Ordinary Differential Equations

Solutions to End of Topic Test




Differential Equations - End of Topic Test Solutions Section A

Section A

Multiple Choice Questions

15 points available

Answer Key

Question A1 A2 A3 A4 A5 A6 A7 A8
Answer @ @ ©) @ ©) @ @ @
Points 1 1 1 1 2 2 2 5

Worked Solutions:

A1. Answer: @ Ionly [1 pt]
Working:

I: First order because the highest order derivative is %.

2
IT: Not second order because there are no i% terms.

dx

III: Non-linear because the % term is squared.
IV: Non-homogeneous due to the 2 term.

2
V: Second degree due to the (—icl) term.

VI: Not autonomous due to the 2* term.
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A2. Answer: @ All Cauchy-Euler differential equations are linear and
second-order. [1 pt]

Working:

Bernoulli DEs (y' + P(x) y = Q(x) y") are first-order and nonlinear.

Cauchy-Euler DEs (xzy” + bxy' + cy = 0) are second-order and linear.
Autonomous DEs y' = f(y) may contain constants so may be nonhomogeneous.
Nonlinear DEs may be any degree, and first-degree does not imply linear.

A3. Answer: @  2sinh % [1 pt]
Working:
Expand:
1= 8(x + %) e sinxdx + | 8<x — %) e sinxdx
Apply the sifting theorem, where the Dirac delta functions will ‘spike’ at x = — %

and x = % respectively, both of which are within the interval of integration:

/2 /2 -m/2 PREP

. m/2 . . - . TN _ _ _ Loy T
I =e" sin(5) +e sin(——) =e e 2 X > = 2 sinh —

A4. Answer: @ 250 [1 pt]
Working:
This is a separable differential equation. Separate and integrate with initial conditions:
%= 10 — 4y = Zﬁdy=§dx

Evaluating these integrals gives the particular solution:

= —%ln(l —%y)z x =y =%(1 - e_4x)
Therefore,
= y@) =+(1-¢ ")~ 2.50.
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A5. Answer: @ «x tan_l(C — Inx) [2 pts]

Working:

Observe that Z—iz % — cos’ % is a homogeneous DE, since the RHS is

purely a function of % Therefore, substituting u(x) = % will lead to the solution.

From the substitution, we have y = ux = —le =x % + u.

. d 2 d — cos’
Sub into the DE: xd—u+u=u—cosu - L _ s
X dx x

This is a separable DE: fseczudu = f_Tl dx = tanu=C — Inx

Rearrange for u: u=tan (C — Inx)

Unsubstitute for y: y=x tan_l(C — Inx) for any arbitrary constant C.

(This is also equalto y = — xtan (Inx — C), since tan” x is an odd function.)
A6. Answer: Q) proportional to the square of 1 j:x [2 pts]

Working:

This is a separable DE:

2
fydy=fﬁdx = %y =f(i— il)dlen ——+C

> y'=2In —=+2C = e’ =eZC( > )2 = eyoc( . )2.

+8

s>+ 16

A7. Answer: @ [2 pts]

Working:
t

The LHS is a convolution of fwith itself: [ f(t) f(t — ©) dt = (f * f)(t) = 16 sin 4t
0

o4 = F(s) = £8

- :
s +16 \s® +16

Convolution theorem on the LHS: F(s)F(s) =
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A8.

Answer: @) 5 X (250 + 1) [5 pts]
Working:

The given difference equationis u _—2u _+ 2u = 0.
n+ n+1 n

2

n n—1
Observe that u_ = k§:j1 u, - ]El u =S =S .

Substituting this into the difference equation, we get
S.,—S

n+ n+1 a 2(Sn+1 o Sn) T Z(Sn - Sn—l) =0
S - 35 + 4S5 — 285 =0
2 n+1 n n—

n+ 1

By iteration, we can find u, = 1, u, = 6, u, = 10 = S1 =1, 52 =17, 53 = 17.

The characteristic equation is o3+ -2=0.

By the rational root/factor theorem, we can observe that (A — 1) is a factor of this

cubic polynomial. By synthetic division, we can complete the factorisation as
i

A=A —=20+2)=0 > A=1, A=1+i=-2¢ ",

ion: — n n s in L
General solution: S =Ax1 + (ﬁ) (B X cos ——+ C X sin = )
Initial conditions: 1=A+B+C
7=A+2C

17 = A — 2B + 2C

Solving the system gives: A=5 B= -5 (C=1
Particular solution: S =5+ Zn/z(sin % — 5cos %)
n
Let » =100: sin25m =0, cos25m =cosmt = — 1,

50 50
S=5+2 X 5=5(2 +1).
Alternative methods:
100
1) Findu = 2" (3 sin =~ — 2 cos ”Tf) and evaluate 3, u,on a calculator.
k=1
727

2) Using the Z-transform, U(z) =ZST+2 = S(z) = ) ! —U(z) = findS,.
Z — uZ —Z
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Section B

Short-Form Questions

135 points available

B1.

This is a linear 2nd order nonhomogeneous DE with constant coefficients:

Characteristic equation: V—24-3=0 > A= 3, A= —1[1pt]
Complementary solution: Y (0 = A e+ Be " [1pt]
Particular integral: y,X)=Cx+D = y 'x)=C = y, "(x) =0. [1 pt]

= —2C—-3(Cx+D)=x
= —3Cx+ (—2C—-3D) =x
1

Equate like terms: = C= -4 D= % [1 pt]

General solution: y(x) = Ae” + Be " - +x +=. [1pf]
(Total: 5 points)

This is a Cauchy-Euler differential equation. We substitute x = e’ = u=Inx
We may derive the expressions for the new derivatives of y as follows:

. . . 1 d d 1 d d d
First derivative; ~——=— = X=X &t _ -2 o 2 _ %
dx x dx du dx x du du dx
2
—_— d_ dy d (. d d d d
Second derivative: —— <& = ——(x-X) = S50 = Zh oy S8
x du dx dx du’ dx dx d
2 2 2 2
1 dy _ 1 dy dy dy _ 1 [dy dy
D e xa TXE T T\ W T W)
du dx dx x \ du

On substitution into our DE, or by recalling the formula for the transformation,

b 3,y [2
i i y = u. [2pts]

This is the same DE as in part a), so y(u) = Ae’" + Be " — %u + % [2 pts]
Undo substitution u=Inx: y(x) = A X+ % - % Inx + % [1 pt]
(Total: 5 points)
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B2. Letu(y)= (%)2.

- - - . odu _ 5 dy d(dy)_ 5 dy dy
Differentiate both sides w.r.t. x: —==2 —— — ( dx) =27 2
. d du d d d dy d° d d
Chain rule: d—;=d—;‘d—;=d—’;+—dx1:2—dxl;%+—df:2ﬁ
dy 1 du
= dxz - 2 dy
. . . 1 2 1 du du
Substitute into DE: Su=4y +5y o> D Ty 8y [3 pts]
v 1 _ 8
dy oy Y.
This is a linear first-order DE in u(y).
Integrating factor: I(y) =exp [— % dy =e ™ =L
General solution: IMu®) = [I(y) x — 8ydy
> = [-8dy= -8y +4
2
= u(y) = Ay — 8y
2
Unsubstitute: (—le) = Ay — 8y’ > —le = ++/4y — 8y [4pts]
This is a separable DEin y(x). + [————dy = [dx = x + B.
Ay — 8y
To evaluate the integral on the LHS, complete the square and use trig substitution:
1 _ 1 _ 1 1 1 1

R N e e A R

Using the result [ —dz = sin_lf with z=y— -2 and a=—=

16 16’
a —Z
A
-1 Y=g _ A .
_z_ﬁm En —x+B:>y—16(1ism2\/§(x+B))

; 1+ cos(2+2(x+B) — -
= y(x) =% 1ism2;/§(x+B) 2% COS( \/zx ) 2)
= yx) = % (\f(x + B) — %) or —sm (\f(x + B) ——) (double angle formula)

Since sin® x = cos’(x — n/2), these two solutions are not linearly independent, so the
constants 4 and B can be chosen to make them the same. Therefore, we can take
either one solution as the general solution.

Redefine constants: A « %, B « 2B — %: y(x) = A cosz( 2x + B). [3 pts]
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B3.

Let x(¢) be the displacement of the mass into the buffer (positive to the left) at time +.
While in contact with the buffer, the dashpot exerts a viscous force F = — A %.

Since x << [, we can assume the motion is almost horizontal (no vertical component of
motion) and we can also neglect the weight force [1 pt].

By Newton’s second law in the horizontal direction, the equation of motion is

2

F=ma = —7\%=m% = mx" + Ax' = 0. [2 pts]
t
- , 2 A A
Characteristic equation: ma + Aa =0 = a(a + 7) =0 =>a=0 a= ——
Ay
General solution: x(t) =A+ Be " [2pts]
Initial conditions: x(0) =0 = 0=A+B

x'(0) =+/2gl = J2gl="2B

> A="2gl, B= —Z-[2gl

_r
Particular solution: x(t) = W(l —e "’t) [3 pts]
x(t) approaches a horizontal asymptote at lim x(t) = W
t— oo
Maximum displacement: x = mngl [2 pts]

(Total: 10 points)
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B4. Draw the state transition diagram, showing the probabilities of changing states:

. State 0 - State 0
State "0": atcycle n - 1 at cycle »
State 1
State "1": e Ceycle

at cycle n - 1 at cycle n

N/

n-1 time step (clock cycles) n

For the bit to be in a given state (suppose, state “0” without loss of generality as this is
a symmetric problem) at cycle #, the bit must have:

1. Either been in the same state (state “0”) at cycle » - 1 and then stayed the same,
2. Or been in the other state (state “1”) at cycle n - 1 and then flipped.

Using the ‘AND’ rule of probability for independent events:

P(Case 1) = P(same state at n - 1 AND did not flip)
= P(same state at n - 1) x P(did not flip)
= P(same state at n - 1) x (1 - P(flipped)) (complementary events)

= Vn-l X (1 _p)

P(Case 2) = P(opposite state at n - 1 AND flipped)
= P(opposite state at n - 1) x P(flipped)
= (1 - P(same state at n - 1)) x P(flipped) (complementary events)

= (1 _yn-l) Xp
Using the ‘OR’ rule of probability for disjoint events:

P(same state at n) = P(Case 1 OR Case 2)
= P(Case 1) + P(Case 2)

=y =y A-p+A-y Jp [4pts]
=y +@ -1y  =p

This is a linear nonhomogeneous first-order difference equation.



Differential Equations - End of Topic Test Solutions Section B

B4.

(continued)

Characteristic equation:

Complementary solution:
Particular integral:

General solution:

Initial condition:

Particular solution:

A+ 2p—-—1)=0 > A=1-2p

cr _ n

y. A(1 = 2p)

y =B = B+@-DB=p > B=+
1

y,=A1-2p)" +7

=1 (since the initial state is the same by definition)

=A+% > A=—=

Yo
= 2

=

y = %((1 — Zp)n + 1), for all integers n > 0. [6 pts]

(Total: 10 points)



Differential Equations - End of Topic Test Solutions Section B

B5. IVP: y' + 14y' + 49y = f(x), y(0) = y'(0) = 0.
The inputis f(x) = u(x) — u(x — 1), where u(t) is the Heaviside step function.
To find the step response, let f(x) = u(x) = 1 (for x> 0, otherwise 0)

Characteristic equation: A+ 140 +49=0 = A= —7 (repeated) [1 pt]

Complementary solution: yCF(x) = e_7x(A + Bx)

Particular integral: yPI(x) =C = 49C =1 = C = %
General solution: ymp(x) = e_7x(A + Bx) + 4—19 [1 pt]
Initial conditions: y0)=0= 0=4+ 4_19 = A= ;_;
y(©0)=0 = 0= -7A+B = B==-
Step response: ystep(x) = - 4_196_7x — %x e+ % = 4—19(1 — 1+ 70e

if x>0, else 0. [1 pt]

Method 1: Linear Superposition

Using the principles of linear superposition, the solutions y(x) with f(x) = u(x)
can be found, shifted by 1 unit in x to find the solution with u(x — 1), then subtracted.

Forced input: f(x) =ulx) —ulx — 1)
(x = 1)

Forced response: y(x) = ystep(x) ~ Vetep

If x <0, then ystep(x) and ystep(x) are both zero, so {y(x) = 0; if x < 0}.
fo<x<1theny  (x) = (1 — (1 + 7x)e ) but Vi = 1) = 0,50

{y(x) =L - +70¢7; ifo<x< 1}. [2 pts]
Ifx>1,theny () =01~ + 7x)e” ") and Vi = D =55(1 = (7x - 6) e

{y(x) = (7x-6e — (1 +70) ifx2 1} [3 pts]
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Method 2: Convolution integral

d —7x
Impulse response: gx) = % =xe [1 pt]
Forcing function: f(x) =ux) —ulx —1)
Forced response: yx) = *9x) = [ fD)glx — 1)drt
0

If 0

If x

X X X
<x<1 = yx)=[(x — 1) e 7O gr = xe_7xf e "drt — e_7xfre7T dt
0 0 0

x x —7x 1 X 1 —7x —x —7x 1 1 —7x
7 — 7€ T % T 7 T € =7 € T " o€ . [2 pts]

1
>1 2 y) =f(x — De ¥ Vdr = %e_h(— 1-7x +e(7x - 6)) ) [2 pts]
0

Therefore, y(x) is a piecewise function with

0, r <0
y(@) = q 35 (1 —e ™ (1 +Ta)), 0<z<1

e (=1 —Te+€"(Tx —6)), z>1

Sketch of y(x): [1 pt]

0.02

y

-0.2 0

The maximum value of y occurs at x = 1, at which y(1) =

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2 22

1-8¢"’
49

[1 pt]

(Total: 10 points)


https://www.codecogs.com/eqnedit.php?latex=%20y(x)%20%3D%20%5Cbegin%7Bcases%7D%20%200%2C%20%26%20x%20%3C%200%20%5C%5C%20%20%20%20%5Cfrac%7B1%7D%7B49%7D%5Cleft%20(%201%20-%20e%5E%7B-7x%7D(1%20%2B%207x)%20%5Cright%20)%2C%20%20%26%200%20%5Cleq%20x%20%5Cleq%201%20%5C%5C%20%20%20%5Cfrac%7B1%7D%7B49%7D%20e%5E%7B-7x%7D%5Cleft%20(%20-1%20-%207x%20%2B%20e%5E7(7x%20-%206)%20%5Cright%20)%2C%20%26%20x%20%3E%201%20%5C%5C%20%20%20%5Cend%7Bcases%7D%20#0
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B6.

The intersections of the curve with the horizontal line y = ¢ are given by

X+ —15x + 5=t [1 pt]

The solutions x satisfy X, = f(t) and X, = g(t), so the above is the implicit

solution to a differential equation satisfied by these functions.
Implicitly differentiating both sides with respect to
2 dx
dt
dx 2
= F(Bx + 4x — 15)= 1
dx 1

2 & T 3x” +4x — 15 [1 pt]

dx dx
= 3x +4X?—157—1[1pt]

This differential equation has solutions x = f(¢) and x = g(?). (Total: 3 points)

The differential equation is nonlinear, so it does not satisfy the superposition principle.
Therefore, in general, x(t) = a f(¢) + bg(¢) is not a solution.
We know that x = f(¢) and x = g(¢) are solutions, so (a, b, ¢) = (1, 0, 0) or (0, 1, 0). [2 pts]

However, we know that the curve intersects the line three times, and two of
them are given by f(¢) and g(¢), therefore there must exist one further solution.
We need to find out whether we can express this solution in the form a 1(¢) + b g(2).

By Vieta’s formula, the sum of the cubic polynomial roots is: f(t) + g(t) + x(t) =-2
= x(t) = - (f@® +g9@O +2)= —f) —g() -2

This cannot be written in the form a f(¢) + b g(¢), so there are no other solutions with ¢ = 0.
However, when we allow ¢ # 0, we get one more solution (a, b, ¢) = (-1, -1, -2). [2 pts]

(Total: 4 points)
Find the intersection points for the case = 5:

X2 —15x=0 > x(x —3)(x+5) =0 =>2x=0,3 -5
=f()=3 g6)= =5

"(5) = =——and g'(5) = =0
Using the DE, f'(5) 3£(5)° +4 f(5) — 15 2 and 9'(5) 39(5) +4g(5)— 15 0

By product rule, k'(t) = t(f'(t) — g'(0)) + F(©) — g(t), so

h'(5) =8 + 5 x 6—10 = % (Total: 3 points)
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B7.

Characteristic equation: V+1=0 > A= + i

Complementary solution: yCF(x) = Acosx + Bsinx [1pt]

The linearly independent basis solutions are y, =cosx and y, =sin x.

The Wronskian determinant is W(x) = ylyz' - yl'y2 = cos’x + sin"x = 1. [1 pt]
By variation of parameters, the particular integral is

yPI(x) = —cosx | sinxtanxdx + sinx [ cosxtan x dx

= — cosx [(secx — cosx)dx + sinx [ sinxdx

= — cosx (In|secx + tanx| — sinx) — sinx cos x
= — cosxln|secx + tanx|. [3 pts]

General solution:  y(x) = Acosx + Bsinx — cos x In|sec x + tan x|.
First derivative of particular integral:
< cosxln|secx + tanx| = 1 — sinx In|sec x + tan x|

dx

Initial conditions: y0)=0 = 0=4
y0)=0 = 0=B-1= B=1

Particular solution: y(x) = sinx — cos x In|sec x + tan x|. [2 pts]
(Total: 7 points)

Observe that the series expansion of tan x has all positive terms. Therefore, the
series approximation to tan x always underestimates the true value of tan x [1 pt].

Therefore, the nonhomogeneous part of the DE has x + %xg + %x5 < tanx.

We can interpret the DEs as an undamped simple harmonic oscillator subjected

sointheinterval 0 < x < % we are looking at the first quarter-period of the
motion, where the unforced solution is monotonically increasing [1 pt].

Therefore, the smaller force value gives a smaller displacement. So, z(x) is an
underapproximation to y(x) on the interval 0 < x < % [1 pt].
(Total: 3 points)
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B8.

o

a. Let A=
[1 —

[NR e R

}. Observe that the system is described by z,,, = Az,. [1 pt]

1

We are given that the eigenvalues of Aare 4, =1and 2, = a — —-.

Eigenvector for 4, = 1: (o - 1)x+%y= 0, let x=1-y=2(1-a) — v,=[1,2(1-a)]".

Eigenvector for 1, = a — %: %er%y:O, letx=1—-y=-1 — v,=[1,-1]". [2 pts]

By iteration, we have z,= A” z,. Since v, and v, are linearly independent and span R?,
we can always find a unique £, y such that z, = fv, + yv,. Substituting this in, we get

z,= A"zy= A"V, + yA"v, = B A"V, + y L,"v,  (by definition of eigenvector: Av = 1v).
In the limit as n — «, since |4,] <1, we have y 1,"v, — 0, and since 4, =1, z, — S v,. [2 pts]
We are given that z, = [1, 0]", so equating components in z, = v, + yv, gives

B+yvy=1 21 - p - vy=0}L

1

Add the equations together to eliminate y: B-20B=1 = B =

3-2a°
Therefore, lim z,=—5—5—[1,2(1-a)]".
n—> oo “
. 1 . 2—2a
In component form, lim X =55 and lim Y = o [2 pts]
n— o n— oo

(Total: 7 points)

b. Let M = A*. We have z, = Mz, = 0 for some finite %.
The eigenvalues of M are 1/, 1,*, with corresponding eigenvectors v, v,.

For M to map z, to the origin, z, must be parallel to the eigenvector v,, and the
corresponding eigenvalue 1, must be zero. [2 pts]

Therefore, }‘z =a— %z 0 2 « =%. [1 pt]

Alternative method: If Mz,=0 then M is a singular matrix, so the

determinant of A must be zero. This condition leads to a« = %

(Total: 3 points)
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B9.

Substitute v(z) = Z—i - L 4 ( ) [1 pt]

dz dz
dv. _ d (dz\_ 1 d (dz)__ 1
Since dz = vdt, this is equal to - = dz(dt)— - dt(dt)— -
Since v = = > 0, z(¢r) is a monotonically increasing function, so z(¢) is invertible.

Therefore, there exists a single-valued function F{(z) for the force at elevation z.

Applying the substitutions to the DE, we get

wi+v +gz=E s i fv= (- gl [2pts]

dz z pz

This is a Bernoulli DE for v(z) with n=-1.
(Total: 4 points)

F —
Let F(z) = F,. The Bernoulli DE to be solved is oy —v ——glv
dz pz

Let u = v°. The DE becomes % + 7u = 2(p—; — g) [1 pt]. This is a linear DE.

F
The integrating factor is I1(z) = zz, so the solution is given by Zu= ZI(TOZ - gzz) dz.

F
0

F
Therefore, Zu = T"zz — %gz3 +C = u-= e %gz + Z_CZ [1 pt]

F
Undoing the substitution, v = +u = \/—" — igz + L. [1 pt]
Sincev =— must be finite for all ¢, including at = 0 when z= 0, we must have C= 0.

F
To lift the chain fully, we must have v> 0 when z=L, so —~ > —gL = F > = ng [1 pt]
Since the weight of the chain is pgL, so:

o If %ng <F,< pgL, then the chain slightly falls back down after lifting. [1 pt]

o If F0 > pgL, then the chain continues being lifted upwards away from the table. [1 pt]

(Total: 6 points)
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B10.

1I:

I1I:

1V:

False. Asymptotic stability requires all the poles of H(s) (the transfer
function; Laplace transform of the impulse response) to have negative
real part. There is no condition on the poles of Y(s). [1 pt]

True. If x(t) = &8(t) then X(s) = 1. By the definition of the transfer

function, Y(s) = H(s) X(s) = H(s). [1 pt]

True. By the final value theorem, lim y(t) = lim sY(s) = lim s H(s) X(s).
t— s—0 s—0

Since H(s) is asymptotically stable, H(s) cannot have a pole at s = 0, so H(0) is a

finite value. Therefore,

lim y(t) = H(0) lim sX(s) = H(0) lim x(t) = H(0) lim x(t) = 0.[1 pt]

t— oo s—0 t— oo t— oo

True. By the convolution theorem, L{(x * h)(t)} = X(s) H(s).

Since Y(s) = X(s) H(s), taking ILTs, we have y(t) = (x * h)(t). [1 pt]

Let ;(t) = a(t) + ib(t), where a and b are real-valued functions.

By linearity, the system response is y(t) = ya(t) + iyb(t), where y, and y, are

the system responses to inputs a(¢) and b(¢) respectively. [1 pt]

Since a(t) and b(¢) are real, and the impulse response /4(¢) is also real, the

responses y, and y, are also real, so Re[;(t)] = ya(t).

Since a(t) = Re[az(t)], the system response to Refaz(t)] is Re[;(t)]. [1 pt]

(Total: 2 points)
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C. Let ;(t) =", By Euler’s formula, observe that x(t) = cos wt = Re[az(t)]. [1 pt]

The Laplace transform is X(s) = S_l —, so the system response is given by

Y(s) = H(s) X(s) =——2—. [1pt]

Since this is an LTI system, H(s) must be a rational function of s, with numerator

order less than the denominator order. Consider a partial fraction decomposition of Y (s):

Nop(s)
Y(s) = M 3 + C. where all Re(s,) <0 [1 pt]

r=1 (s—s) ST

(p,(s): polynomial functions in s of order up to m, — 1, s,: rth pole of H(s),
m,: multiplicity of the pole s,, N: number of poles in H(s).).

Using the cover-up method, we can let s =iw to get € = H(iw). [1 pt]

. -1 st
“5)__ contains terms of the form t™ e ", and

The inverse Laplace transform of

(s—s)

_ st
since lim t" ‘e’ = 0 forall Re(s,) < 0, the inverse Laplace transform of the
—> 0
‘ N
function ) — tends to zero as ¢ — «, with the ‘slowest’ exponential having
r=1 (s=5)"

time constant %; (o: least negative real part of poles s,).

Therefore, when ¢t — oo (with t >> —the function Y(s) £ flo) [1 pt]

S—lw S—lw

Taking the inverse Laplace transform, y(t) ~ H(iw) e”". [1pt]

From the result in part b), the asymptotic solution is y(t) = Re[;(t)], SO
y(t) = Re[H(ioo) eiwt]. [1 pt]

Writing H(iw) in modulus-argument form, H(iw) = |H(iw)| e """, so

y(t) = |H(iw)| Re[ei (wt +arg H(iw))]
= y(t) = |H(iw)| cos(wt + arg H(iw)) [1 pt]

= y(t) = |H(iw)| cos(oo(t - [— %arg H(ioo)])) = Ax(t — 1)
where A = |H(iw)| and T = — % arg H(iw). [1 pt] (Total: 9 points)
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B11.
a. The differential equations are % = — ax and % =ax — (B + v)y-
The solution to the first DE is <= — ax = x(t) =x e .

Using the initial condition, x, = N = x(t) = Ne .

Subbing in the first DE and this solution for x,
T @+ Vy=anve™

J@B+v)de

This is a linear DE. The integrating factor is e = ¢®*Y" and the solution is

e(B+Y)ty :faNe(BH—a)t > y= e—(B+v)t( aN e(B+v—a)t+ C)

B+y—«
. ” —aN
Initial condition: y(0)=0 — C = [3+\0((—0(
B+t - _ _
_ __aN B+y-ot _ __aN at =B+t
2 V=8« € (e N 1)_ B+Y—a(e € )

To find the number of deaths z, use % = Yy, SO we integrate y:

g = aN_ (1 =B+t %e_at)_l_ C

B+y—a\B+y

The initial condition is z(0) =0, so C = 0. Therefore,

_ayN 1 -B+yt 1 -at
z(t) = B+Y—a(B+v° —e .

(Total: 7 points)
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B11.

(continued)
Return to the differential equation for y, let f+y=a:
_dL _ —oat _
o tay=aNe -, y(0) =0

This is a linear differential equation. We could use the integrating factor method,
but since the RHS Q(x) is an exponential, we can use the easier method of
undetermined coefficients.

Characteristic equation: A+ a =0 = A= — «
Complementary solution: Yo = Ae ™

Particular integral: Yo = Bte ™ (since e “"is not linearly independent)

—oat —at
=>y'=Bea—aBtea
PI

Subbing into the DE, Be “=aNe ™ = B=aN
General solution: y=Ae "+ aNte *

Initial condition: y(0)=0 = A=0

Particular solution: y() = aNte ©

By integration, z(t) = Y[ y(®) dt = ayN [te “dt
Using integration by parts, [te “dt = — %e_at - %e_at +C
So, 2(t) =21 + a)e “ + )
Initial conditions: z(0) =0 = (' = Ja&

Therefore, z(t) = %(1 —e (1 + at)).

(Total: 8 points)
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B12.
. . 2 R 1 1
a. Laplace transform of both sides: (s +s+ 7) Y(s) =7 X(s)
x, B
From the table of Laplace transforms, X(s) = X, L{sin Bt} = ZiBZ . [1 pt]
S
x,B
Theref Y(s) = — . 1 pt
ere Ore, (S) LC (SZ+BZ)(SZ+%S+T16) ’ [ p ]

Y 1 1
Z(S) - X(s) - IC SZ+%5+ I [1 pt]

LC

(Total: 3 points)

b. We are given that the step response contains stable oscillations with a finite
steady-state value. Since the impulse response is the time derivative of this, it must
also contain stable oscillations, so we know that this is an underdamped system.
Therefore, the poles of Z(s) must be complex values.

For complex poles, the discriminant of the characteristic polynomial must be negative:

2 2
R 4 1 R
?_T<0 = 7>4L2.[2pts]

Therefore, the value of R is bounded from above by R < 2+ /%. [1 pt]

(Total: 3 points)

C. To find the poles of Z(s), we need to set its denominator to zero.
R R 4
2 R 1 _ iV T R .1 R’
S+TS+T_0:>S_ 3 = _Ti_l 7—?.[1pt]

As R varies, the real and imaginary parts of the poles s = o + wi are

1 R

o(R) = Re(s) = - and w(R) = Im(s) = /- "

2L

Tl ) Observe that o° + w” = % so the locus of the poles is a circle in
mis
% 1w the complex plane with radius —=, in the left half plane since ¢ < 0.

\Le

Therefore, the pole-zero plot is as shown on the left. [1 pt]

: >Re(s)  As R increases from 0 to 2+/L/C, the poles move further left. [1 pt]

¥ 4+ _w AsR—0,if = o = ;Cthen resonance occurs, and the system

\JLe

| response y(f) contains unstable oscillations that increase in
amplitude (diverge) with time. [1 pt] (Total: 4 points)
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B12. (continued)

d. In general, we know that any forced parallel mass-spring-dashpot linear system
can be modelled by the nonhomogeneous 2nd order DE:

my" + wy' + ky = F(t)

where y is the displacement of the mass from its equilibrium position and F is an
input force applied to the mass.

my" + w'+ ky=F(t) & Ly"+ Ry +%y =%x
These DEs are the same if all of the following conditions are met: [3 pts]
e the mass m is proportional to the inductance L,
e the damping rate u is proportional to the resistance R,
e the spring constant k is proportional to the reciprocal of the capacitance i,

e the input force F(¢) is proportional to the input current divided by capacitance ﬁcfl
e the constant of proportionality must be the same in all four above cases.

Observe that in the electrical system, the coefficients of the input x and output y
are the same, and x and y both represent the same type of quantity (current). We
can mirror this in the mechanical system by using both x and y to represent
lengths and adding another spring of the same spring constant.

One possible realisation of a mechanical system with the same dynamics is therefore:
(assumes no collisions with walls, perfectly smooth horizontal ground, no air resistance)

VY

—
k X
k —
—\WW— . s
= F(1) =k x(?)
# o o WTF

my" + wy' + ky = kx S Ly"+Ry'+%y=%x

where x is the extension of the spring on the right-hand side. [2 pts]

This must be an underdamped system, so we also require p < 2+/mk for oscillations.

Other systems are also possible - be creative! (Total: 5 points)
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Long-Form Questions
250 points available
C1.
a. This is a Bernoulli differential equation.
Write in standard form: Ay Ly =y
rite in standard form: V=Y
1-9 -8 d -9 d d -1 9d
Lt u=y "=y = &= -8 - = =%V &
-1/8 9 -9/8 dy _ —1_-9/8 du
= =y =u = &8¢ &
Substitute into the DE: T T T
Multiply both sides by -8u°*: i 2u= -8 [5pts]
EL 8
This is a linear DE. Use the integrating factor I(x) = e =e " =x.
General solution: Xu=[-8xdx = _Tsx9 + A = u= _gx + 4
X
[2 pts]
-1/8
Unsubstitute: y = (_Tgx + ig) [1 pt]
X
(Total: 8 points)
. . 8 -1/8 17
b. Initial condition: 1= (— -+ A) = A=— [2 pt]
o - -1/8 o 1/8 B
H 1 . — —ox —_— = X = —x
Particular solution: y =1 9x8) (17_8x9) T [1 pt]

(Total: 3 points)
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C1.

(continued)

Use a step size h = — 0.1 (moving to the left), startingat x,=1, y,=1. [1 pt]

The gradient satisfies f(x, y) = = + y.

Step 1 y,=1+hf(1,1) =08 [pt
y, = 1+2(f1 1) + (0.9, 0.8)) = 0.8488446692... [1 pt]
Step 2: V. = 0.8488446692 + h f(0.9, 0.8488446692) = 0.7316486996... [1 pt]

h
y, = 0.8488446692 + - (f(0.9, 0.8488446692) + £(0.8, 0.7316486996))
= 0.7415146855...

= ¥(0.8) =~ 0.741515 (6sf) [1pt]

(Total: 5 points)

Exact value: (0.8) = —BX28 _ _ (, 744913906... [1 pt]

8 9
17 -8x0.8

0.744913906 — 0.741515
0.744913906

Percentage error: = 0.004584158 = 0.46% error. [1 pt]

(Total: 2 points)

Any two of the following:

e Use a larger number of steps or smaller step size.
e Use a more accurate numerical method e.g. Runge-Kutta 4th order (RK4).
e Use a higher floating point precision in the computations (keep more sig figs).

(Total: 2 points)
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C2.

Cross-multiply: cotxdy = (y + cotx — 1)dx [1pt]

Subtract: (1 -y —cotx)dx + (cotx)dy =0 [1pt]

Therefore M(x,y) =1 —y — cotx and N(x, y) = cot x. [1 pt]
(Alternative answer: the negatives of these.)

(Total: 3 points)

Condition for exactness: ‘Z—M — N
y dx
Check each partial derivative: ‘2—1‘; = 6% 1—-—y—cotx)= —1 [1pt]
3—1;] = aix(cotx) = —ocscx [1 pt]

Since the partial derivatives are different, the DE is not exact. [1 pt]

(Total: 3 points)

Condition for exactness: aiy(l(x) (1—-—y—-cotx)) = —1(x) [1pt]
% (I(x)cotx) = — cscle(x) + I'(x) cot x [1 pt]
These must be equal, so — cscle(x) + I'(x) cotx = — I(x)

= I'(x) cotx = I(x) (csczx -1 =1I(x) cot” x
= [I'(x) = I(x) cot x [2 pts]

This is a separable DE: f% dl = [cotxdx = Inl = Insinx + C [2pts]

I(x) = Csinx [1pt] (redefine C « eC)
for any real constant C.

(Total: 7 points)
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C2. (continued)
d. Exact DE: M(x,y) = (1 —y — cotx)sinx and N(x, y) = cosx. [1pt]

Potential function:

Equate:

General solution:

Particular solution:

F(x, y) = [M(x, y)dx = (y — 1) cosx — sinx +

F(x, y) = [ N(x, y)dy = ycosx + f(x) [1pt]
f(x) = —cosx —sinx and f(y) =0 [1pt]
F(x, y) = ycosx — cosx — sinx = C [1pt]

C+sinx+ cosx

= y= CoS X

= Csecx + tanx + 1 [1 pt]
y(—%)=0 > 0=2(-1+1= C=0
=> y=1+ tanx. [1pt]

(Total:

f» Mpt]

7 points)
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Cs.

. d dz .
let y = zsinx = X =-Csinx + zcosx

d’ d’z dz
= 2 =-Lsinx +2-=cosx — zsinx
dx dx x

Substitute into the given DE:

dzz .

d . dz . . 2
- sinx + 2 —= cosx — zsinx — 2<d—i sinx + zcosx) cotx + 2zsinxcsc x

dx

= 2cosx — 2cos x [3 pts]

. . , 2 , 2
Simplify sin x csc” x = cscx, sinxcotx = cosx and cos x cot x = coS x csc X:

2

d . . 2 3
di sinx — zsinx — 2zZcoS xcscx + 2zcscx = 2cosx — 2cos x
X
d’z 2 2
Factorise: e sinx + 2(2 cscx — 2cos xcscx — sin x) = 2cosxsin x
X
d’z 2 2
Divide by sin x: 7 + Z(Z csc x — 2cot x — 1) = 2cosxsinx
X
d

2
>+ 2z(2 — 1) = sin2x
dx

dzz

—+ z = sin 2x. [4 pts]

Trig identities:

dx

Initial conditions:  z = ycscx = z(5) = y(5)cesc-=1x1=1 [1pt]
% = cSc x(% — ZCOS X)
= Z'(%) = csc % (y'(%) — Z(%) cos %) = 0. [1 pt]
= z(%)z 1 and z'(%)z 0.
(Total: 9 points)
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Cs.

(continued)
To solve z" + z = sin 2x:

Complementary solution:

Particular integral:

General solution:

Initial conditions:

Particular solution:

Unsubstitute:

zCF(x) = Acosx + Bsinx [2pts]

zpl(x) = Ccos2x + D sin2x

= —4Ccos2x — 4D sin2x + Ccos 2x + D sin 2x = sin 2x
1

= (=0 —-3D=1 :>D:_T

z(x) = Acosx + Bsinx —%sin 2x [3 pts]
z(%)=1 = B=1[1pt
z'(%):O > —A++=0> a=2[1p4

2 . 1.
z(x) = 5 cosx + sinx — — sin2x

(Total: 7 points)

y =2zsinx = y=(%cosx+sinx—%sin2x)sinx [1 pt]

2 . . 2 1 . ,
y =5 sinxcosx + sin x — < sin2xsinx [1 pt]

1 . , 2 1 . ,
y = sin2x + sin x —— sin2xsinx

y = sin’ x + % (1 — sinx) sin 2x. [2 pts]

(Total: 4 points)
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Section C

C4.

The system contains the product terms xy and y?, which are nonlinear in the
dependent variables. Therefore, they cannot be expressed using matrix
multiplication with the given state vector x =[x y]". [1 pt]

The system is R

T - klxy,

Eliminate y from the system

This is a separable DE:

Integration by partial fractions:

General solution:

Particular solution:

dy
dt

(Total: 1 point)

d d
=kxy = e &

T " > x+y=4

(or from conservation of mass)

xX+y=4 = y=4—-x
dx __ _
- = —klx(A—x) —klx(x—A)

X

t
fx(xl_A) dx = {kl dt [2 pts]

0

}(L/A+1/—A)dx=kt

x x—A 1
0
A g x=A %o _
" In i k1t
A X Ak t X Akt
== S ¢ ' = > (1—i)=e1
xO—A x xO—A X
AxO
x =—— 7 [2pts]
xo—(xO—A)e
_ _ xo(xo—i-yo) _ x,+Y,
A - ‘xo + yo = x(t) - (x0+y0)k1t - Yy (x0+y0)k1t :
X, ty,e 1+Ze
[1 pts]
y() = A — x(t) = x, +y, — x(t)
y®© = (g + ¥\ — — o
1+—e
(x0+y0)k1t
(x,+y,) y e x,+ ¥,
y(t) = (x0+y0)klt = X, —(x0+y0)k1t - [2 pts]
x +y e 1+—e

o' 7o Yy

(Total: 7 points)
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C4. (continued)

C. Phase plane for x' = — kxy, ¥y =kxy:

[1 pt]
Nullclines:  x-nulicline: (x =0 or y = 0)
y-nulicline:  (x =0 or y =0) [1pt]

Equilibrium points: (x =00ry =0) [1pt]
(any point on the coordinate axes is an equilibrium point.)

The equilibrium points with (x < 0, y = 0) and (x = 0, y > 0) are stable.
The equilibrium points with (x > 0, y = 0) and (x = 0, y < 0) are unstable. [1 pt]

Only the region x, y > 0 is physically meaningful.

(Total: 4 points)
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C4. (continued)

d. i) x' = —klxy+k2y2, y'=k1xy—k2y2 = x'+y'=0
= x + y = A, for some constant 4. This is the same as the case k, = 0.

The system trajectories satisfy x + y = A at all times [1 pt], due to
conservation of mass [1 pt].

(Total: 2 points)
ii) For the system % = —kxy+ kzyz, —‘Z{— =kxy — kzyz,

kl

x-nulicline: yk,y —kx)=0 = (y=0o0ry=-"x)
2

k

y-nullcline: ykx —ky) =0 = (y=0o0ry= k_lx)
2

k
The equilibrium regions are the lines y = 0 and y = k—lx = kzy = k1x' [1 pt]

To prove stability, we can linearise the system and apply eigenvalue theory.

k
Let x, = (x , —1x1) be an arbitrary point on the equilibrium line, where x, > 0.

1k,
2 9 9
Let f(x, y) = - klxy + kzy = a—’; = - kly, a—§= - klx + Zkzy.
2 9 ?
Let g(x, y) =kxy —ky = L= kv, _a% =kx — 2k y.

Therefore, the Jacobian matrix of the system is

- —k —kix + 2k
Je(z,y) = [f fy} — [ ' 1y L 1:(:_ ok Qy] :
9z Gy 1Y 12 2Y [2 pts]

k
Let x=x; and y=k—1x1 to get the linearised system matrix A:
2
k M ke —ki/ky 1
A_Jf(xl,k—lxl)[k%“? ! ]i 1] :k1$1|:k.1/22 1!
> Lem mhm v [1pt]

ko
_ ko _ : _ _ s
trA=— klxl( — + 1] and det A=0 — eigenvalues )‘1 =0, 7\2 = - klx1 + 1.

2 k2
[1pt]
Since all eigenvalues have Re(A) < 0, these equilibria are stable*.
Since one of the eigenvalues is zero, they are degenerate fixed points. [1 pt]

*Technicality: the ‘Hartman-Grobman linearisation theorem’, which allows us to
use eigenvalue theory to infer the stability of nonlinear systems, does not strictly
hold in our case since Re(’) = 0. However, we have chosen to neglect this detail
because we can already see that we have stability by inspecting the phase plane.
‘Centre manifold theory’ can be used for a formal proof. (Total: 6 points)



https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BJ%7D_%7B%5Cmathbf%7Bf%7D%7D(x%2C%20y)%20%3D%20%5Cbegin%7Bbmatrix%7D%20f_x%20%26%20f_y%20%5C%5C%20g_x%20%26%20g_y%20%5C%5C%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20-k_1%20y%20%26%20-k_1%20x%20%2B%202%20k_2%20y%20%5C%5C%20k_1%20y%20%26%20k_1%20x%20-%202%20k_2%20y%20%5C%5C%20%5Cend%7Bbmatrix%7D.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BA%7D%20%3D%20%5Cmathbf%7BJ%7D_%7B%5Cmathbf%7Bf%7D%7D(x_1%2C%20%5Cfrac%7Bk_1%7D%7Bk_2%7D%20x_1)%20%5Cbegin%7Bbmatrix%7D%20-%5Cfrac%7Bk_1%5E2%7D%7Bk_2%7D%20x_1%20%26%20k_1%20x_1%20%5C%5C%20%5Cfrac%7Bk_1%5E2%7D%7Bk_2%7D%20x_1%20%26%20-k_1%20x_1%20%5C%5C%20%5Cend%7Bbmatrix%7D%20%3D%20k_1%20x_1%20%5Cbegin%7Bbmatrix%7D%20-k_1%2Fk_2%20%26%201%20%5C%5C%20k_1%2Fk_2%20%26%20-1%20%5C%5C%20%5Cend%7Bbmatrix%7D.%20#0
https://en.wikipedia.org/wiki/Hartman%E2%80%93Grobman_theorem
https://en.wikipedia.org/wiki/Center_manifold
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C5.

2
let u=— = L 4+yu=k wherek =—2£—

r de r v

0 0
General solution:  u(0) = Acos® + Bsin® + k [4 pts]
Initial conditions:  u(0) = r(lo) = Ti = ri —A+k = A :TL_ k
0

0

0
u'(0)=%=0 > B=0

Particular solution: u(8) = (% - k) cos® + k = k(1 — cos8) + — cos 8 [2 pts]
0 5 20
Unsubstitute: r(0) = —— = L = o % . [1 pt]
u(8) k(1 —cos0) + %cos 0 ng(l —cos0) + rovoz cos 6

(Total: 7 points)

do ,
When 6 = 0, r(0) = T (minimum) [1 pt]

e (k — L) sin® = 0 at maximum and minimum valuesofr = 8 =0o0r 8 = n

T TZUZ
0 0 0

When 6 = n, r(mn) = T -1 = N (maximum) [2 pts]

(Total: 3 points)

d'u _ _ du du _ v _ _ 1 _
d92+u—k,letv— =v, o =k—-u ul0) = ,v(O)—O}

dae doe r
) =v + h(k - un) [1 pt]
This is a system of difference equations. Take the Z-transform of both equations:

Writing the 2nd order DE as a S{stem of 1st order DEs,

From Euler’s method, we have u =u +hv and v
n+ n n n+

zU(z) == =U(@@ + hV(2) and zV(2) = V(2) — hU(2) + - " 1 pt]
0 —Z
Rearrange the second equation for V(z): V(z) = (hki)z - hZU_(Zl)
2 2
Substitute into the first equation to eliminate 1(z): zU(z) — = = U(2) + (h klz)z - hzﬁ(?
0 z—

Z((z 1%+ hzkro)

Solve for U(z) and factorise: U(z) = [3 pts]

rz-D(z-D"+1)
The polesof U(z)areat z =1 and z = 1 + ih.

The zeroes of U(z)areat z=0 and z=1 %+ i krO. [1 pt]
If gR2 = r0v02 = kr,=1 = pole and zero cancel — U(z) = ﬁ [1 pt]
0
This corresponds to a circular orbit around the Earth, where u, = 1/r, is a constant.
The approximation for u, is exact in this case (u, = u(nh)). (Total: 9 points)

2z D" + 0k z

Init . . Z(1+0z ) _ 1 _
nitial value theorem: lim lim =T =u, [1 pt]

so o T2-D(@-D+E) o r(1+oE ) T

(where O(+) is the ‘Big O asymptotic notation’.) (Total: 1 point)
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C6.

Resolving forces on mass m:
my"=k,-y)+ Ay, —y) —ky — Ay +f
Resolving forces on mass m.:
my,” = —ky, +k -y)+ Ay —y,)
Expand and convert to standard form:
my" + 2y — Ay, + (k, +k)y —ky, =f(t) [3pts]
mzyz" — ?\yl' + )\yz' — kzy1 + (k1 + kz)y2 = 0 [2 pts]

Writing in matrix form: [3 pts]

my 0| [y i 20 =X |ny 1 ki +ky  —ky Y| _ Ji(t)
0 mo yé/ —A A yé —kg ]‘ﬁ + kg Y2 0
— — ~ ~

g

M C K
(Total: 8 points)

Let v, = yl' and v, = yz'. [1 pts]

= mlvl' = - 2)\171 + ?\vz — (k]L + kz)y1 + kzy2 + f1(t)
and myu,' = 7\171 — sz + kzy1 - (k1 + kz)yz'
Therefore,
?/1 0 0 1 0 U1 0
yé 0 0 0 1 Yo 0
1| = | _kitke ko 2 A + | A
1 kml I;nl i my m& U1 m1
o] | & ko 2 w] [0
P J\,—/ R/—/
A x f [5 pts]

(Total: 6 points)


https://www.codecogs.com/eqnedit.php?latex=%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20m_1%20%26%200%20%5C%5C%200%20%26%20m_2%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BM%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1''%20%5C%5C%20y_2''%20%5Cend%7Bbmatrix%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%202%20%5Clambda%20%26%20-%5Clambda%20%20%5C%5C%20-%5Clambda%20%26%20%5Clambda%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BC%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1'%20%5C%5C%20y_2'%20%5Cend%7Bbmatrix%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20k_1%2Bk_2%20%26%20-k_2%20%5C%5C%20-k_2%20%26%20k_1%2Bk_2%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BK%7D%7D%20%5Cbegin%7Bbmatrix%7D%20y_1%20%5C%5C%20y_2%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f_1(t)%20%5C%5C%200%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20y_1'%20%5C%5C%20y_2'%20%5C%5C%20v_1'%20%5C%5C%20v_2'%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%200%20%26%200%20%26%201%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%201%20%5C%5C%20-%5Cfrac%7Bk_1%20%2B%20k_2%7D%7Bm_1%7D%20%26%20%5Cfrac%7Bk_2%7D%7Bm_1%7D%20%26%20-%5Cfrac%7B2%20%5Clambda%7D%7Bm_1%7D%20%26%20%5Cfrac%7B%5Clambda%7D%7Bm_1%7D%20%5C%5C%20%5Cfrac%7Bk_2%7D%7Bm_2%7D%20%26%20-%5Cfrac%7Bk_1%20%2B%20k_2%7D%7Bm_2%7D%20%26%20%5Cfrac%7B%5Clambda%7D%7Bm_2%7D%20%26%20-%5Cfrac%7B%5Clambda%7D%7Bm_2%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7BA%7D%7D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20y_1%20%5C%5C%20y_2%20%5C%5C%20v_1%20%5C%5C%20v_2%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7Bx%7D%7D%20%2B%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%200%20%5C%5C%200%20%5C%5C%20%5Cfrac%7Bf_1(t)%7D%7Bm_1%7D%20%5C%5C%200%20%5Cend%7Bbmatrix%7D%7D_%7B%5Cmathbf%7Bf%7D%7D%20#0

Differential Equations - End of Topic Test Solutions Section C

C6. (continued)
C. i

For a system of DEs, the complementary solution is given by

cleAltul + (326)\2tUQ if /\1’2 are real
x(t) = < cre*(uy cos St + ug sin Bt) + c2e® (uy cos Bt — ugsin ft)  if A\; o = o & [i are complex
creMu + cpe(ut + v), for any v: (A — A[)v =u if A is a repeated defective eigenvalue

Given that there are two pairs of unequal complex conjugate eigenvalues, we have

at (

xop(t) = ere™(uy cos Bt+uysin Bt) + eoe™(u cos Bt—us sin Bt)

+ ¢3¢t (a3 cos dt+uysin 6t) + c4e7 (a3 cos St—uy sin 6t)

where c,, ¢,, ¢5, ¢, are arbitrary real constants. [4 pts]

(Total: 4 points)

Let
x| = e“(uy cos Bt + uysin Bt)
x5 = e (uy cos Bt — uysin Bt)
x3 = 7! (ug cos 6t + uysin 6t)
x4 = e (uz cos 6t — uysin 6t)

These are the four linearly independent vector-valued basis functions for x.(?).
Let X be the 4 x 4 matrix with columns [x; x, x; x,]. [1pt]

Then, by variation of parameters for systems,

xpy(t :X/X—lft dt
pr(t) (t) -

(Total: 2 points)


https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Bx%7D(t)%20%3D%20%5Cbegin%7Bcases%7D%20c_1%20e%5E%7B%5Clambda_1%20t%7D%20%5Cmathbf%7Bu%7D_1%20%2B%20c_2%20e%5E%7B%5Clambda_2%20t%7D%20%5Cmathbf%7Bu%7D_2%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%5C%20%5Ctext%7Bare%20real%7D%20%5C%5C%20c_1%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20%2B%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%2B%20c_2%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20-%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%3D%20%5Calpha%20%5Cpm%20%5Cbeta%20i%20%5C%20%5Ctext%7Bare%20complex%7D%20%5C%5C%20c_1%20e%5E%7B%5Clambda%20t%7D%20%5Cmathbf%7Bu%7D%20%2B%20c_2%20e%5E%7B%5Clambda%20t%7D%20(%5Cmathbf%7Bu%7Dt%20%2B%20%5Cmathbf%7Bv%7D)%2C%20%5C%20%5Ctext%7Bfor%20any%7D%20%5C%20%5Cmathbf%7Bv%7D%20%3A%20(%5Cmathbf%7BA%7D%20-%20%5Clambda%20%5Cmathbf%7BI%7D)%20%5Cmathbf%7Bv%7D%20%3D%20%5Cmathbf%7Bu%7D%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda%20%5C%20%5Ctext%7Bis%20a%20repeated%20defective%20eigenvalue%7D%20%5Cend%7Bcases%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Bx%7D_%7BPI%7D(t)%20%3D%20%5Cmathbf%7BX%7D%20%5Cint%20%5Cmathbf%7BX%7D%5E%7B-1%7D%20%5C%20%5Cmathbf%7Bf%7D(t)%20%5C%20dt%20#0
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C7.

a. Let f(x, y) =+/|x|. This function is continuous for all real x.

. Ifx) = fCDl

We need to prove that there exists some x;, x, such that ﬁ diverges.
1 2

fle, +h) = fx)

Observe that if we let x, = x, + &, then the expression is ’ -

If we let x, = 0 and take the limit as # — 0, we get

fa, +h) - fx)
h

= lim |@|= lim —— = oo (diverges). [3 pts]

lim
R0 h—0 ikl

h—0

(Alternatively, this expression is the definition of the derivative f’(0), which is
undefined.)

If(x) - f@)I

lx, = x,|

Therefore, it is impossible to find a finite K such that < K in this case.

Therefore, the function f(x) = \/m is not Lipschitz continuous. [1 pt]
(Total: 4 points)

b. Starting with " =+/|r|, r(0) = r'(0) = 0, substitute v = r' to convert to a
system of two 1st-order DEs:

= {v' =+Irl, 7 =v v(0) =0 r(0) =0} [1pt]

Let the vector x = [v, 7]". Then the system is —=x = f(x, #), where f(v,rt) = { v ]rq
is a multivariable vector-valued function. [1 pt]

f(v, r, ) is continuous in ¢, since it is independent of ¢.
To prove that f is not Lipschitz continuous in x, we need to prove that there exists

f(’Ul, 7”1) — f(UQ, ’I"Q)

(v —v2)2 + (ry — 12)?

some v,, v,, y, 1, such that diverges.

Choose v; =v,=0, let r, =0 and take r, =r, + h in the limit as # — 0. This leads to
the same expression as in part a), so this function is not Lipschitz continuous. [2 pts]

Therefore, the Picard-Lindeldf theorem is not satisfied (no unique solution). [1 pt]

(Total: 5 points)
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Differentiate the given candidate solution:

1
144

r(t) = [0, t<T; t-1n" t> T]

S () = {o, t<T; =@¢-1° t> T]

S () = [0, t<T; (-1 t> T} [1 pt]

For ¢ < T, the differential equation is

" =+/lr] = 0=4/0]=0 (correct: DE is satisfied) [1 pt]

For ¢ > T, the differential equation is

r'' =Alr] = %(t - T)2 = \/ﬁ(t - T)4| = 1—12(t - T)2 (correct: DE is satisfied)

Therefore, for all ¢, LHS = RHS, so the given solution satisfies the DE for all z. [1 pt]
(Total: 3 points)
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ii) ‘Causal’ means that a system’s behaviour at time ¢ = a is not dependent on its
behaviour at any times ¢ > a.

However, for Norton’s dome, if we suppose that

0 0 t<T,
T —_=
=1 t>T

is a physically valid solution for the particle under Newtonian mechanics, then
the behaviour at time ¢ = a is dependent on whether a < T or a > T, and since T is
unknown, the system is non-deterministic, and appears to be non-causal.

However, it is fallacious to claim that Newtonian mechanics does permit this
solution. The violation of the Picard-Lindel6f theorem in part b) is what gives
multiple possible solutions to this DE, but this is a purely mathematical model
and it is not the case that physical reality (nor reality as modelled by Newtonian
mechanics) can follow any of these solutions.

It can only be said that Newton’s second law (used to derive the DE) is not fully
descriptive of physical reality. This statement is obvious when we consider that
reality is also bound by Newton'’s first law as well. When we apply Newton’s first
law, we see that r(f) = 0 is the only solution satisfying both constraints for all time +.

Therefore, we may say that under Newton’s second law only, the system is
non-causal, but Newtonian mechanics as a whole is causal and deterministic
(at least, in this case!).

There is room for subjectivity and opinion in this answer - additionally, this
answer in itself can be scrutinised: Norton’s dome has caused considerable
debate! You may find the following discussions interesting:

e John Norton’s claim about Norton’s dome: here
e A refutation by Gruff Davies: here

Mark this question according to how many of the various talking points you
considered in these articles.

(Total: 8 points)


https://sites.pitt.edu/~jdnorton/Goodies/Dome/index.html
https://blog.gruffdavies.com/2017/12/24/newtonian-physics-is-deterministic-sorry-norton/

Differential Equations - End of Topic Test Solutions Section C

Cs.

a. In standard form, Bessel’s equation for the zeroth order is y" + % y' +y=0.
There is one singular point at x = 0.
Since u(x) = x X %: 1 and v(x) = x* x 1 =x" are both smooth functions,
the point at x = 0 is a regular singular point. Therefore, the Frobenius method
can be used about x = 0.

Taylor series: ulx) =1 and v(x) =0 + X > u, = 1, v, = 0.

Indicial equation: r(r — 1) + ur +uv, = 0 = =0

= r = 0 (repeated root).

oo 0]

General solution:  y = (4 + Blnx) ), akxk +BY bkxk for x> 0.
k=0 k=1

First basis function:y1 =Y akxk [1 pt]
k=0

To find g, since the root is » = 0, the first basis solution is equivalent to a Maclaurin series,
so we can use the Leibniz-Maclaurin method. Differentiate both sides of the given DE with
respect to x, k£ times using the general Leibniz rule for product terms:

(k+1)

d ( 2 (2 ) ( 2y(k+2) + 2kxy

Xy +xy +xy +k(k—1)y(k))

+ (o + @)+ (" + 2k T+ ke - 1y*TY)
= xzy(k+2) + (2k + l)xy(kH) + (k2 + xz)y(k)
+ 2k P+ k(e — )y P =0
Let x = O: Ky©0) + ktk — Dy*“?0) =0
Coefficients: K'kla +k(k— (k- 2)la,_, =0
= K k! a, + k! a, ,= 0 = a, = ;21 a, [4 pts]

Initial conditions: a, = 1, a, = 0 = all odd terms are zero. [1 pt]

-1 -1 -1 -1 -1 -1
Therefore, a =1, a. =—, a = X—, a4 =— X — X —...
] 0 2 22 4 4—2 22 6 62 4‘2 22
g D" Zk
Z . [1pt]
k=0 4" (k1’

(Total: 7 points)

- G A ) S e b
The pattemiis a, =-—"7 =17 =57 = J® =
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C8. (continued)

b. First basis solution: y, = kgo a Mol
Differentiate: >y = kgo(k + 1) akxk+r—1
= y1” = éo(k + )k +1r—1) a, T2

Sub into DE:

- ;‘ (k+mk+r=1a x4 %E (k + r)akkarr_1 + ; akxk+r =0
k=0 o 2

Absorb powers of x:

= ; k+nrk+r—-1) akxk"’r_z + ; (k + T)akxk+r—2 n ; akxk+r —0
=0 k=0 k=0

Re-index to make exponents of x all the same:

- kgo(k * r)(k o 1) ak xk+r_2 * kgo(k + r)akkarr_2 * kgz ak_zxk+r_2 =0

Pull out first two terms to make index k start at the same value in all summations:

-2 -1 -2 1o = -
= r(r — 1)a0xr + (r + 1)ra1xr + raoxr + (r + 1)a1xr + Y.+ Y.+t XY.=0

The indicial equation for the x~ coefficient is (rz + 2r + 1)a1 =0,

so a,(r)=0 for all values of » (except r= -1, where a, is free).

Combine summations:

- k+r—2
= Z((k+r)(k+r—1)ak+(k+r)ak+ak_2)x =

0
k=2
General recurrence relation: k+nk+r—-1a +k+na +a_,=0
2 _ _ -1

= (k+71) a +a_,= 0 = a, = -, a,, [8 pts]
Therefore, for even k= 2m, a, =—1 > L — . ——a.

2m @Cm+7r) @m-1+7) @2+n° 0
From part a), we found ¢, = 1:  a. = — L . —— (= D" [pt

2m em+1r)’ @m-1)+1)’ 2+7)
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C8. (continued)

da
To find the coefficients of the second basis solutions, we use b = dr" (0).

From the indicial equation, we have b1 = % (al(O)) = 0.

For odd %, we have a4, =0, so b, = 0.

For even k=2m, we have b =-f—— L — | 1D"a atr=0.
2m T\ 2m+7r) (@@m-1)+7r) 2+71) 0

We need to differentiate this product. However, it will be easier to use

e - . d a, ') b, ()
logarithmic differentiation. Consider — ln|a2m(r)| = =

aZm(r) aZm(r) )

By log identities, we have

In|a, M|= = 2@nl2m + |+ In]2(m = 1) + r[+..+ [n|]2 + 7])
. . g d 1 1 1
Differentiating, —— ln|a2m(r)| = =2 (2m+r t 2oy Tt 2+r)
At r=0, we get o In|a, (0)|= - §i= “H and a_(0) =
¢ g dr 2m =1 i m 2m 4" (m!)z '

Therefore, b, = G IV H . [4pts]

4" my)° mo 4"y’

- 0, k odd
Our coefficients are therefore b, = ¢ (_ym+

4m (m!)?

H,,, keven, k=2m

(Total: 13 points)
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Cs.

(continued)

No. Despite both being linearly independent of Jy(x), the basis solutions y,(x) and
Yo(x) are not necessarily equal because the boundary conditions for Y(x) are
not specified, so the undetermined coefficients for Y,(x) may be different from
those of y,(x). [1 pt]

(In reality, Y,(x) is defined as Y,(x) = 0.63662 y,(x) - 0.07381 Jy(x) SO Yy(x) # y,(x).)
(Total: 1 point)
No. The Bessel DE for order 0 can be written y" + % y' + Lz y = 0.

It can be seen that x = 0 is the only singular point, and x = 0 is a regular singular
point. So by Fuchs’ theorem, the radius of convergence for the series

> a, X and ) bk X

k=0 k=1
are both infinity (i.e. all x € C). However, since y, includes a In x term, which has
a branch point at x = 0, this solution is only defined for real x > 0. [1 pt]

(If the complex definition of the logarithm was used: Inz = Inr + i(0 + 27n), then
the solution for y,(z) would be defined for all complex z # (.)
(Total: 1 point)
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Cs.

(continued)

Since y = J,(x) satisfies the first differential equation, let z=x"y.
Differentiate: z = x"y = 2z =nx" y +x"y'
> 2" =nn - Dx" oy + 2"y + "y [pt]
Substitute into the given DE:
n—2 n—-1 , n n—1 n ., n+1
x(n(n— Dx y+2nx y +xy )+ 1 - Zn)(nx y+x y)+x y=20

nn— DXy 420y + X7y @ - 20y + (1 - 2n))y + 2y = 0
nn — 1)y + 2nxy' + xzy” +n(l - 2n)y + (1 — 2n)xy' + xzy =0

L R A

X y'+ xy' + (xz — nz)y =0 [3pts]

This is the original Bessel differential equation, which y = J,(x) is defined to satisfy,
so the original substitution also satisfied the given differential equation.
(Total: 4 points)

Letn = % in the given DE. Then, for suitable boundary conditions, z(x) = \/;]1/2(")
is the particular solution to the differential equation xz" + xz = 0.

If we remove x = 0 from the domain of z(x), we can simplify thisto z" + z = 0.

This is the simple harmonic motion DE. The general solution is z(x) = A cosx + B sinx.

Therefore, |, (x) = A<2X + B =X for some real constants 4 and B. [2 pts]
172 \x Vx

Sincen = % is not an integer, we cannot use the given initial conditions for J,(x).
However, we are given that lim J__(x) is finite.
x—=0" 1/2

Therefore, lim (Aﬂ+ B Si""): A lim <%X 4 B lim 32X
x=0" W i ko0t xoot W

—= does not exist (diverges to «), we must have 4 =0. [1 pt]

Since lim
x—ot W
. 3
Since lim — = lim %}2’5) = lim x/*+ 0(x"* = 0, B may be any constant.
x—ot W x—>0" X x>0

, which is proportional to 22X, [1 pt]

Therefore, J. (x) = B 22X =
(Total: 4 points)

1/2 x
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C9

In spherical coordinates, we have dr = dr t + rsing df 0 + rd¢ ¢.

Therefore, the arc length differential element is

ds’ = |drP = dr’ + (rsind)’ de’ + (r do)’

21

2m 2 2
The total arc length is then S = % ao= [ (%) + ¥ sin® ¢ + ¥ (%g) do [2 pts]
0 0

dr

2T 2
On the cone’s surface, ¢ is constant so %g; =0 = S=/ (E) + 17 sin’ ¢ do
0

The value of ¢ is the half-angle of the cone, which is ¢ = sin” % SO
2n p 2 L 2
s=JA/(55) +5"do
0
21 ) : 21 ) )
Substitute u =% = S=[Alu +%r do = f%‘\/9u + r do.
0 0
2m
Therefore S = [ g(r, u) d® where g(r, u) = %\/9u2 + 1 [2 pts]
0

(Total: 4 points)
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Co.

(continued)

Starting with g(r, u) = %\/9112 + rz,

ag

Evaluate the partial derivatives of g: <% = % X ——— and 2L = % X —% _ [2 pts]

r

e o

Substitute into the Euler-Lagrange differential equation:

\/9u2 + rz

Lg—r 4w |, __r _df %u
3 \/9u2+r2 do | 3 \/9u2+r2 \/9uz+r2 a9 \/9u2+r2

du ) 18u-2 4 or &
9--\ou +r —9u— ———

i i d u @ i " B 2Jou’ +7° . .
Using the quotient rule, — = — , SO the equation is
o’ +1° u +r

du 2 2 18u%+2r%
9—\Vou +r —u— —"—
= r — 46 2\/9uz+r2

\/9u2 +7 9u’ +7°
: . 2 23/2
Multiply both sides by (9u +7r ) :

= (9w’ +17) = 999" + 1) - %u(lsu Ay o2r j—e) [3 pts]

dr du dzr

Unsubstitute u =~ = —-= e

and denote these as r' and r'":
= 9r(r')2 +r = 81(r')2r" + 9 — 81(7"')27"" - 97‘(7"')2
> r 4+ 18(r')2r = 9r’p"

= r' - %(r')2 —%r =0 (forr # 0) [2 pts]

This is a nonlinear second-order DE. The nonlinearity % (r')2 suggests a substitution:
Let v = (r')z, where v is a function of 6. Differentiating both sides w.r.t. 6,

dv .
1 = 21T

dv V' " ,._idv
and dr—r,—Zr = r'=-""

dv 2 1

Applying these substitutions, the DE becomes %7 ——v ——5r=0.

dv 4

Therefore, — — —v = %r. This is a first-order linear DE. [2 pts]

2
T

Integrating factor method: I(r) =+ = r v = f%r_g' dr > v="4cr"

9
Unsubstitute: L ==+ [crt — %rz = %r\/%rz -1
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C9. (continued)

b. This is a separable DE:  [————dr = f do [2 pts]
mocri—1
To evaluate the integral f— dr , let =1 — and use the integral

= [——— L
mocr —1 3 Crafr’ -
table result, [ —%— dx = sec ' X = [—1—dx = % sec ' = (for x> 0).

4 2 2 a 2 2
X —ax X —a

The integral is then [ ———— dr = sec” (3/Cr) + D.
3x/Er1/r _W

The differential equation becomes sec_l(S\/Er) = %9 + D.

General solution: r = Asec(%e + B) (rename: A = ﬁand B = D.) [4 pts]
Boundary conditions: r(0) = 60, r(2m) = 50.
Therefore 60 = AsecB and 50 = A sec(zT1T + B)
SEC(ZTH"'B) _ 5 cos B _ 5

= sec B =% = cos(zi+B) 6

= 6cosB = S(COS ZTT[ cos B — sin ZT sin B)

= 6cosB = —icosB—sTﬁsinB

= lcosB = —ismB

= tanB = —% => B = —tan_l%

=> A =60 cos(tan 17{) 150

Particular solution: r(0) = 150 Sec( 0 — tan = 3) [2 pts]
To evaluate the overall arc length, user = A sec(%e + B)

= = A secz(%e + B) and u=1r' =%A sec(%e + B) tan(%ﬂ + B)
= 9u2 = A2 secz(%e + B) tanz(%e + B)

Therefore

S = an%‘\wuz +1°de = %an\/Az secz(%ﬁ + B) tanz(%e + B) + A secz(%e + B) do
0 0
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Co.

(continued)
Factorise and use the Pythagorean trig identity:
21
A 2(1 21
S = ?£ sec (?9 + B) do = A(tan(T + B) - tanB)

—\/5 +tan B

Use tangent addition identity: S = A( T+ B tan D

— tan B)

Replace the constants. Let tan B = %Eand A = 150 %z
_ 3 (83 , 1743 _ 3 913 _
= § =150 91(9 + 15)_150 = X == = 10,/91. [3 pts]

(Total: 20 points)

Consider the net of the cone, which unwraps into a circular sector. The shortest

distance between the two points 4 and B becomes a straight line.
v
\ cone vertex
v

10
A x: downhill

cone base
40m

The arc length of the sector is the circumference of the base = 2m X 20 = 40m.
The angle of the sector satisfies 60 X 6 = 40m = 6 = ZT“ radians.

By cosine rule in AABV, |AB| = \/502 +60°— 2 x 50 x 60 x cosZT”= 101/91. [3 pts]

This matches the value of S found in part b) (the total length of the train track).

The downhill section begins at the point on the line for which the radius passing
through the point is perpendicular to the line AB. Let this point be C, and the

downhill distance |BC| =x, so |AC| = 1091 — x. Let the distance between C and
the apex (sector centre) be 4.

. 2 2 2 2 2 2
Pythagoras in AACV and ABCV: (1091 — x) + h =60 and x + h = 50

= (10,91 — x)° — x* = 1100 = 2091x = 8000 = x = % metres. [3 pts]

(Total: 6 points)



Differential Equations - End of Topic Test Solutions Additional Resources

Video Solutions for Some Questions

C2. Partial solution by blackpenredpen on YouTube:
© solving an almost-exact differential equation (with a special integrating fact...

C9c. Geometric solution for geodesics on a cone by MindYourDecisions on YouTube:
© VERY HARD South Korean Geometry Problem (CSAT Exam)


https://www.youtube.com/watch?v=IewC8_2ocBA
https://www.youtube.com/watch?v=Y6caQ_8_frU

