑑𝑢
𝑑θ = 𝑑2𝑟

𝑑θ2 𝑟' 𝑟''

  ⇒   9𝑟(𝑟')2 + 𝑟3 = 81(𝑟')2𝑟'' + 9𝑟2𝑟'' − 81(𝑟')2𝑟'' − 9𝑟(𝑟')2

  ⇒   𝑟3 + 18(𝑟')2𝑟 = 9𝑟2𝑟''
   (for )  [2 pts] ⇒   𝑟'' − 2

𝑟 (𝑟')2 − 1
9 𝑟 = 0 𝑟 ≠ 0

 This is a nonlinear second-order DE. The nonlinearity  suggests a substitution: 1
𝑟 (𝑟')2

 Let  , where v is a function of . Differentiating both sides w.r.t. ,  𝑣 = (𝑟')2 θ θ

   and  . 𝑑𝑣
𝑑θ = 2𝑟'𝑟'' 𝑑𝑣

𝑑𝑟 = 𝑣'
𝑟' = 2𝑟''  ⇒   𝑟'' = 1

2
𝑑𝑣
𝑑𝑟

 Applying these substitutions, the DE becomes  . 1
2

𝑑𝑣
𝑑𝑟 − 2

𝑟 𝑣 − 1
9 𝑟 = 0

 Therefore,  . This is a first-order linear DE.  [2 pts] 𝑑𝑣
𝑑𝑟 − 4

𝑟 𝑣 = 2
9 𝑟

 Integrating factor method:  𝐼(𝑟) = 𝑟−4  ⇒   𝑟−4𝑣 = ∫ 2
9 𝑟−3 𝑑𝑟  ⇒   𝑣 = −𝑟2

9 + 𝐶𝑟4

 Unsubstitute:   𝑑𝑟
𝑑θ = 𝑣 = 𝐶𝑟4 − 1

9 𝑟2 = 1
3 𝑟 9𝐶𝑟2 − 1
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C9. (continued) 

b. This is a separable DE:   [2 pts] ∫ 1

𝑟 9𝐶 𝑟2 − 1
 𝑑𝑟 = ∫ 1

3  𝑑θ

 To evaluate the integral , let  and use the integral  ∫ 1

𝑟 9𝐶 𝑟2 − 1
 𝑑𝑟 = ∫ 1

3 𝐶 𝑟 𝑟2 − 1
9𝐶

𝑎2 = 1
9𝐶

table result,   (for x > 0). ∫ 𝑎

𝑥4 − 𝑎2𝑥2
 𝑑𝑥 = 𝑠𝑒𝑐−1 𝑥

𝑎   ⇒   ∫ 1

𝑥 𝑥2 − 𝑎2
 𝑑𝑥 = 1

𝑎  𝑠𝑒𝑐−1 𝑥
𝑎

The integral is then . ∫ 1

3 𝐶 𝑟 𝑟2 − 1
9𝐶

 𝑑𝑟 = 𝑠𝑒𝑐−1(3 𝐶𝑟) + 𝐷

The differential equation becomes  . 𝑠𝑒𝑐−1(3 𝐶𝑟) = 1
3 θ + 𝐷

General solution:    (rename:  and .)  [4 pts] 𝑟 = 𝐴 𝑠𝑒𝑐 1
3 θ + 𝐵( ) 𝐴 = 1

3 𝐶
𝐵 = 𝐷

Boundary conditions: . 𝑟(0) = 60,    𝑟(2π) = 50

Therefore      and    60 = 𝐴 𝑠𝑒𝑐 𝐵 50 = 𝐴 𝑠𝑒𝑐 2π
3 + 𝐵( )

     ⇒   
𝑠𝑒𝑐 2π

3 +𝐵( )
𝑠𝑒𝑐 𝐵 = 5

6   ⇒   𝑐𝑜𝑠 𝐵
𝑐𝑜𝑠 2π

3 +𝐵( ) = 5
6

     ⇒   6 𝑐𝑜𝑠 𝐵 = 5 𝑐𝑜𝑠 2π
3  𝑐𝑜𝑠 𝐵 − 𝑠𝑖𝑛 2π

3  𝑠𝑖𝑛 𝐵( )
     ⇒   6 𝑐𝑜𝑠 𝐵 =  − 5

2  𝑐𝑜𝑠 𝐵 − 5 3
2  𝑠𝑖𝑛 𝐵

     ⇒   17
2  𝑐𝑜𝑠 𝐵 =  − 5 3

2  𝑠𝑖𝑛 𝐵

     ⇒   𝑡𝑎𝑛 𝐵 =  − 17 3
15   ⇒   𝐵 =  − 𝑡𝑎𝑛−1 17 3

15

    . ⇒   𝐴 = 60 𝑐𝑜𝑠 𝑡𝑎𝑛−1 17 3
15( ) = 150 3

91

Particular solution:    [2 pts] 𝑟(θ) = 150 3
91  𝑠𝑒𝑐 1

3 θ − 𝑡𝑎𝑛−1 17 3
15( ).

To evaluate the overall arc length, use  𝑟 = 𝐴 𝑠𝑒𝑐 1
3 θ + 𝐵( )

  and   ⇒   𝑟2 = 𝐴2 𝑠𝑒𝑐2 1
3 θ + 𝐵( ) 𝑢 = 𝑟' = 1

3 𝐴 𝑠𝑒𝑐 1
3 θ + 𝐵( ) 𝑡𝑎𝑛 1

3 θ + 𝐵( )
 ⇒   9𝑢2 = 𝐴2 𝑠𝑒𝑐2 1

3 θ + 𝐵( ) 𝑡𝑎𝑛2 1
3 θ + 𝐵( )

Therefore 

 𝑆 =
0

2π

∫ 1
3 9𝑢2 + 𝑟2 𝑑θ = 1

3
0

2π

∫ 𝐴2 𝑠𝑒𝑐2 1
3 θ + 𝐵( ) 𝑡𝑎𝑛2 1

3 θ + 𝐵( ) + 𝐴2 𝑠𝑒𝑐2 1
3 θ + 𝐵( ) 𝑑θ
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C9. (continued) 

b. Factorise and use the Pythagorean trig identity: 

 𝑆 = 𝐴
3

0

2π

∫ 𝑠𝑒𝑐2 1
3 θ + 𝐵( ) 𝑑θ = 𝐴 𝑡𝑎𝑛 2π

3 + 𝐵( ) − 𝑡𝑎𝑛 𝐵( )
Use tangent addition identity:   𝑆 = 𝐴 − 3 + 𝑡𝑎𝑛 𝐵

1 + 3 𝑡𝑎𝑛 𝐵
− 𝑡𝑎𝑛 𝐵( )

Replace the constants. Let   and : 𝑡𝑎𝑛 𝐵 = −17 3
15 𝐴 = 150 3

91

.  [3 pts] ⇒   𝑆 = 150 3
91

8 3
9 + 17 3

15( ) = 150 3
91 × 91 3

45 = 10 91

 (Total: 20 points) 
 

c. Consider the net of the cone, which unwraps into a circular sector. The shortest  
distance between the two points A and B becomes a straight line. 

 
The arc length of the sector is the circumference of the base =  2π × 20 = 40π.
The angle of the sector satisfies  radians. 60 × θ = 40π  ⇒   θ = 2π

3

By cosine rule in △ABV, .  [3 pts] |𝐴𝐵| = 502 + 602 − 2 × 50 × 60 × 𝑐𝑜𝑠 2π
3 = 10 91

This matches the value of S found in part b) (the total length of the train track). 

The downhill section begins at the point on the line for which the radius passing  
through the point is perpendicular to the line AB. Let this point be C, and the  
downhill distance |BC| = x, so |AC| =  Let the distance between C and  10 91 − 𝑥.
the apex (sector centre) be h. 

Pythagoras in △ACV and △BCV:    and  (10 91 − 𝑥)2 + ℎ2 = 602 𝑥2 + ℎ2 = 502

 metres.  [3 pts] ⇒ (10 91 − 𝑥)2 − 𝑥2 = 1100  ⇒ 20 91𝑥 = 8000  ⇒   𝑥 = 400
91

 (Total: 6 points) 
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Video Solutions for Some Questions 

C2. Partial solution by blackpenredpen on YouTube: 
  solving an almost-exact differential equation (with a special integrating fact…

C9c. Geometric solution for geodesics on a cone by MindYourDecisions on YouTube: 
 VERY HARD South Korean Geometry Problem (CSAT Exam)

  

 

 

https://www.youtube.com/watch?v=IewC8_2ocBA
https://www.youtube.com/watch?v=Y6caQ_8_frU

