
LN’s

Endless
Maths Notes

Art:
Kira, by @Ekkoberry

All Notes Contents

M1. ALGEBRA 6
1.1. Mathematical Syntax and Techniques 6
1.2. Algebraic Identities 10
1.3. Trigonometric Identities 18
1.4. Sequences and Series 21
1.5. Complex Numbers 24
1.6. Discrete Mathematics and Abstract Algebra 26
1.7. Special Functions and Identities 30

M2. GEOMETRY 38
2.1. Properties of 2D and 3D Shapes 38
2.2. Angle, Triangle and Circle Theorems 45
2.3. 2D Coordinate Geometry 54
2.4. Vectors and 3D Geometry 61

M3. CALCULUS 67
3.1. Limits and Numerical Methods 67
3.2. Series Expansions 75
3.3. Differentiation and Integration 79
3.4. Ordinary Differential Equations, Laplace and Z-Transforms 87
3.5. Multivariable and Vector Calculus 98
3.6. Fourier Series and Fourier Transforms 110
3.7. Partial Differential Equations and Variational Calculus 117

M4. LINEAR ALGEBRA 122
4.1. Vector and Matrix Algebra 122
4.2. Transformation Matrices 130
4.3. Fundamental Subspaces and Matrix Decompositions 132
4.4. Matrix and Tensor Calculus 139

M5. STATISTICS 142
5.1. Axioms, Combinatorial Probability and Basic Statistics 142
5.2. Probability Distributions and Random Variables 147
5.3. Hypothesis Testing 162
5.4. Stochastic Processes, Signals and Information Theory 171
5.5. Machine Learning and Computational Statistics 186
5.6. Computer Vision and Computer Graphics 210
5.7. Accounting, Finance and Business 218

2

All Notes 1.1. Mathematical Syntax and Techniques

M1. ALGEBRA

1.1. Mathematical Syntax and Techniques
1.1.1. Symbols for Relationships and Operators

x : y ratio of x to y, representing quantities and𝑥
𝑥 + 𝑦

𝑦
𝑥 + 𝑦

floor of x, max , round down to integer towards -∞
ceiling of x, min , round up to integer towards +∞

{x} fractional part, x − ⌊x⌋
recurring decimal, 1.238307307307307…, or in dot notation1. 238307

≡ is identical to; is congruent to
:= is defined as
∴ therefore
∵ because
P⇒ Q P implies Q; if P then Q; Q is necessary for P, P is sufficient for Q
P ⇐ Q P is implied by Q; if Q then P; P is necessary for Q, Q is sufficient for P
P⇔ Q P and Q are equivalent; P if and only if (iff) Q; P is necessary and sufficient for Q
f : A ↦ B function mapping domain A to codomain B

sample mean of y; Laplace transform of y(t) into s domain𝑦
estimate of y; least-squares solution y; unit vector y𝑦

fX (x) probability density function (pdf) for random variable X, taking value x
FX(x) cumulative density function (cdf) for random variable X, taking value x
≅ is isomorphic to; is geometrically congruent to

product over integers;
𝑟 = 𝑎

𝑏

∏ 𝑓(𝑟)
𝑟 = 𝑎

𝑏

∏ 𝑓(𝑟) = 𝑓(𝑎) × 𝑓(𝑎 + 1) × ... × 𝑓(𝑏)

(f ⚬ g)(x) composition; fg(x); f (g(x))
(f * g)(t) convolution of f (t) and g(t)
(f ⋆ g)(t) correlation of f (t) and g(t)
[a b c] scalar triple product; a • (b × c)
[a, b, c] row vector; [a; b; c]T; alternative way of denoting vectors
[a; b; c] column vector; [a, b, c]T; most common conventional way of denoting vectors

, time derivatives of x; ,𝑑𝑥
𝑑𝑡

𝑑2𝑥

𝑑𝑡2

y(n)(x) nth derivative of y with respect to x; 𝑑𝑛𝑦

𝑑𝑥𝑛

fxy(x, y) partial derivative; ∂𝑓
∂𝑦 ∂𝑥 = ∂

∂𝑦
∂𝑓
∂𝑥()

∆f change in f; Laplacian of multivariable function f; ∇2 f
δf small change in f

3

https://www.codecogs.com/eqnedit.php?latex=%20%20%5Cleft%20%5Clfloor%20x%20%5Cright%20%5Crfloor%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5C%7B%20a%20%5Cin%20%5Cmathbb%7BZ%7D%20%3A%20a%20%5Cleq%20x%20%5Cright%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5Clceil%20x%20%5Cright%20%5Crceil%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5C%7B%20a%20%5Cin%20%5Cmathbb%7BZ%7D%20%3A%20a%20%5Cgeq%20x%20%5Cright%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%201.238%5Cdot%7B3%7D0%5Cdot%7B7%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7Bx%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cddot%7Bx%7D%20#0

All Notes 1.1. Mathematical Syntax and Techniques

1.1.2. Symbols in Set Theory and Logic

∈ is an element of n(A) number of elements in A
∉ is not an element of Ø the empty set
⊆ is a subset of ξ the universal set
⊂ is a proper subset of ∀ for all
{x: … } the set of all x such that… ∃ there exists

A’ complement of A A \ B the set Aminus B
A∪ B union of A and B A ∩ B intersection of A and B

prime numbers; {2, 3, 5, …} rationals; {1, 2, 1/2, …}
natural numbers; n; {1, 2, 3, …} reals; x
integers; {..., -2, -1, 0, 1, 2, …} complex numbers; z = x + yi
nonnegative integers; {0, 1, 2, …} quaternions; q = w + xi + yj + zk
n-dimensional vectors; x m × n matrices; A

Algebraic numbers are roots of real-valued polynomials with rational (or integer) coefficients.
Transcendental numbers (e, π) are irrational numbers which are not algebraic.

Note that . Irrational numbers can be designated as .

1.1.3. Greek Alphabet

A α alpha
άλφα H η eta

ήτα N ν nu
vι T τ tau

ταυ

B β beta
βήτα Θ θ, ϑ theta

θήτα Ξ ξ xi
ξι ϒ υ upsilon

ύψιλον

Γ γ gamma
γάμμα I ι iota

ιώτα O o omicron
όμικρον Φ φ, ϕ phi

ϕεῖ

∆ δ delta
δέλτα K κ kappa

κάπα Π π, ϖ pi
πι X χ chi

χῖ

E ε epsilon
έψιλο Λ λ lambda

λάμδα P ρ rho
ρο Ψ ψ psi

ψι

Z ζ zeta
ζήτα M µ mu

μι Σ σ, ς sigma
σίγμα Ω ω omega

ωμέγα

● The lowercase letters {ϑ, ι, o, ς, υ} are typically not used as symbols in mathematics.
● The uppercase letters are typed upright. The lowercase letters are typed in italic.
● When using Latin letters (A a) as symbols, both uppercase and lowercase are typed italic.
● In LaTeX, the Greek letters can be written using e.g. \gamma (lower) or \Gamma (upper).

4

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BP%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BQ%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BN%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BZ%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BC%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BZ%7D%5E*%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BH%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%5En%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%5E%7Bm%20%5Ctimes%20n%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BP%7D%20%5Csubset%20%5Cmathbb%7BN%7D%20%5Csubset%20%5Cmathbb%7BZ%7D%20%5Csubset%20%5Cmathbb%7BR%7D%20%5Csubset%20%5Cmathbb%7BC%7D%20%5Csubset%20%5Cmathbb%7BH%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%20%5Csetminus%20%20%5Cmathbb%7BQ%7D%20%20#0

All Notes 1.1. Mathematical Syntax and Techniques

1.1.4. Functions

Domain: the set of all x for which f (x) is defined
Codomain: any set containing all the values of f (x).
Range: the set containing only the values of f (x), so range⊆ codomain.

Injective: one-to-one; there is exactly one f (x) for every x; f (x) = f (y)⇔ x = y.
Surjective: many-to-one; there is at least one x for every f (x); f (x) = f (y) ⇐ x = y.
Bijective: two-way one-to-one; both injective and surjective; y = f (x)⇔ x = f -1(y).

Involution: a function whose inverse is identical to itself; f (f (x)) = x
Idempotent: a function whose nesting is an involution; f (f (x)) = f (x)
Endofunction: a function whose codomain is identical to its domain

1.1.5. Rounding of Numbers

A number can be rounded to a given number of decimal places (d.p.) or significant figures (s.f.).
Examples:

● 309.51547 rounded to 2 d.p. is 309.52 (5 rounds up)
● 0.00194105 rounded to 2 s.f. is 0.0019 (leading zeroes are not significant)

When working with physical quantities with finite precision, the least number of available
significant figures should be used to most fairly represent the quoted precision.

1.1.6. Standard Form of Numbers

Very large or very small numbers can be written in the form x = a × 10n

(1 ≤ x < 10: mantissa, integer n: exponent). This number is said to have order of magnitude 10n.

Numbers in standard form can be added by converting both to the same exponent.

1.1.7. Factorisation of Numbers

A divisor q is a factor of a dividend p if the quotient is an integer (i.e. p is a multiple of q).𝑝
𝑞

Prime factorisation: expressing a number uniquely as a product of powers of prime numbers. The
different prime factorisation of two numbers can be represented as a Venn diagram.

Greatest Common Factor (GCF) of a and b: product of intersection of prime factors of a and a.
Lowest Common Multiple (LCM) of a and b: product of union of prime factors of a and b.

The GCF and LCM are related by .𝑙𝑐𝑚(𝑎, 𝑏) × 𝑔𝑐𝑑(𝑎, 𝑏) = |𝑎𝑏|

5

All Notes 1.1. Mathematical Syntax and Techniques

1.1.8. Power-Law and Exponential Relationships

Variables x and y may be related by nonlinear relationships such as:

Relationship Equation Inverse Linearised form (Y =MX + C) Linear plot

Power Law y = k xn x = 𝑦
𝑘()1/𝑛

ln y vs ln x

Exponential y = k ax x = loga
𝑦
𝑘() ln y vs x

1.1.9. Dimensional Analysis and Scaling

Dimensions of base SI physical quantities:: mass (M), length (L), time (T), temperature (Θ), moles
(N), electric current (I) and luminous intensity (J).

The number of parameters in a problem is reduced by expressing the relationship in
non-dimensional form. Quantities are {q}i . Dimensionless groups are {π}i .

Buckingham’s π Theorem: For N variables containing M dimensions, the number of
dimensionless groups is at least N -M.

For a physical equation f (q1, q2, … qN) = 0 or q1 = f (q2, … qN), where f may be unknown, there exists an
equivalent dimensionless formulation F(π1, π2, … πM) = 0 or π1 = F(π2, … πM), where each dimensionless
group can be expressed as a power law function of a subset of the physical quantities:

π
𝑖

= (𝑞
1
)

𝑎
𝑖1(𝑞

2
)

𝑎
𝑖2... (𝑞

𝑁
)

𝑎
𝑖𝑁

For problems with 1 dimensionless group, the simple indicial method can be used, in which
F(π) = 0→ π = C, some dimensionless constant. Find the powers {a}i such that the expression
for π has no dimensions.

Geometric similarity: where all length-ratio dimensionless groups are identical.
Dynamic similarity: where all independent dimensionless groups are identical.

Example with two dimensionless groups: power required to stir a fluid
([P] = ML2T-3: power, [ρ] = ML-3: density, [μ] = ML-1T-1: viscosity, [d] = L: diameter, [ω] = T-1: angular speed)

P = f (ρ, μ, d, ω): 5 quantities in 3 dimensions→ at least 2 dimensionless groups (1 dependent, at
least 1 independent).

Typical dimensionless groups: → graphing vs specifies the
𝑃

ρω3𝑑5 = 𝐹
ρω𝑑2

µ() 𝑃

ρω3𝑑5
ρω𝑑2

µ

relationship fully.

6

All Notes 1.1. Mathematical Syntax and Techniques

1.1.10. Methods of Proof

Proof by Deduction (Direct Proof): use of algebra to show a result.

Example: for all positive integers n, prove that n3 n is always divisible by 6.−
1. By factoring, .𝑛3 − 𝑛 = 𝑛(𝑛2 − 1) = 𝑛(𝑛 + 1)(𝑛 − 1)
2. This is a product of three consecutive integer factors.
3. At least one of these factors must be a multiple of 3.
4. At least one of these factors must be a multiple of 2.
5. Since 2 and 3 are coprime, the product of the factors must be a multiple of 6.

Proof by Exhaustion: showing that a result is true for all individual cases.

Example: prove that the square of any positive integer cannot end in the digit 3.

1. The ending digit of a square number is determined only by the last digit of the number:
12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 = 64, 92 = 81, 102 = 100

2. Since none of the units digits’ squares end in 3, no squared integer ends in 3.

Proof by Contradiction: assume the contrary, find it implies something that contradicts the
original assumption, so the assumption must be false (the statement must be true).

Example: prove that is irrational.2

1. Assume that is rational. Then it can be written as , where a and b are coprime integers.2 2 = 𝑎
𝑏

2. By algebra, a = b a2 = 2b2 a2 is an even number.2 ⇒ ⇒
3. If a2 is an even number, a must also be an even number (also proven by contradiction):
4. Therefore, we can let a = 2n for some integer n. Then a2 = 4n2.
5. So 4n2 = 2b2 b2 = 2n2 b2 is even b is even.⇒ ⇒ ⇒
6. Since a and b are both even, they share a common factor of 2.
7. However, it was assumed that a and b are coprime. This is a contradiction.
8. Therefore, the assumption must be false, so is rational.2

Proof by Induction: verify a base case n0, state the inductive hypothesis and prove that its
validity for case n implies validity for case n + 1, and conclude validity for all integers n ≥ n0.

Example: prove that

1. Base case: try n = 1.
LHS = 𝑑

𝑑𝑥 (𝑒𝑥 𝑠𝑖𝑛 3𝑥) = 𝑒𝑥 𝑠𝑖𝑛 3𝑥 + 3 𝑒𝑥 𝑐𝑜𝑠 3𝑥

RHS = 2 𝑒𝑥 𝑠𝑖𝑛(3𝑥 + π
3) = 2𝑒𝑥(𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 π

3 + 𝑐𝑜𝑠 3𝑥 𝑠𝑖𝑛 π
3) = 𝑒𝑥 𝑠𝑖𝑛 3𝑥 + 3 𝑒𝑥 𝑐𝑜𝑠 3𝑥

Since LHS = RHS, the base case is verified.

2. Assume that the statement is true for some integer n ≥ 1. Then:

.𝑑𝑛+1

𝑑𝑥𝑛+1 𝑒𝑥 𝑠𝑖𝑛 3𝑥() = 𝑑
𝑑𝑥 2𝑛 𝑒𝑥 𝑠𝑖𝑛 3𝑥 + 𝑛π

3()⎡
⎣

⎤
⎦ = 2𝑛 𝑒𝑥 𝑠𝑖𝑛 3𝑥 + 𝑛π

3() + 3𝑒
𝑥
 𝑐𝑜𝑠 3𝑥 + 𝑛π

3()() = 2𝑛+1 𝑒𝑥 𝑠𝑖𝑛 3𝑥 + (𝑛+1)π
3()

3. Since true for n = 1, and truth for integer n implies truth for n + 1, it is true for all integers n ≥ 1.

7

All Notes 1.2. Algebraic Identities

1.2. Algebraic Identities
1.2.1. Factorisation and Common Algebraic Manipulations

Factorisation

Difference of two squares: 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏)

Sum of two squares (complex): 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏)
Differences of two cubes: 𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2)
Sum of two cubes: 𝑎3 + 𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2)
Sum of two fourth-powers: 𝑎4 + 𝑏4 = (𝑎2 + 2𝑎𝑏 + 𝑏2)(𝑎2 − 2𝑎𝑏 + 𝑏2)

Difference of two fourth-powers: 𝑎4 − 𝑏4 = (𝑎2 + 𝑏2)(𝑎 + 𝑏)(𝑎 − 𝑏)

Sophie-Germain identity: 𝑎4 + 4𝑏4 = (𝑎2 + 2𝑏2 + 2𝑎𝑏)(𝑎2 + 2𝑏2 − 2𝑎𝑏)

Expansion: derived by ‘FOIL (first-outer-inner-last)’

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 = (𝑎 − 𝑏)2 + 4𝑎𝑏
(𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3

(𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)
(𝑎 + 𝑏 + 𝑐)3 = 𝑎3 + 𝑏3 + 𝑐3 + 3(𝑎2𝑏 + 𝑎2𝑐 + 𝑏2𝑎 + 𝑏2𝑐 + 𝑐2𝑎 + 𝑐2𝑏) + 6𝑎𝑏𝑐

Completing the Square: 𝑥2 + 𝑏𝑥 + 𝑐 = 𝑥 + 𝑏
2()2

+ 𝑐 − 𝑏2

4()
Girard-Newton Identities: if S = are a set of K variables then{α, β, γ, ...}

● ∑ α2 = (∑ α)2 ∑ αβ−

● ∑ α3 = (∑ α)3 3 (∑ α) (∑ αβ) + ∑ αβγ−

● ∑ αn = (∑ α) ∑ αn-1 (∑ αβ) ∑ αn-2 + (∑ αβγ) ∑ αn-3 …− −

where sums over non-repeated combinations are ∑ α = α + β + γ + …, ∑ αβ = αβ + βγ + γα + …

These are commonly applied to roots of polynomials (see Vieta’s formulas, Section 1.2.5).

If K > n then the ∑ term will include terms such as ∑ , ∑ , etc. These can beα𝑛−𝑖 1
α

1

α2

solved for by substituting previously found expressions recursively. The sum terminates
with the (-1)K-1 (∏ α) (∑ αn-K) term.

Componendo-Dividendo identities (corollaries of cross-multiplication):

If , then ad = bc, , and .
𝑎
𝑏 =

𝑐
𝑑

𝑎 + 𝑏
𝑏 =

𝑐 + 𝑑
𝑑

𝑎 − 𝑏
𝑏 =

𝑐 − 𝑑
𝑑

𝑎 + 𝑏
𝑎 − 𝑏 =

𝑐 + 𝑑
𝑐 − 𝑑

8

All Notes 1.2. Algebraic Identities

1.2.2. Binomial Theorem and Trinomial Theorem

For any positive integer n, the binomial and trinomial theorems are, respectively,

where(𝑎 + 𝑏)𝑛 =
𝑟 = 0

𝑛

∑ 𝑛𝐶
𝑟
 𝑎𝑟 𝑏𝑛−𝑟 𝑛𝐶

𝑟
=

𝑛!
𝑟! (𝑛 − 𝑟)!

where(𝑎 + 𝑏 + 𝑐)𝑛 =
𝑚=0

𝑛

∑
𝑘=0

𝑚

∑ 𝑛𝐶
𝑚

 𝑚𝐶
𝑘
 𝑎𝑛−𝑚 𝑏𝑚−𝑘 𝑐𝑘 𝑛𝐶

𝑚
 𝑚𝐶

𝑘
=

𝑛!
(𝑛 − 𝑚)! (𝑚 − 𝑘)! 𝑘!

1.2.3. Properties of Quadratic Polynomials

If then: (the quadratic formula)𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

The turning point of f (x) is at . The roots of are at .𝑥 = −
𝑏
𝑎 𝑓(𝑥) 𝑥 =

−𝑏 ± 𝑏2 − 4𝑎𝑐
2𝑎

For real coefficients, the discriminant, , determines the nature of the roots:∆ = 𝑏2 − 4𝑎𝑐

● If ∆ > 0→ two distinct real roots.
● If ∆ < 0→ two complex roots (complex conjugates).
● If ∆ = 0→ a single repeated real root.

9

All Notes 1.2. Algebraic Identities

1.2.4. Properties of Cubic Polynomials

For a cubic , it can be transformed to a ‘depressed cubic’ using𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

the substitution into where and .𝑥 = 𝑡 − 𝑏
3𝑎 𝑓(𝑡) = 𝑡3 + 𝑝𝑡 + 𝑞 𝑝 = 3𝑎𝑐 − 𝑏2

3𝑎2 𝑞 = 2𝑏3 − 9𝑎𝑏𝑐 + 27𝑎2𝑑

27𝑎3

The inflection point of f (x) is at i.e. t = 0.𝑥 =
−𝑏
3𝑎

The graph of f (x) will have real
turning points if b2 - 3ac > 0.

In this case, there is rotational
symmetry order 2 about the
inflection point, with the lengths
shown being

ε = δ = 2a
𝑏2 − 3𝑎𝑐

3𝑎 ε3

For real coefficients, the discriminant is, :∆ =
4(𝑏2 − 3𝑎𝑐)3 − (2𝑏3 − 9𝑎𝑏𝑐 + 27𝑎2𝑑)2

27𝑎2 =
𝑝3

27 + 𝑞2

4

● If ∆ > 0→ three distinct real roots;
● If ∆ < 0→ one real root and two complex conjugate roots;
● If ∆ = 0→ a repeated root of multiplicity 2 or 3.

The transformed roots of are ,𝑓(𝑡) = 0 𝑡
1

= 3 − 𝑞
2 + ∆ + 3 − 𝑞

2 − ∆

and𝑡
2

= ω 3 − 𝑞
2 + ∆ + ω2 3 − 𝑞

2 − ∆ 𝑡
3

= ω2 3 − 𝑞
2 + ∆ + ω 3 − 𝑞

2 − ∆

where and ω is a primitive cube root of unity:𝑥
𝑖

= 𝑡
𝑖

− 𝑏
3𝑎

10

All Notes 1.2. Algebraic Identities

1.2.5. Relations Between Roots of Polynomials

For a polynomial P(x) of degree n given by

𝑃(𝑥) =
𝑟 = 0

𝑛

∑ 𝑎
𝑟
 𝑥𝑟 = 𝑎

𝑛
𝑥𝑛 + 𝑎

𝑛−1
𝑥𝑛−1 + 𝑎

𝑛−2
𝑥𝑛−2 + ... + 𝑎

1
𝑥 + 𝑎

0

the n roots of the equation , denoted , are related by:𝑃(𝑥) = 0 α
1
, α

2
, ..., α

𝑛

● Fundamental theorem of algebra: all are complex, and number of roots = degree.α

● Factor theorem: 𝑃(𝑥) = 𝑎
𝑛
(𝑥 − α

1
)(𝑥 − α

2
)... (𝑥 − α

𝑛
)

● Rational root theorem: | p | is a factor of a0 and | q | is a factor of anα = 𝑝
𝑞

● Vieta formulas:

Σ α = −
𝑎

𝑛−1

𝑎
𝑛

Σ αβ =
𝑎

𝑛−2

𝑎
𝑛

Σ αβγ = −
𝑎

𝑛−3

𝑎
𝑛

Π α = (− 1)𝑛
𝑎

0

𝑎
𝑛

(sum of roots) (sum of product pairs) (sum of product triplets) (product of roots)

● Conjugacy:

○ (1) if all ar are real and α1 = u + iv is a root then α2 = α1* = u - iv is also a root.

○ (2) if all ar are rational and α1 = u ± is an irrational root then α2 = u ∓ is also a root.𝑣 𝑣

For a monic polynomial (monocubic, monoquartic, etc), an = 1, so these formulas simplify.

11

All Notes 1.2. Algebraic Identities

1.2.6. Division of Polynomials

Polynomials can be divided into the form .𝐴(𝑥)
𝐵(𝑥) = 𝑄(𝑥) + 𝑅(𝑥)

𝐵(𝑥)

(A: dividend, B: divisor (same or higher degree than A), Q: quotient, R: remainder,
deg: degree of)

● deg A ≥ deg B
● deg Q = deg A - deg B
● deg R < deg B

Factorisation: R = 0 iff B divides A i.e. B is a factor of A.

Techniques: examples to evaluate = :
𝑥3 − 2𝑥2 − 4

𝑥 − 3 𝑥2 + 𝑥 + 3 + 5
𝑥 − 3

Polynomial Long Division Synthetic Division (requires B = x - a)

If it is known that R = 0 beforehand, then an alternative method is to equate coefficients with a
general polynomial e.g. , solving for each a, b and c.𝑄(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

1.2.7. Divisibility Rules for Integers

A positive integer n is divisible by…

● 2, if the last digit is even
● 3, if the sum of the digits is divisible by 3
● 4, if the last two digits form a number

divisible by 4
● 5, if the last digit is 5 or 0

● 6, if the number is divisible by both 2 and 3
● 7, if subtracting twice the last digit from the

rest of the number gives a multiple of 7
● 8, if the last three digits form a number

divisible by 8
● 9, if the sum of the digits is divisible by 9

These results can be derived from modular arithmetic.

12

All Notes 1.2. Algebraic Identities

1.2.8. The Triangle Inequality

For any real or complex numbers a, b: |a + b| ≤ |a| + |b|

This is also valid for any vectors a and b: |a + b| ≤ |a| + |b|

The Inverse Triangle Inequality: |a - b| ≥ ||a| - |b||

|a - b| ≥ ||a| - |b||

1.2.9. The Cauchy-Schwarz Inequality

For any n-dimensional vectors u and v:
𝑖 = 1

𝑛

∑ 𝑢
𝑖
𝑣

𝑖()2

≤
𝑖 = 1

𝑛

∑ 𝑢
𝑖
2() 𝑖 = 1

𝑛

∑ 𝑣
𝑖
2()

For n = 2, this can be stated as (𝑎𝑐 + 𝑏𝑑)2 ≤ (𝑎2 + 𝑏2)(𝑐2 + 𝑑2)

1.2.10. The Harmonic-Geometric-Arithmetic-Quadratic Mean Inequalities

For any real-valued set of n positive variables x with ith variable xi:

0 < ≤ ≤ ≤
𝑛

𝑖 = 1

𝑛

∑ 1
𝑥

𝑖

𝑛

𝑖 = 1

𝑛

∏ 𝑥
𝑖

1
𝑛

𝑖 = 1

𝑛

∑ 𝑥
𝑖

1
𝑛

𝑖 = 1

𝑛

∑ 𝑥
𝑖
2

HM ≤ GM ≤ AM ≤ QM

For n = 2, this can be stated as: given a, b > 0, we have

or
2𝑎𝑏

𝑎 + 𝑏 ≤ 𝑎𝑏 ≤
𝑎 + 𝑏

2 ≤
𝑎2 + 𝑏2

2
8𝑎2𝑏2

(𝑎 + 𝑏)2 ≤ 2𝑎𝑏 ≤
1
2 (𝑎 + 𝑏)2 ≤ 𝑎2 + 𝑏2

Weighted AM-GM inequality:
𝑥

1
𝑦

1
 + 𝑥

2
𝑦

2
 + ... +𝑥

𝑛
𝑦

𝑛

𝑥
1
 + 𝑥

2
 + ... + 𝑥

𝑛
≥ 𝑦

1
𝑥

1𝑦
2

𝑥
2... 𝑦

𝑛
𝑥

𝑛()
1

𝑥
1
 + 𝑥

2
 + ... + 𝑥

𝑛

13

All Notes 1.2. Algebraic Identities

1.2.11. Muirhead’s Inequality

For two N-length sequences {ai} and {bi}, the notation {ai} {bi}means that {ai}≻
‘majorises’ {bi}, which is defined by

[1, … N] and .
𝑖=1

𝑛

∑ 𝑎
𝑖

≥
𝑖=1

𝑛

∑ 𝑏
𝑖
 ∀𝑛 ∈

𝑖=1

𝑁

∑ 𝑎
𝑖

=
𝑖=1

𝑁

∑ 𝑏
𝑖

⇔ 𝑎
𝑖{ } ≻ 𝑏

𝑖{ }

Muirhead’s inequality: if {ai} {bi} then≻
𝑠𝑦𝑚 𝑥

∑ 𝑥
1

𝑎
1𝑥

2
𝑎

2... 𝑥
𝑁

𝑎
𝑁 ≥

𝑠𝑦𝑚 𝑥
∑ 𝑥

1
𝑏

1𝑥
2

𝑏
2... 𝑥

𝑁
𝑏

𝑁

where the sum is over all permutations of any chosen set of variables.

Example: the sequence (5, 1) majorises (4, 2). Therefore .𝑥5𝑦 + 𝑥𝑦5 ≥ 𝑥4𝑦2 + 𝑥2𝑦4

1.2.12. Schur’s Inequality

For all real a, b, c and all r > 0,

.𝑎𝑟(𝑎 − 𝑏)(𝑎 − 𝑐) + 𝑏𝑟(𝑏 − 𝑎)(𝑏 − 𝑐) + 𝑐𝑟(𝑐 − 𝑎)(𝑐 − 𝑏) ≥ 0

Case r = 1: 𝑎3 + 𝑏3 + 𝑐3 + 3𝑎𝑏𝑐 ≥ 𝑎2𝑏 + 𝑎2𝑐 + 𝑏2𝑎 + 𝑏2𝑐 + 𝑐2𝑎 + 𝑐2𝑏

Case r = 2: 𝑎4 + 𝑏4 + 𝑐4 + 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐) ≥ 𝑎3𝑏 + 𝑎3𝑐 + 𝑏3𝑎 + 𝑏3𝑐 + 𝑐3𝑎 + 𝑐3𝑏

Generalisation: for all real a, b, c, x, y, z, where a ≥ b ≥ c and (x ≥ y ≥ z or z ≥ y ≥ x), and some
convex or monotonic function f : R → R+, and some constant k∈ Z+,

𝑓(𝑥) (𝑎 − 𝑏)𝑘(𝑎 − 𝑐)𝑘 + 𝑓(𝑦) (𝑏 − 𝑎)𝑘(𝑏 − 𝑐)𝑘 + 𝑓(𝑧) (𝑐 − 𝑎)𝑘(𝑐 − 𝑏)𝑘 ≥ 0.

1.2.13. Jordan’s Inequality

For all , we have sin x i.e. sinc x0 ≤ 𝑥 ≤ π
2

2
π 𝑥 ≤ ≤ 𝑥 2

π ≤ ≤ 1

1.2.14. Fermat’s Last Theorem

If n ≥ 3, then there are no positive integer solutions (a, b, c) to the equation an + bn = cn.

(The case of n = 2 has infinitely many solutions - the Pythagorean triples.)

14

All Notes 1.2. Algebraic Identities

1.2.15. Diophantine Equations

The linear Diophantine equation ax + by = c has integer solutions (x, y) iff (a, b, c) are all
integers and c | gcd(a, b). If (x, y) is a solution then the other solutions are given by
(x + kv, y − ku) where k is an arbitrary integer, and u = a / gcd(a, b) and v = b / gcd(a, b).

Proofs on the solutions to Diophantine equations typically include:

● Chinese Remainder Theorem (CRT): see Section 1.6.5.

● Infinite descent: assume a supposedly minimal solution exists, show this implies
the existence of a smaller solution, which is a contradiction (similar: Vieta jumping)

15

All Notes 1.3. Trigonometric Identities

1.3. Trigonometric Identities
1.3.1. Trigonometric Functions and Identities

sin(x + y) = sin x cos y + cos x sin y sin(x - y) = sin x cos y - cos x sin y

cos(x + y) = cos x cos y - sin x sin y cos(x - y) = cos x cos y + sin x sin y

tan(x + y) = tan(x - y) =
𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛 𝑦

1 − 𝑡𝑎𝑛 𝑥 𝑡𝑎𝑛 𝑦
𝑡𝑎𝑛 𝑥 − 𝑡𝑎𝑛 𝑦

1 + 𝑡𝑎𝑛 𝑥 𝑡𝑎𝑛 𝑦

sin 2x = 2 sin x cos x sin 3x = 3 sin x - 4 sin3 x sin =
𝑥
2 ± 1 − 𝑐𝑜𝑠 𝑥

2

cos 2x = 2 cos2 x - 1 cos 3x = 4 cos3 x - 3 cos x cos =
𝑥
2 ± 1 + 𝑐𝑜𝑠 𝑥

2

= 1 - 2 sin2 x
= cos2 x - sin2 x

tan 2x = tan 3x = tan =
2 𝑡𝑎𝑛 𝑥

1 − 𝑡𝑎𝑛2 𝑥

3 𝑡𝑎𝑛 𝑥 − 𝑡𝑎𝑛3 𝑥

1 − 3 𝑡𝑎𝑛2 𝑥

𝑥
2 ± 1 − 𝑐𝑜𝑠 𝑥

1 + 𝑐𝑜𝑠 𝑥

= =
𝑠𝑖𝑛 𝑥

1 + 𝑐𝑜𝑠 𝑥
1 − 𝑐𝑜𝑠 𝑥

𝑠𝑖𝑛 𝑥

sec x = csc x = cot x =
1

𝑐𝑜𝑠 𝑥
1

𝑠𝑖𝑛 𝑥
1

𝑡𝑎𝑛 𝑥

sin2 x + cos2 x = 1 sec2 x = 1 + tan2 x csc2 x = 1 + cot2 x

sin(-x) = - sin x cos(-x) = cos x tan(-x) = - tan x

sin(- x) = cos x cos(- x) = sin x tan(- x) = cot xπ
2

π
2

π
2

sin(π - x) = sin x cos(π - x) = - cos x tan(π - x) = - tan x

sin(x +) = cos x cos(x +) = - sin x tan(x +) = tan xπ
2

π
2

π
2

sin(x + π) = - sin x cos(x + π) = - cos x tan(x + π) = tan x

sin x + sin y = 2 sin cos sin x - sin y = 2 cos sin
𝑥 + 𝑦

2
𝑥 − 𝑦

2
𝑥 + 𝑦

2
𝑥 − 𝑦

2

cos x + cos y = 2 cos cos cos x - cos y = -2 sin sin
𝑥 + 𝑦

2
𝑥 − 𝑦

2
𝑥 + 𝑦

2
𝑥 − 𝑦

2

2 sin x sin y = cos(x - y) - cos(x + y) 2 cos x cos y = cos(x + y) + cos(x - y)

2 sin x cos y = sin(x + y) + sin(x - y)

16

All Notes 1.3. Trigonometric Identities

1.3.2. Hyperbolic Functions and Identities

sinh x = (ex - e-x) cosh x = (ex + e-x) tanh x =
1
2

1
2

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

csch x = sech x = coth x =
1

𝑠𝑖𝑛ℎ 𝑥
1

𝑐𝑜𝑠ℎ 𝑥
1

𝑡𝑎𝑛ℎ 𝑥

sinh(x + y) = sinh x cosh y + cosh x sinh y sinh(x - y) = sinh x cosh y - cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y cosh(x - y) = cosh x cosh y - sinh x sinh y

tanh(x + y) = tanh(x - y) =
𝑡𝑎𝑛ℎ 𝑥 + 𝑡𝑎𝑛ℎ 𝑦

1 + 𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ 𝑦
𝑡𝑎𝑛ℎ 𝑥 − 𝑡𝑎𝑛ℎ 𝑦

1 − 𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ 𝑦

sinh 2x = 2 sinh x cosh x sinh 3x = 3 sinh x + 4 sinh3 x sinh =
𝑥
2 ± 𝑐𝑜𝑠ℎ 𝑥 − 1

2

cosh 2x = 2 cosh2 x - 1 cosh 3x = 4 cos3 x - 3 cos x cosh =
𝑥
2

𝑐𝑜𝑠ℎ 𝑥 + 1
2

= 1 + 2 sinh2 x
= cosh2 x + sinh2 x

tanh 2x = tanh 3x = tanh =
2 𝑡𝑎𝑛ℎ 𝑥

1 + 𝑡𝑎𝑛ℎ2 𝑥

3 𝑡𝑎𝑛 𝑥 − 𝑡𝑎𝑛3 𝑥

1 − 3 𝑡𝑎𝑛2 𝑥

𝑥
2 ± 𝑐𝑜𝑠ℎ 𝑥 − 1

𝑐𝑜𝑠ℎ 𝑥 + 1

=
𝑠𝑖𝑛ℎ 𝑥

1 + 𝑐𝑜𝑠ℎ 𝑥

=
𝑐𝑜𝑠ℎ 𝑥 − 1

𝑠𝑖𝑛ℎ 𝑥

sech x = csch x = coth x =
1

𝑐𝑜𝑠ℎ 𝑥
1

𝑠𝑖𝑛ℎ 𝑥
1

𝑡𝑎𝑛ℎ 𝑥

cosh2 x - sinh2 x = 1 sech2 x = 1 - tanh2 x coth2 x - csch2 x = 1

sinh(-x) = - sinh x cosh(-x) = cosh x tanh(-x) = - tanh x

sinh x + sinh y = 2 sinh cosh sinh x - sinh y = 2 cosh sinh
𝑥 + 𝑦

2
𝑥 − 𝑦

2
𝑥 + 𝑦

2
𝑥 − 𝑦

2

cosh x + cosh y = 2 cosh cosh cosh x - cosh y = -2 sinh sinh
𝑥 + 𝑦

2
𝑥 − 𝑦

2
𝑥 + 𝑦

2
𝑥 − 𝑦

2

2 sinh x sinh y = cosh(x + y) - cosh(x - y) 2 cosh x cosh y = cosh(x + y) + cosh(x - y)

2 sinh x cosh y = sinh(x + y) + sinh(x - y)

Osborn’s Rule: for a trig identity, for a product of sines, change the sign, to get the hyperbolic identity.

17

All Notes 1.3. Trigonometric Identities

1.3.3. Inverse Trigonometric Functions

sec-1 x = cos-1 csc-1 x = sin-1 cot-1 x = tan-11
𝑥

1
𝑥

1
𝑥

sin-1 x + cos-1 x = tan-1 x + cot-1 x = sec-1 x + csc-1 x =
π
2

π
2

π
2

sin-1 x ± sin-1 y = sin-1 𝑥 1 − 𝑦2 ± 𝑦 1 − 𝑥2()
cos-1 x ± cos-1 y = cos-1 𝑥𝑦 ∓ 1 − 𝑥2 1 − 𝑦2()

sin-1 x ± cos-1 y = sin-1 = cos-1𝑥𝑦 ± 1 − 𝑥2 1 − 𝑦2() 𝑦 1 − 𝑥2 ∓ 𝑥 1 − 𝑦2()
tan-1 x ± tan-1 y = tan-1

𝑥 ± 𝑦
1 ∓ 𝑥𝑦()

1.3.4. Inverse Hyperbolic Functions

sinh-1 x = ln(x +) cosh-1 x = ln(x +) tanh-1 x = ln𝑥2 + 1 𝑥2 − 1
1
2

1 + 𝑥
1 − 𝑥

csch-1 x = sinh-1 sech-1 x = cosh-1 coth-1 x = tanh-1
1
𝑥

1
𝑥

1
𝑥

sinh-1 x ± sinh-1 y = sinh-1 𝑥 1 + 𝑦2 ± 𝑦 1 + 𝑥2()
cosh-1 x ± cosh-1 y = cosh-1 𝑥𝑦 ± 𝑥2 − 1 𝑦2 − 1()

sinh-1 x + cosh-1 y = sinh-1 = cosh-1𝑥𝑦 + 1 − 𝑥2 𝑦2 − 1() 𝑦 1 + 𝑥2 + 𝑥 𝑦2 − 1()
tanh-1 x ± tanh-1 y = tanh-1

𝑥 ± 𝑦
1 ± 𝑥𝑦()

18

All Notes 1.4. Sequences and Series

1.4. Sequences and Series
1.4.1. Arithmetic Sequence

For an arithmetic sequence with first term a and common difference d, terms are

a, a + d, a + 2d, a + 3d, …

nth term: un = a + (n - 1)d

nth partial sum: Sn = (2a + (n - 1)d)
𝑟 = 1

𝑛

∑ 𝑢
𝑛

=
𝑛
2

1.4.2. Geometric Sequence

For a geometric sequence with first term a and common ratio r, terms are

a, ar, ar2, ar3, …

nth term: un = ar n - 1

nth partial sum: Sn =
𝑟 = 1

𝑛

∑ 𝑢
𝑛

=
𝑎(1 − 𝑟𝑛)

1 − 𝑟

Infinite sum: S∞ = convergent if 0 < |r| < 1
𝑟 = 1

∞

∑ 𝑢
𝑛

=
𝑎

1 − 𝑟

1.4.3. Harmonic Sequence

In a harmonic sequence, terms are the reciprocal of an arithmetic sequence.

, , , , …
1
𝑎

1
𝑎 + 𝑑

1
𝑎 + 2𝑑

1
𝑎 + 3𝑑

nth term: un =
1

𝑎 + (𝑛 − 1)𝑑

nth partial sum: Sn = ln
𝑟 = 1

𝑛

∑ 𝑢
𝑛

≤ (𝑎 + (𝑛 − 1)𝑑) + γ +
1

2(𝑎 + (𝑛 − 1)𝑑)

Infinite sum: diverges, always

19

All Notes 1.4. Sequences and Series

1.4.4. Arithmetico-Geometric Sequence

In an arithmetico-geometric sequence, terms are a product of an arithmetic and
geometric sequence.

𝑎𝑏, (𝑎 + 𝑑)𝑏𝑟, (𝑎 + 2𝑑)𝑏𝑟2, (𝑎 + 3𝑑)𝑏𝑟3, ...

nth term: un = (a + (n - 1)d)brn-1

nth partial sum: Sn = +
𝑟 = 1

𝑛

∑ 𝑢
𝑛

=
𝑎𝑏 − (𝑎 + 𝑛𝑑)𝑏𝑟𝑛

1 − 𝑟
𝑑𝑏𝑟(1 − 𝑟𝑛)

(1 − 𝑟)2

Infinite sum: S∞ = + convergent if |r| < 1
𝑟 = 1

∞

∑ 𝑢
𝑛

=
𝑎𝑏

1 − 𝑟
𝑑𝑏𝑟

(1 − 𝑟)2

1.4.5. Partial Sums of Series

𝑟 = 1

𝑛

∑ 𝑟 = 1
2 𝑛(𝑛 + 1)

𝑟 = 1

𝑛

∑ 𝑟2 = 1
6 𝑛(𝑛 + 1)(2𝑛 + 1)

𝑟 = 1

𝑛

∑ 𝑟3 = 1
4 𝑛2(𝑛 + 1)2

ln n + γ + O(n-1) where γ = 0.5772156649… is the Euler–Mascheroni constant.
𝑟 = 1

𝑛

∑ 1
𝑟 ≥

(Chu-Vandermonde identity)
𝑟 = 0

𝑛

∑ 𝑛𝐶
𝑟

= 2𝑛

𝑟 = 0

𝑛

∑ 𝑝𝐶
𝑟
 × 𝑞𝐶

𝑛 − 𝑟
 = 𝑝 + 𝑞𝐶

𝑛

Often useful: .
𝑟 = 1

𝑛

∑ 𝑐𝑜𝑠 𝑟θ =
𝑠𝑖𝑛 𝑛θ

2 𝑐𝑜𝑠 (𝑛+1)θ
2

𝑠𝑖𝑛 θ
2 𝑟 = 1

𝑛

∑ 𝑠𝑖𝑛 𝑟θ =
𝑠𝑖𝑛 𝑛θ

2 𝑠𝑖𝑛 (𝑛+1)θ
2

𝑠𝑖𝑛 θ
2

𝑢
𝑛

= 𝑆
𝑛

− 𝑆
𝑛−1

1.4.6. Infinite Sums of Series

The numerical results below require advanced techniques to prove (e.g. special functions).

diverges
𝑟 = 1

∞

∑ 1
𝑟

𝑟 = 1

∞

∑ 1

𝑟2 = π2

6
𝑟 = 1

∞

∑ 1

𝑟3 = ζ(3) ≈ 1. 2021
𝑟 = 1

∞

∑ 1

𝑟4 = π4

90

ln 2
𝑟 = 1

∞

∑ (−1)𝑟+1

𝑟 =
𝑟 = 1

∞

∑ (−1)𝑟+1

𝑟2 = π2

12
𝑟 = 1

∞

∑ (−1)𝑟+1

𝑟3 = 3
4 ζ(3) ≈ 0. 90154

𝑟 = 1

∞

∑ (−1)𝑟+1

𝑟4 = 7π4

720

cot coth
𝑟 = −∞

∞

∑ 1
𝑎 + 𝑏𝑟 = π

𝑏
π𝑎
𝑏

𝑟 = −∞

∞

∑ 1

𝑎 + 𝑏𝑟2 = π
𝑎𝑏

π 𝑎
𝑏

𝑟 = 0

∞

∑ 1

1 + 𝑟2 = 1 + π 𝑐𝑜𝑡ℎ π
2

20

All Notes 1.4. Sequences and Series

1.4.7. Common Techniques (Tests) for Proving Convergence or Divergence of Series

● Divergence Test: for , evaluate .
𝑛=1

∞

∑ 𝑎
𝑛 𝑛 ∞

lim
→

𝑎
𝑛

If then the series diverges. Otherwise, inconclusive.
𝑛 ∞
lim
→

𝑎
𝑛

≠ 0

● Geometric Series: for , evaluate .
𝑛=1

∞

∑ 𝑎 𝑟𝑛−1 𝑟

If |r| < 1 then the series converges to . Otherwise the series diverges.𝑎
1 − 𝑟

● Power Series: for , evaluate .
𝑛=1

∞

∑ 1

𝑛𝑝 𝑝

If p > 1 then the series converges to . Otherwise the series diverges (in the usual sense).ζ(𝑝)

● Comparison Test: for with all , compare to a known series .
𝑛=1

∞

∑ 𝑎
𝑛

𝑎
𝑛

≥ 0
𝑛=1

∞

∑ 𝑏
𝑛

If there exists some N such that i.e. for all , and converges then the series𝑎
𝑛

≤ 𝑏
𝑛

𝑎
𝑛

𝑏
𝑛

≤ 1 𝑛 > 𝑁
𝑛=1

∞

∑ 𝑏
𝑛

converges. Otherwise the series diverges.

● Limit Comparison Test: for (all an > 0), compare to known and evaluate L = .
𝑛=1

∞

∑ 𝑎
𝑛

𝑛=1

∞

∑ 𝑏
𝑛 𝑛 ∞

lim
→

𝑎
𝑛

𝑏
𝑛

If L is finite and nonzero then and either both converge or both diverge.
𝑛=1

∞

∑ 𝑎
𝑛

𝑛=1

∞

∑ 𝑏
𝑛

If L = 0 and converges then the series converges.
𝑛=1

∞

∑ 𝑏
𝑛

If L→∞ and diverges then the series diverges.
𝑛=1

∞

∑ 𝑏
𝑛

● Integral Test: for , if f (n) = an is positive and decreasing for all n > N, evaluate I = .
𝑛=1

∞

∑ 𝑎
𝑛

𝑁

∞

∫ 𝑓(𝑥) 𝑑𝑥

If I is finite then the series converges. If I diverges then the series diverges.

● Alternating Series Test: for (-1)n an, if an+1 ≤ an for all n ≥ 1 and then the series converges.
𝑛=1

∞

∑
𝑛 ∞
lim
→

𝑎
𝑛

= 0

● Ratio Test and Root Test: for any , evaluate either or .
𝑛=1

∞

∑ 𝑎
𝑛

ρ =
𝑛 ∞
lim
→

𝑎
𝑛+1

𝑎
𝑛

|||
||| ρ =

𝑛 ∞
lim
→

|𝑎
𝑛
|1/𝑛

If 0 ≤ ρ < 1 then the series converges. If ρ > 1 then the series diverges. If ρ = 1 then inconclusive.

21

All Notes 1.5. Complex Numbers

1.5. Complex Numbers
1.5.1. Complex Number Definition

Any complex number z∈ can be represented as
z = x + yi = r(cos θ + i sin θ) = r eiθ = r cis θ (Euler’s formula)

The components are related and defined by
x = Re(z); y = Im(z); r = |z|; θ = arg z; -π < θ ≤ π

(r:magnitude, θ: argument/phase, x: real part, y: imaginary part)

1.5.2. Complex Conjugate

z* = x - iy = r e-iθ = r cis(-θ) zz* = |z|2 is purely real

(z1 + z2)* = z1* + z2* (z1z2)* = z1* z2*
𝑧

1

𝑧
2

()*

=
𝑧

1
*

𝑧
2
*

1.5.3. Cyclic Nature of Exponentials and Logarithms

● Periodicity: e2πni = 1, z = r ei(θ + 2πn), for any integer n

● De Moivre’s theorem: z = eiθ → za = (cos θ + i sin θ)a = exp (ia(θ + 2πn)) = cos aθ + i sin aθ

● Natural logarithm: z = r eiθ → ln z = ln r + i (θ + 2πn)

● nth roots of unity: , , , ,ω
𝑘

= 𝑒
𝑖 2π𝑘

𝑛 ω
𝑘

𝑛 = 1 ω
𝑘+𝑛

= ω
𝑘

ω
1

𝑘 = ω
𝑘

𝑟=0

𝑛−1

∑ ω𝑟 = 0

The roots of unity form a regular n-polygon around the origin.

1.5.4. Trigonometric and Hyperbolic Functions

sin x = cos x = tan x =
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

𝑒𝑖𝑥 + 𝑒−𝑖𝑥

z = eiθ → z + = 2 cos θ z = 2i sin θ = i tan θ
1
𝑧 −

1
𝑧

𝑧2 − 1

𝑧2 + 1

sin ix = i sinh x cos ix = cosh x sinh ix = i sin x cosh ix = cos x

sin(x ± iy) = sin x cosh y ± i cos x sinh y cos(x ± iy) = cos x cosh y ∓ i sin x sinh y

sinh(x ± iy) = sinh x cos y ± i cosh x sin y cosh(x ± iy) = cosh x cos y ± i sinh x sin y

sin-1 z = ln i sinh-1(-iz) tan-1 z = ln = i tanh-1(-iz)𝑖𝑧 + 1 − 𝑧2() =
𝑖
2

1 − 𝑖𝑧
1 + 𝑖𝑧

22

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BC%7D%20#0

All Notes 1.5. Complex Numbers

1.5.5. Exponentiation of Complex Numbers

Let . Then, for integers n, the value of is given by , where:𝑧 = 𝑎 + 𝑏𝑖 = 𝑟 𝑒𝑖θ 𝑓(𝑧) 𝑅 𝑒𝑖ϕ

𝑓(𝑧) 𝑅 = |𝑓(𝑧)| ϕ = 𝑎𝑟𝑔 𝑓(𝑧)

𝑧𝑖 𝑒−(θ + 2π𝑛)
𝑙𝑛 𝑟

𝑖𝑧 𝑒
− 4𝑛 + 1

2 π𝑟 𝑠𝑖𝑛 θ 4𝑛 + 1
2 π𝑟 𝑐𝑜𝑠 θ

𝑧𝑐 + 𝑑𝑖 𝑟𝑐 𝑒−𝑑(θ + 2π𝑛) 𝑑 𝑙𝑛 𝑟 + 𝑐(θ + 2π𝑛)

The principal value is for when n = 0.

is purely real.𝑖±𝑖 = 𝑒∓π/2

1.5.6. Root of Unity Filter

For a series , the value of where for N ≥ 1.𝑓(𝑥) =
𝑘=0

∞

∑ 𝑎
𝑘
 𝑥𝑘

𝑘=0

𝑁−1

∑ 𝑓(ω𝑘) = 𝑁
𝑘=0

∞

∑ 𝑎
𝑘𝑁

ω = 𝑒
2π
𝑁 𝑖

This is often useful when working with generating functions (series multisection) whose
coefficients are periodic modulo N.

23

All Notes 1.6. Discrete Mathematics and Abstract Algebra

1.6. Discrete Mathematics and Abstract Algebra
1.6.1. Binary Operators

Let * be a binary operator. We say that * is

● Commutative: if a * b = b * a
● Associative: if (a * b) * c = a * (b * c)
● Distributive (over +): if a * (b + c) = a * b + a * c

1.6.2. Axioms of Group Theory

A set S and an operation * form a group (S, *) if and only if all of the following are true:

● Closure: * is a binary operation on S i.e. a * b is in S for every a, b∈ S.

● Identity: there exists exactly one element a in S such that z * a = z for all z in S.

● Associative: (a * b) * c = a * (b * c) for all a, b, c∈ S.

● Inverse: every element a in S has exactly one corresponding element b in S such
that a * b equals the identity element for the group.

An Abelian group is a group in which * is commutative in S.
Equivalently, the group is Abelian if its Cayley table is symmetric about the leading diagonal.

Examples of groups and their identity elements:

● If S is the integers and * is multiplication, then the identity element is 1.

● If S is the real numbers and * is addition, then the identity element is 0.

● If S is a set of geometric transformations and * is composition, then the identity
element is the transformation which does nothing (i.e. the identity matrix, if
represented by affine transformation matrices).

For finite field groups, see Section 8.8.10.

For point and space (symmetry) groups and their character tables, see Section 13.2.8.

24

All Notes 1.6. Discrete Mathematics and Abstract Algebra

1.6.3. Axioms of Ring Theory

A set S and two operations + and * form a ring (S, +, *) if and only if all of the following are true:

● (S, +) is an Abelian group.
● S is a closed under *.
● * is associative.
● * is distributive over +.

A commutative ring is a ring in which * is commutative on S.

A field is a ring in which every nonzero element in S has an inverse element under *.
Equivalently, a field is a group under both + and *.

25

All Notes 1.6. Discrete Mathematics and Abstract Algebra

1.6.5. Modular Arithmetic

Definition of modulo operator: a b (mod n) ⇔ and have the same remainder,≡
𝑎
𝑛

𝑏
𝑛

where a, b and n are all integers.

If a b (mod n) then is an integer.≡
𝑎 − 𝑏

𝑛

Euler’s totient function: ϕ(n) is the number of integers between 1 and n which are
coprime with n (no common divisors except 1):

ϕ(𝑛) =
𝑎 ∈ 𝑁: 𝑎 < 𝑛, 𝑔𝑐𝑑(𝑎, 𝑛) = 1

∏ 𝑎 = 𝑛
𝑝 ∈ 𝑃: 𝑝 | 𝑛

∏ 1 − 1
𝑝()

Fermat’s little theorem: for prime p which does not divide a𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝)

Euler’s theorem: for coprime a and n𝑎ϕ(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛)

Wilson’s theorem: ⇔ p is prime(𝑝 − 1)! ≡ − 1 (𝑚𝑜𝑑 𝑝)

Chinese remainder theorem:

A system of N congruences where all ni are pairwise coprime
𝑖=1

𝑁

⋂ {𝑥 ≡ 𝑎
𝑖
 (𝑚𝑜𝑑 𝑛

𝑖
)}

has solutions x, any two of which and satisfy .𝑥
𝑖

𝑥
𝑗

𝑥
𝑖

≡ 𝑥
𝑗
 (𝑚𝑜𝑑 𝑁)

The residue class of a modulo n is the set {..., a - 2n, a - n, a, a + n, a + 2n, …}.𝑎
𝑛

=

The ring of integers modulo n is the set of all residue classes modulo n, represented by

and when n = 0, this ring is isomorphic to ℤ since .𝑎
0

= {𝑎}

This ring is commutative as and .𝑎
𝑛

± 𝑏
𝑛

= (𝑎 ± 𝑏)
𝑛

𝑎
𝑛
 𝑏

𝑛
= (𝑎𝑏)

𝑛

ℤ / nℤ is a finite field if and only if n is prime.

26

All Notes 1.6. Discrete Mathematics and Abstract Algebra

1.6.6. Kuratowski’s Theorem for Planarity of Graphs

1.6.7. Minimax Cut-Flow Theorem for Networks

1.6.8. Simplex Algorithm for Linear Programming

1.6.9. Lagrange Multipliers for Nonlinear Programming

A typical problem is stated as “Minimise / Maximise f (x) subject to g(x) = 0”, where x is a
vector of n scalar independent unknown variables. The Lagrangian is defined as
L(x, λ) = f (x) - λ g(x). The solution is given by∇L(x, λ) = 0 (a system of n + 1 equations).
Note that these are critical points, not necessarily extrema (may be saddle points).

For multiple constraints, formulated as “Minimise / Maximise f (x) subject to g(x) = 0”,
where g is a vector-valued function for each of the m constraints, the Lagrangian is

L(x, λ) = f (x) λ・g(x) = f (x) (x) where λ is a vector of m unknown multipliers. The− −
𝑖=1

𝑚

∑ λ
𝑖
 𝑔

𝑖

solution is again given by∇L(x, λ) = 0 (a system of n + m equations).

In the Hamiltonian formulation, H(x) = f (x) + λ g(x), which ensures minima.

1.6.10. Game Theory for Zero-Order and Higher-Order Games

27

All Notes 1.7. Special Functions

1.7. Special Functions and Identities
1.7.1. Gamma Function, Γ(x) and Digamma Function, ψ(x)

● Gamma function as a generalised factorial: i.e.Γ(𝑥) = (𝑥 − 1)! 𝑥! = 𝑥 Γ(𝑥)

● Gamma function as an integral: for Re(z) > 0Γ(𝑧) =
0

∞

∫ 𝑡𝑧−1 𝑒−𝑡 𝑑𝑡

● Reflection identity: for non-integer zΓ(𝑧) Γ(1 − 𝑧) = π
𝑠𝑖𝑛 π𝑧

● Half-integer identity: for non-integer zΓ(𝑧) Γ(𝑧 + 1
2) = 21−2𝑧 π Γ(2𝑧)

● Useful exact values: Γ 1
2() = π Γ − 1

2() = − 2 π

● Digamma function: ψ(𝑥) = 𝑑
𝑑𝑥 𝑙𝑛 Γ(𝑥) =

Γ'(𝑥)
Γ(𝑥)

● Reflection identity: for non-integer xψ(1 − 𝑥) − ψ(𝑥) = π
𝑡𝑎𝑛 π𝑥

● Integer identity: ψ(𝑥 + 1) = ψ(𝑥) + 1
𝑥

1.7.3. Error Function, erf x

● Error function: erf x = 2
π 0

𝑥

∫ 𝑒−𝑡2

 𝑑𝑡

● Relation to Normal distribution:

erf x = 2 Φ(x) - 1 (Φ: standard normal c.d.f.)2

● Complementary error function: erfc z = 1 - erf z
● Imaginary error function: erfi z = -i erf iz

Graph of y = erf x

1.7.4. Beta Function, B(x, y)

● Beta function: 𝐵(𝑥, 𝑦) =
0

1

∫ 𝑡𝑥−1 (1 − 𝑡)𝑦−1 𝑑𝑡

● Relation to gamma function: 𝐵(𝑥, 𝑦) =
Γ(𝑥) Γ(𝑦)
Γ(𝑥 + 𝑦)

● Pascal’s identity: 𝐵(𝑥, 𝑦) = 𝐵(𝑥, 𝑦 + 1) + 𝐵(𝑥 + 1, 𝑦)

● For integers m, n: 𝐵(𝑚, 𝑛) =
𝑚 + 𝑛

𝑚𝑛 × 𝑚+𝑛𝐶
𝑚

28

All Notes 1.7. Special Functions

1.7.5. Hypergeometric Functions, including 2F1(a, b; c; z)

● Gaussian hypergeometric function: ,for |z| < 1
2
𝐹

1
(𝑎, 𝑏; 𝑐; 𝑧) =

𝑛 = 0

∞

∑
(𝑎)

𝑛
 (𝑏)

𝑛

(𝑐)
𝑛

 𝑧𝑛

𝑛!

This series terminates if b or c is an integer, forming a binomial series.

● Euler’s integral formula:𝐵(𝑏, 𝑐 − 𝑏)
2
𝐹

1
(𝑎, 𝑏; 𝑐; 𝑧) =

0

1

∫ 𝑥𝑏−1(1 − 𝑥)𝑐−𝑏−1(1 − 𝑧𝑥)−𝑎 𝑑𝑥

● Gauss summation theorem: , for Re(c) > Re(a + b)
2
𝐹

1
(𝑎, 𝑏; 𝑐; 1) = Γ(𝑐) Γ(𝑐 − 𝑎 − 𝑏)

Γ(𝑐 − 𝑎) Γ(𝑐 − 𝑏)

● Barnes’ contour integral:
2
𝐹

1
(𝑎, 𝑏; 𝑐; 𝑧) = Γ(𝑐)

Γ(𝑎) Γ(𝑏) × 1
2π𝑖

−𝑖∞

𝑖∞

∫ Γ(𝑎 + 𝑠) Γ(𝑏 + 𝑠) Γ(−𝑠)
Γ(𝑐 + 𝑠) (− 𝑧)𝑠 𝑑𝑠

● Generalised HGF: , for |z| < 1
𝑝
𝐹

𝑞
(𝑎

1
, ..., 𝑎

𝑝
; 𝑏

1
, ..., 𝑏

𝑞
; 𝑧) =

𝑛 = 0

∞

∑
(𝑎

1
)

𝑛
 ... (𝑎

𝑝
)

𝑛

(𝑏
1
)

𝑛
 ... (𝑏

𝑞
)

𝑛
 𝑧𝑛

𝑛!

● Regularised HGF:
𝑝
𝐹

𝑞
(𝑎

1
, ..., 𝑎

𝑝
; 𝑏

1
, ..., 𝑏

𝑞
; 𝑧) =

𝑝
𝐹

𝑞
(𝑎

1
, ..., 𝑎

𝑝
; 𝑏

1
, ..., 𝑏

𝑞
; 𝑧)

Γ(𝑏
1
) ... Γ(𝑏

𝑞
)

● Kummer’s confluent HGF, first kind: 𝑀(𝑎, 𝑏; 𝑧) =
1
𝐹

1
(𝑎, 𝑏; 𝑧) =

𝑐 ∞
lim
→

2
𝐹

1
(𝑎, 𝑐; 𝑏; 𝑧

𝑐)

● Kummer’s confluent HGF, second kind: 𝑈(𝑎, 𝑏; 𝑧) = 𝑧−𝑎
2
𝐹

0
(𝑎, 1 + 𝑎 − 𝑏; ; −1

𝑧)

29

All Notes 1.7. Special Functions

1.7.7. Elliptic Integrals, K(k), E(k) and Π(n, k)

● Complete elliptic integral, first kind: 𝐾(𝑘) =
0

π/2

∫ 𝑑θ

1 − 𝑘2 𝑠𝑖𝑛2 θ
=

0

1

∫ 𝑑𝑡

1 − 𝑡2() 1 − 𝑘2𝑡2()

● Complete elliptic integral, second kind: 𝐸(𝑘) =
0

π/2

∫ 1 − 𝑘2 𝑠𝑖𝑛2 θ 𝑑θ =
0

1

∫ 1 − 𝑘2𝑡2

1 − 𝑡2
 𝑑𝑡

● Complete elliptic integral, third kind: Π(𝑛, 𝑘) =
0

π/2

∫ 𝑑θ

1 − 𝑛 𝑠𝑖𝑛2 θ() 1 − 𝑘2 𝑠𝑖𝑛2 θ

● Incomplete elliptic integral, first kind: ,𝐹(φ, 𝑘) =
0

φ

∫ 𝑑θ

1 − 𝑘2 𝑠𝑖𝑛2 θ
𝐹(𝑥; 𝑘) =

0

𝑥

∫ 𝑑𝑡

1 − 𝑡2() 1 − 𝑘2𝑡2()

● Incomplete elliptic integral, second kind: ,𝐸(φ, 𝑘) =
0

φ

∫ 1 − 𝑘2 𝑠𝑖𝑛2 θ 𝑑θ 𝐸(𝑥; 𝑘) =
0

𝑥

∫ 1 − 𝑘2𝑡2

1 − 𝑡2
 𝑑𝑡

● Incomplete elliptic integral, third kind: Π(𝑛; φ \ α) =
0

φ

∫ 𝑑θ

1 − 𝑛 𝑠𝑖𝑛2 θ() 1 − (𝑠𝑖𝑛 α 𝑠𝑖𝑛 θ)2

Substitutions used above are and .𝑡 = 𝑠𝑖𝑛 θ 𝑥 = 𝑠𝑖𝑛 φ

Legendre’s relation: 𝐾(𝑘) 𝐸 1 − 𝑘2() + 𝐸(𝑘) 𝐾 1 − 𝑘2() − 𝐾(𝑘) 𝐾 1 − 𝑘2() =
π
2

Arithmetic-Geometric mean identity: 𝐾(𝑘) = π

2 𝑎𝑔𝑚(1, 1−𝑘2)

Inverse elliptic integrals (Jacobi functions): with then𝑢 = 𝐹(φ, 𝑘) =
0

φ

∫ 𝑑θ

1 − 𝑘2 𝑠𝑖𝑛2 θ

● Jacobi amplitude function: 𝑎𝑚(𝑢, 𝑘) = φ
● Elliptic sine: 𝑠𝑛(𝑢, 𝑘) = 𝑠𝑖𝑛(𝑎𝑚(𝑢, 𝑘)) = 𝑠𝑖𝑛 φ
● Elliptic cosine: 𝑐𝑛(𝑢, 𝑘) = 𝑐𝑜𝑠(𝑎𝑚(𝑢, 𝑘)) = 𝑐𝑜𝑠 φ

● Delta amplitude: 𝑑𝑛(𝑢, 𝑘) = 𝑑
𝑑𝑢 𝑎𝑚(𝑢, 𝑘) = 𝑑φ

𝑑𝑢 = 1 − 𝑘2 𝑠𝑖𝑛2 φ

1.7.8. Zeta Function, ζ(z)

● Zeta function as a series: , for Re(z) > 1ζ(𝑧) =
𝑟 = 1

∞

∑ 𝑟−𝑧 = 1
Γ(𝑧)

0

∞

∫ 𝑥𝑧−1

𝑒𝑥 − 1
 𝑑𝑥

● Euler’s product formula: , a product over all primes pζ(𝑧) =
𝑝 ∈ 𝑃
∏ 1

1 − 𝑝−𝑧

● Riemann’s functional equation: sinζ(𝑧) = 2𝑧 π𝑧−1 π𝑧
2 Γ(1 − 𝑧) ζ(1 − 𝑧)

● Riemann hypothesis: does Re(z) = or z∈ {-2, -4, -6,…} ?ζ(𝑧) = 0 ⇔ 1
2

(critical line) (trivial zeroes)

30

All Notes 1.7. Special Functions

1.7.9. Bessel Functions, Jn(x) and Yn(x), and Hankel Functions, Hα
(1)(x) and Hα

(2)(x)

Bessel functions, Jn(x) and Yn(x): Hankel function, Hα
(1)(x) and Hα

(2)(x):

1st kind: 1st kind:𝐽
𝑛
(𝑥) = 1

π
0

π

∫ 𝑐𝑜𝑠(𝑛τ − 𝑥 𝑠𝑖𝑛 τ) 𝑑τ 𝐻
α

(1)(𝑥) = 𝐽
α
(𝑥) + 𝑖 𝑌

α
(𝑥) =

𝐽
−α

(𝑥) − 𝑒−απ𝑖 𝐽
α
(𝑥)

𝑖 𝑠𝑖𝑛 απ

2nd kind: 2nd kind:𝑌
𝑛
(𝑥) = 1

π
0

π

∫ 𝑠𝑖𝑛(𝑥 𝑠𝑖𝑛 τ − 𝑛τ) 𝑑τ 𝐻
α

(2)(𝑥) = 𝐽
α
(𝑥) − 𝑖 𝑌

α
(𝑥) =

𝐽
−α

(𝑥) − 𝑒απ𝑖 𝐽
α
(𝑥)

− 𝑖 𝑠𝑖𝑛 απ

Modified Bessel Functions, Iα(x) and Kα(x): Spherical Bessel functions, jn(x) and yn(x):

1st kind: 1st kind:𝐼
α
(𝑥) = 𝑖−α 𝐽

α
(𝑖𝑥) =

𝑚 = 0

∞

∑ (𝑥 / 2)2𝑚 + α

𝑚! Γ(𝑚 + α + 1) 𝑗
𝑛
(𝑥) = π

2𝑥 𝐽
𝑛+ 1

2
(𝑥)

2nd kind: 2nd kind:𝐾
α
(𝑥) = π

2
𝐼

−α
(𝑥) − 𝐼

α
(𝑥)

𝑠𝑖𝑛 απ 𝑦
𝑛
(𝑥) = π

2𝑥 𝑌
𝑛+ 1

2
(𝑥) = (− 1)𝑛+1 𝑗

−𝑛−1
(𝑥)

1.7.10. Associated Legendre Polynomials, Pl
m(x)

Associated Legendre Polynomials: , -l ≤ m ≤ l𝑃
𝑙
𝑚(𝑥) = (−1)𝑚

2𝑙 𝑙!
(1 − 𝑥2)𝑚/2 𝑑𝑙+𝑚

𝑑𝑥𝑙+𝑚 (𝑥2 − 1)𝑙

𝑃
𝑙
𝑚(𝑥) 𝑚 = 0 𝑚 = 1 𝑚 = 2 𝑚 = 3

𝑙 = 0 1

𝑙 = 1 x − (1 − 𝑥2)1/2

𝑙 = 2 1
2 (3𝑥2 − 1) − 3𝑥(1 − 𝑥2)1/2 3(1 − 𝑥2)

𝑙 = 3 1
2 (5𝑥3 − 3𝑥) 3

2 (1 − 5𝑥2)(1 − 𝑥2)1/2
15𝑥(1 − 𝑥2) − 15(1 − 𝑥2)3/2

For negative index m: 𝑃
𝑙
−𝑚(𝑥) = (− 1)𝑚 (𝑙 − 𝑚)!

(𝑙 + 𝑚)! 𝑃
𝑙
𝑚(𝑥)

1.7.11. Hermite Polynomials, Hn(x)

Hermite polynomials as a derivative: 𝐻
𝑛
(𝑥) = (− 1)𝑛 𝑒𝑥2

 𝑑𝑛

𝑑𝑥𝑛 𝑒−𝑥2

Recurrence relation: 𝐻
𝑛+1

(𝑥) = 2𝑥 𝐻
𝑛
(𝑥) − 𝐻

𝑛
'(𝑥)

The first few Hermite polynomials are

𝐻
0
(𝑥) = 1; 𝐻

1
(𝑥) = 2𝑥; 𝐻

2
(𝑥) = 4𝑥2 − 2; 𝐻

3
(𝑥) = 8𝑥3 − 12;

𝐻
4
(𝑥) = 16𝑥4 − 48𝑥2 + 12; 𝐻

5
(𝑥) = 32𝑥5 − 160𝑥3 + 120𝑥

31

All Notes 1.7. Special Functions

1.7.12. Generalised Laguerre Polynomials, Ln
(α)(x)

Recurrence relation: (𝑘 + 1) 𝐿
𝑘+1

(α)(𝑥) = (2𝑘 + 1 + α − 𝑥) 𝐿
𝑘

(α)(𝑥) − (𝑘 + α) 𝐿
𝑘−1

(α)(𝑥)

The first few generalised Laguerre polynomials are:

; ;𝐿
0

(α)(𝑥) = 1 𝐿
1

(α)(𝑥) = − 𝑥 + (α + 1) 𝐿
2

(α)(𝑥) = 1
2 𝑥2 + (α + 2)𝑥 + 1

2 (α + 1)(α + 2)

1.7.13. Airy Functions, Ai(x) and Bi(x)

Airy equation:
𝑑2𝑦

𝑑𝑥2 − 𝑥𝑦 = 0

Linearly independent solutions are:

𝐴𝑖(𝑥) = 1
π

0

∞

∫ 𝑐𝑜𝑠 𝑥𝑡 + 𝑡3

3() 𝑑𝑡

𝐵𝑖(𝑥) = 1
π

0

∞

∫ 𝑒𝑥𝑝 𝑥𝑡 − 𝑡3

3() + 𝑠𝑖𝑛 𝑥𝑡 + 𝑡3

3() 𝑑𝑡

1.7.14. Fresnel Integrals, S(x) and C(x)

Fresnel sine and cosine:

Clothoid curve: {x(t) = C(t), y(t) = S(t)}.

which has a constant rate of change of curvature: and .𝑑κ
𝑑𝑠 = 2 𝑑𝑠

𝑑𝑡 = 1

Limiting value: .
𝑥 ∞
lim
→

𝑆(𝑥) =
𝑥 ∞
lim
→

𝐶(𝑥) = π
8

32

All Notes 1.7. Special Functions

1.7.15. Lambert W Function, Wk(z)

The Lambert W function is the inverse function of i.e. (k∈ Z).𝑓(𝑧) = 𝑧𝑒𝑧 𝑊
𝑘
(𝑧) 𝑒

𝑊
𝑘
(𝑧)

= 𝑥

For real x, the two branches y = W0(x) and y = W-1(x)
are the solutions to y ey = x for x ≥ 0 and -1/e ≤ x < 0
respectively.

Taylor series: , |x| < 1/e𝑊
0
(𝑥) =

𝑛=1

∞

∑ (−𝑛)𝑛−1

𝑛! 𝑥𝑛

Lambert differential equation: 𝑥(1 + 𝑦)
𝑑𝑦
𝑑𝑥 = 𝑦

All branches are solutions to this DE (y = Wn(x)).

1.7.16. Trigonometric Integral Functions, Si(x), Ci(x), Shi(x), Chi(x), li(x), Ei(x)

𝑥 ±∞
lim
→

𝑆𝑖(𝑥) =
0

±∞

∫ 𝑠𝑖𝑛 𝑡
𝑡 𝑑𝑡 = ± π

2

diverges to ∞
𝑥 ±∞

lim
→

𝐶𝑖(𝑥) =
0

±∞

∫ 1 − 𝑐𝑜𝑠 𝑡
𝑡 𝑑𝑡

diverges to -∞
𝑥 1
lim
→

𝑙𝑖(𝑥) =
0

1

∫ 𝑑𝑡
𝑙𝑛 𝑡

● Sine integral: sinc t dt =𝑆𝑖(𝑥) =
0

𝑥

∫
0

𝑥

∫ 𝑠𝑖𝑛 𝑡
𝑡 𝑑𝑡

● Cosine integral: 𝐶𝑖(𝑥) =
0

𝑥

∫ 1 − 𝑐𝑜𝑠 𝑡
𝑡 𝑑𝑡 = γ + 𝑙𝑛 𝑥 +

𝑥

∞

∫ 𝑐𝑜𝑠 𝑡
𝑡 𝑑𝑡

● Hyperbolic sine integral: (γ = 0.577216…: Euler-Mascheroni constant)𝑆ℎ𝑖(𝑥) =
0

𝑥

∫ 𝑠𝑖𝑛ℎ 𝑡
𝑡 𝑑𝑡

● Hyperbolic cosine integral: , x > 0𝐶ℎ𝑖(𝑥) = γ + 𝑙𝑛 𝑥 −
0

𝑥

∫ 1 − 𝑐𝑜𝑠ℎ 𝑡
𝑡 𝑑𝑡

● Logarithmic integral: , 0 ≤ x < 1𝑙𝑖(𝑥) =
0

𝑥

∫ 𝑑𝑡
𝑙𝑛 𝑡

● Exponential integral: , x < 0𝐸𝑖(𝑥) = −
−𝑥

∞

∫ 𝑒−𝑡

𝑡 𝑑𝑡 =
−∞

𝑥

∫ 𝑒𝑡

𝑡 𝑑𝑡

33

All Notes 1.7. Special Functions

1.7.17. Spherical Harmonics, Yl
m(θ, ϕ)

Spherical harmonic: for |m| ≤ l𝑌
𝑙
𝑚(θ, ϕ) = (2𝑙 + 1)(𝑙 − 𝑚)!

4π(𝑙 + 𝑚)! 𝑃
𝑙
𝑚(𝑐𝑜𝑠 θ) 𝑒𝑖𝑚ϕ = 2𝑙 + 1

4π 𝐶
𝑙𝑚

(θ, ϕ)

The ‘Condon-Shortley phase’ is due to the term (-1)m, which is included in the definition of Plm.

Expressions for Clm in angular spherical coordinates (θ, ϕ) and Cartesian coordinates (x, y, z) are

;𝐶
00

= 1 𝐶
10

= 𝑐𝑜𝑠 θ = 𝑧
𝑟 ; 𝐶

1,±1
= ∓ 1

2 𝑠𝑖𝑛 θ 𝑒±𝑖ϕ = ∓ 1
2 𝑥 ± 𝑖𝑦

𝑟

()𝐶
20

= 1
2 (3 𝑐𝑜𝑠2 θ − 1) = 3𝑧2 − 𝑟2

2𝑟2 𝑟 = 𝑥2 + 𝑦2 + 𝑧2

;𝐶
2,±1

= ∓ 3
2 𝑐𝑜𝑠 θ 𝑠𝑖𝑛 θ 𝑒±𝑖ϕ = ∓ 3

2 𝑧𝑥 ± 𝑖𝑧𝑦

𝑟2 𝐶
2,±2

= 3
8 𝑠𝑖𝑛2 θ 𝑒±2𝑖ϕ = 3

8 𝑥2 − 𝑦2 ± 2𝑖𝑥𝑦

𝑟2

Real Spherical Harmonics: real-valued alternative definition

Vector Spherical Harmonics: a complex vector-valued function.

Spherical Harmonic Transform: for a function in angular spherical coordinates ,𝑓(θ, ϕ)

where𝑓(θ, ϕ) =
𝑙=0

∞

∑
𝑚=−𝑙

𝑙

∑ 𝑎
𝑙𝑚

 𝑌
𝑙
𝑚(θ, ϕ) 𝑎

𝑙𝑚
=

0

2π

∫
0

π

∫ 𝑓(θ, ϕ) 𝑌
𝑙
𝑚(θ, ϕ) 𝑠𝑖𝑛 θ 𝑑θ 𝑑ϕ

This is analogous to a Fourier series (Section 3.6), with lm as complex coefficients of the basis𝑎
functions Ylm. The Jacobian term is sometimes written as the solid angle .𝑑Ω = 𝑠𝑖𝑛 θ 𝑑θ 𝑑ϕ

Normalisation: . Orthogonality: .
0

2π

∫
0

π

∫ 𝑌
𝑙
𝑚|||

|||
2
 𝑑Ω = 1

0

2π

∫
0

π

∫ 𝑌
𝑙
𝑚() 𝑌

𝑙'
𝑚'()*

 𝑑Ω = δ
𝑙𝑙'

 δ
𝑚𝑚'

34

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BY%7D_%7Blm%7D(%5Ctheta%2C%20%5Cphi)%20%3D%20Y_l%5Em(%5Ctheta%2C%20%5Cphi)%20%5Chat%7B%5Cmathbf%7Br%7D%7D%2C%20%5C%20%5C%20%5C%20%5Cboldsymbol%7B%5CPsi%7D_%7Blm%7D(r%2C%20%5Ctheta%2C%20%5Cphi)%20%3D%20r%20%5Cnabla%20Y_l%5Em%2C%20%5C%20%5C%20%5C%20%5Cboldsymbol%7B%5CPhi%7D_%7Blm%7D(r%2C%20%5Ctheta%2C%20%5Cphi)%20%3D%20r%5Chat%7B%5Cmathbf%7Br%7D%7D%20%5Ctimes%20%5Cnabla%20Y_l%5Em%20#0

All Notes 1.7. Special Functions

1.7.18. Miscellaneous Special Functions

Generalised Marcum Q-function: 𝑄
ν
(𝑎, 𝑏) = 1

𝑎ν−1
𝑏

∞

∫ 𝑥ν 𝑒
− 1

2 (𝑥2 + 𝑎2)
 𝐼

ν−1
(𝑎𝑥) 𝑑𝑥

35

All Notes 2.1. Properties of 2D and 3D Shapes

M2. GEOMETRY

2.1. Properties of 2D and 3D Shapes
2.1.1. Properties of Simple 2D Shapes

Circles and Parts of Circles

Circle Sector Segment Equilateral Triangle Regular n-gon

Area: Area: Area: Area: Area:𝐴 = π𝑟2 𝐴 = 1
2 𝑟2θ 𝐴 = 1

2 𝑟2(θ − 𝑠𝑖𝑛 θ) 𝐴 = 3
4 𝑎2 𝐴 = 𝑛𝑎2

4 𝑡𝑎𝑛 π
𝑛

Diameter: Arc length: Chord length: ,𝑑 = 2𝑟 𝑠 = 𝑟θ 𝑐 = 2𝑟 𝑠𝑖𝑛 θ
2 𝑟 = 3

6 𝑎 𝑟 = 𝑎
2 𝑡𝑎𝑛 π

𝑛

𝑅 = 𝑎
2 𝑠𝑖𝑛 π

𝑛

Circumference: External angle:𝐶 = 2π𝑟 = π𝑑 𝑅 = 3
3 𝑎 θ = 2π

𝑛

Special Quadrilaterals (For properties of scalene/right triangles, see Section 2.2.7.)

Kite (Deltoid) Rhombus Parallelogram Trapezium (Trapezoid)

Area: Area: Area:𝐴 = 1
2 𝑑

1
𝑑

2
𝐴 = 1

2 𝑑
1
𝑑

2
𝐴 = 𝑏ℎ = 1

2 𝑑
1
𝑑

2
 𝑠𝑖𝑛 θ 𝐴 = 1

2 ℎ(𝑎 + 𝑏)
diagonals perpendicular diagonals perp. bisectors diagonals bisect

2.1.2. Symmetry

Rotational symmetry of order n: identical after turning through 360o / n
Reflective/mirror symmetry of order n: identical after reflecting in n different axes
A regular polygon is both rotational and mirror symmetry order n

36

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.3. Volumes and Surface Areas of 3D Solid Figures

Curved bodies:

Sphere Cone Torus

Volume 4
3 π𝑟3 1

3 π𝑟2ℎ 2π2𝑅𝑟2

Surface
Area 4π𝑟2 π𝑟𝑙 + π𝑟2 4π2𝑅𝑟

Pyramidal and Platonic solids (f: faces, v: vertices, e: edges):

Pyramid Tetrahedron
(4 f, 4 v, 6 e)

Octahedron
(8 f, 6 v, 12 e)

Dodecahedron
(12 f, 20 v, 30 e)

Icosahedron
(20 f, 12 v, 30 e)

Volume 1
3 𝐴ℎ a3

2
12 a3

2
3 a3

15 + 7 5
4 a3

5(3 + 5)
12

Surface
Area

1
2 𝑝𝐿 + 𝐴

(p: base perimeter
L: slant length)

3 𝑎2 2 3 𝑎2
3 25 + 10 5 𝑎2 5 3 𝑎2

37

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.4. Sections of Spheres (Sections of Revolution)

Spherical Cap (blue): radius r, flat radius a, height h, half-angle θ:

Volume:

𝑉 = πℎ2

3 (3𝑟 − ℎ) = πℎ
6 (3𝑎2 + ℎ2) = π𝑟3

ℎ (2 + 𝑐𝑜𝑠 θ)(1 − 𝑐𝑜𝑠 θ)2

Curved surface area: (circular plane face area:)π𝑎2

𝐴 = 2π𝑟ℎ = π(𝑎2 + ℎ2) = 2π𝑟2(1 − 𝑐𝑜𝑠 θ)

Spherical Sector (blue): radius r, flat radius a, height h, half-angle θ:

Volume:

𝑉 = 2π𝑟2ℎ
3 = π

6ℎ 𝑎2 + ℎ2()
2

= 2π𝑟3

3 (1 − 𝑐𝑜𝑠 θ)

Curved surface area: (cone area:)π𝑎𝑟

𝐴 = 2π𝑟ℎ = Ω𝑟2 = 2π𝑟2(1 − 𝑐𝑜𝑠 θ)

(Ω: solid angle, in steradians (by definition))

Spherical Wedge: radius r, dihedral angle θ:

Volume: Curved surface area (lune):

𝑉 = 2π𝑟3θ
3 𝐴 = 2𝑟2θ

A plane intersects a sphere in a circle. The maximum area of this circle occurs when the
plane cuts the sphere in two equal parts (hemisphere caps separated by a ‘great circle’).

38

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.5. Some Geometric Results in 3D

3D Quadrilateral Coffin Problem
AB, BC, CD, AD tangent to a sphere at W, X, Y, Z

W, X, Y, Z are coplanar

39

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.6. Circle-Circle and Sphere-Sphere Intersections

Circle-Circle Intersection Sphere-Sphere Intersection

Area of overlapping lens region: Volume of overlapping lens region:

In both cases,

Distance to intersection chord or intersection plane: 𝑥 =
𝑑2 − 𝑟2 + 𝑅2

2𝑑

Length of intersection chord or diameter of intersection circle: a =
1
𝑑 4𝑑2𝑅2 − (𝑑2 − 𝑟2 + 𝑅2)2

40

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.7. Ellipses and Ellipsoids

Ellipse (2D): an elongated circle.

Ellipse Elliptical Sector
Area: cos2 θ1 + sin2 α = 1 and cos2 θ2 + sin2 β = 1𝐴 = π𝑎𝑏

Eccentricity: e2 = Area: (β - α - sin(β - α))1 − 𝑏2

𝑎2
𝑎𝑏
2

Perimeter: Elliptical arc length:𝑃 = 4𝑎 𝐸(𝑒) 𝑎(𝐸(β, 𝑒) − 𝐸(α, 𝑒))

Ellipsoid (3D): an elongated sphere along two axes (radii a, b, c)

Volume: ()4
3 π𝑎𝑏𝑐 𝑎 ≥ 𝑏 ≥ 𝑐

Surface area: , and2π 𝑐2 + 𝑎𝑏
𝑠𝑖𝑛 φ 𝐾(φ, 𝑘) 𝑐𝑜𝑠2 φ + 𝐸(φ, 𝑘) 𝑠𝑖𝑛2 φ()⎡

⎣
⎤
⎦ 𝑐𝑜𝑠 φ = 𝑐

𝑎 𝑘2 = 𝑎2(𝑏2 − 𝑐2)

𝑏2(𝑎2 − 𝑐2)

Spheroid: a sphere compressed (oblate) or elongated (prolate) along one axis (radii a, a, c)

Surface area, oblate (c < a): ,2π𝑎2 1 + 1 − 𝑒2

𝑒 𝑡𝑎𝑛ℎ−1 𝑒() 𝑒2 = 1 − 𝑐2

𝑎2

Surface area, prolate (c > a): ,2π𝑎2 1 + 𝑐
𝑎𝑒 𝑠𝑖𝑛−1 𝑒() 𝑒2 = 1 − 𝑎2

𝑐2

A plane whose normal is parallel to the axis of stretching intersects the spheroid in a circle.

41

All Notes 2.1. Properties of 2D and 3D Shapes

2.1.8. Pappus’ Theorems

Surface Area = L × d Volume = A × d

For partial revolutions, use the arc length instead of the circumference as d.

Generalisation to Pappus’ theorems:

The path traced out by the centroid does not need to be circular: it can be any simple
curved path (e.g. linear, parabolic, helical). This will result in a ‘swept’ solid or surface. The
appropriate length d is then the arc length along this path.

Additionally, the curve/lamina being swept may rotate in its plane (torsion: remaining
perpendicular to the path) along the path, as long as the angle of twist is continuous. E.g:

Volume = area of lamina × path length

Surface area = perimeter of lamina × path length

The resulting solid or surface must not be
self-intersecting to produce valid results.

42

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2. Angle, Triangle and Circle Theorems
2.2.1. Angle Theorems

Types of angles: acute (0o < θ < 90o), right angle (θ = 90o), obtuse (90o < θ < 180o),
straight line (θ = 180o), reflex (180o < θ < 360o)

For angles at a given point,

Angles on a line Angles around a point Opposite angles
α + β = 180o α + β + γ = 360o are equal

For parallel lines intersected by a single transversal line,

Corresponding Angles (‘F’) Co-Interior Angles (‘C’) Alternate Angles (‘Z’)
are equal α + β = 180o are equal

2.2.2. Measures of Angles

Common measures of angles are: (1 rad = ≈ 57.29o)
180

π

● Degrees: a full turn is 360o.
● Radians: a full turn is 2π rad. Assumed in all calculations (natural units).
● Gradians: a full turn is 400 g (archaic).

Units for small angles include the DMS (degrees-minutes-seconds, Do M’ S’’) system:

● 1 degree = 60 arcminutes (1o = 60’)
● 1 arcminute = 60 arcseconds (1’ = 60’’)

Three-figure bearings, used in navigation, are given in degrees clockwise from North,
using three digits by convention (e.g. “050” for 50o clockwise from North).

43

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.3. Triangle and Quadrilateral Theorems

Midpoint Theorem Angle Bisector Theorem Apollonius’ Theorem

|DE| = |AB|
1
2

𝑏
𝑎 = 𝑚

𝑛 𝑎2 + 𝑏2 = 2(𝑑2 + 𝑚2)

Stewart’s Theorem Ceva’s Theorems Menelaus’ Theorem

𝑏2𝑛 + 𝑎2𝑚 = 𝑐(𝑑2 + 𝑚𝑛)
|𝐴𝐹|
|𝐹𝐵| ×

|𝐵𝐷|
|𝐷𝐶| ×

|𝐶𝐸|
|𝐸𝐴| = 1

|𝐴𝐹|
|𝐹𝐵| ×

|𝐵𝐷|
|𝐷𝐶| ×

|𝐶𝐸|
|𝐸𝐴| = 1

in both cases𝑠𝑖𝑛 ∠𝐴𝐵𝐸
𝑠𝑖𝑛 ∠𝐶𝐵𝐸 × 𝑠𝑖𝑛 ∠𝐵𝐶𝐹

𝑠𝑖𝑛 ∠𝐴𝐶𝐹 × 𝑠𝑖𝑛 ∠𝐶𝐴𝐷
𝑠𝑖𝑛 ∠𝐵𝐴𝐷 = 1

Ptolmey’s Theorem Routh’s Theorem Pythagoras’ Theorems

|AB||CD| + |BC||DA| = |AC||BD| △𝑃𝑄𝑅
△𝐴𝐵𝐶 = (𝑥𝑦𝑧−1)2

(𝑥𝑦+𝑦+1)(𝑦𝑧+𝑧+1)(𝑥𝑧+𝑥+1) 𝑎2 + 𝑏2 = 𝑐2

If ABCD is not cyclic, then: where 𝑥 = |𝐵𝐷|
|𝐶𝐷| , 𝑦 = |𝐶𝐸|

|𝐴𝐸| , 𝑧 = |𝐴𝐹|
|𝐵𝐹|

1

𝑎2 + 1

𝑏2 = 1

𝑑2

|AB||CD| + |BC||DA| ≥ |AC||BD|

44

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.4. Circle Theorems

Thales’ Theorem Inscribed Angle Theorems Alternate Segment
(Angle in a semicircle) Angle at the centre Angles subtended by an arc Theorem
AC is a diameter ∠AOC = 2∠ABC ∠DAC =∠DBC ST tangent at A
∠ABC = 90o ∠TAC =∠ABC

Cyclic Quadrilaterals Tangent Theorem Chord Bisector Theorem Butterfly Theorem
∠ABC +∠ADC = 180o |AP| = |BP|, OA⊥ AP PQ is a chord M midpoint of chord PQ
opposite angles add to 180o OAPB is a cyclic kite OA⊥ PQ, |AP| = |AQ| |MX| = |MY|

Three Cases of the Power of a Point Theorem Carnot-Euler Theorems
Intersecting Chords Tangent-Secant Intersecting Secants |OX| + |OY| + |OZ| = R + r
|OA||OC| = |OB||OD| |OA|2 = |OB||OC| |OA||OB| = |OC||OD| |OI|2 + r2 = (R - r)2

distances negative
if entirely outside triangle

45

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.5. Some Special Geometric Constructions

These setups may require unique methods of solving, and are extremely difficult without
knowing the technique.

Ford Circles Langley’s Adventitious Angles
Three circles tangent to each other, Given a, b, c, d, find e.
as well as one common tangent line In general, it is extremely difficult without trigonometry.

Techniques include: trigonometric Ceva’s theorem,𝑐−1/2 = 𝑎−1/2 + 𝑏−1/2

identifying congruent/equilateral triangles,
three circumcentres method

Triangle Construction Coffin Problem
The line segments between a point in an equilateral triangle

and its vertices are used to form a new triangle.

Angles: , ,α' = α − 60𝑜 β' = β − 60𝑜 γ' = γ − 60𝑜

Can be solved by rotating the diagram 60o about a vertex.

46

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.6. Similarity and Congruence of Triangles

Two triangles are similar (△ABC ~△PQR) if one is an enlargement of the other (AAA).
Two triangles are congruent (△ABC ≅△PQR) if they are identical (SSS / SAS / ASA / AAS / RHS).

(S / A / R / H: a side / angle / right-angle / hypotenuse known to be equal in both triangles.)

Fundamental theorem of similarity: △𝐴𝐵𝐶 ~ △𝐴𝐵'𝐶'

|𝐴𝐵|
|𝐵𝐵'| = |𝐴𝐶|

|𝐶𝐶'| ⇔ |𝐴𝐵|
|𝐴𝐵'| = |𝐴𝐶|

|𝐴𝐶'| ⇔ 𝐵𝐶 || 𝐵'𝐶'

2.2.7. Trigonometry of Right-Angled Triangles

The sides are said to be a (adjacent), o (opposite), h (hypotenuse)
relative to acute angle θ.

Definitions: sin θ = cos θ = tan θ = (SohCahToa)
𝑜
ℎ

𝑎
ℎ

𝑜
𝑎

Pythagoras’ Theorem: (more often written)𝑎2 + 𝑜2 = ℎ2 𝑎2 + 𝑏2 = 𝑐2

47

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.8. Trigonometry of Triangles

The results here are valid for any cyclic permutation of {a, b, c} and {A, B, C}.

Area of a triangle, (h: height perpendicular to b)△𝐴𝐵𝐶 = 1
2 𝑏ℎ = 1

2 𝑎𝑏 𝑠𝑖𝑛 𝐶 =
𝑐2 𝑠𝑖𝑛 𝐴 𝑠𝑖𝑛 𝐵
2 𝑠𝑖𝑛(𝐴 + 𝐵)

Law of Sines (Sine Rule): = =
𝑎

𝑠𝑖𝑛 𝐴
𝑏

𝑠𝑖𝑛 𝐵
𝑐

𝑠𝑖𝑛 𝐶

Law of Cosines (Cosine Rule): c2 = a2 + b2 - 2ab cos C

Law of Tangents (Tangent Rule): =
𝑎 − 𝑏
𝑎 + 𝑏

𝑡𝑎𝑛 1
2 (𝐴 − 𝐵)

𝑡𝑎𝑛 1
2 (𝐴 + 𝐵)

Law of Cotangents (Cotangent Rule): = = =
𝑐𝑜𝑡 1

2 𝐴

𝑠 − 𝑎

𝑐𝑜𝑡 1
2 𝐵

𝑠 − 𝑏

𝑐𝑜𝑡 1
2 𝐶

𝑠 − 𝑐
1
𝑟

Inscribed Circle Radius: =𝑟 =
△𝐴𝐵𝐶

𝑠
𝑎𝑏 𝑠𝑖𝑛 𝐶

𝑎 + 𝑏 + 𝑐

Circumscribed Circle Radius: 𝑅 =
𝑎𝑏𝑐

4 △𝐴𝐵𝐶 = 𝑎
2 𝑠𝑖𝑛 𝐴

Heron’s Theorem: △𝐴𝐵𝐶 = 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

Mollweide’s formulas: and
𝑎 + 𝑏

𝑐 =
𝑐𝑜𝑠 1

2 (𝐴 − 𝐵)

𝑠𝑖𝑛 1
2 𝐶

𝑎 − 𝑏
𝑐 =

𝑠𝑖𝑛 1
2 (𝐴 − 𝐵)

𝑐𝑜𝑠 1
2 𝐶

(s: semiperimeter, ,△ABC: area of triangle ABC, r: inradius, R: circumradius)𝑠 = 𝑎 + 𝑏 + 𝑐
2

48

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.9. Rational Trigonometry

Rational trigonometry is an alternative formulation of trigonometry in Euclidean geometry
that uses ‘spreads’ and ‘quadrances’ instead of angles and lengths, which avoids the use
of transcendental functions and irrational numbers.

A line with equation ax + by + c = 0 is represented as〈a : b : c〉.

Spread: (equal to sin2 θ)𝑠(𝑙
1
, 𝑙

2
) =

(𝑎
1
𝑎

2
 − 𝑏

1
𝑏

2
)2

(𝑎
1

2 + 𝑏
1

2)(𝑎
2

2 + 𝑏
2

2)

Quadrance: Q is equal to distance squared. (equal to a2)

A triangle is considered a set of three lines. Identities are:

● Pythagorean Theorem: .𝑄
1

+ 𝑄
2

= 𝑄
3
 ⇔ 𝑄

1
⊥ 𝑄

2

● Triple Spread Formula: (angle sum)𝑠
1

+ 𝑠
2

+ 𝑠
3()2 = 2 𝑠

1
2 + 𝑠

2
2 + 𝑠

3
2() + 4𝑠

1
𝑠

2
𝑠

3

● Spread Law: (sine rule)
𝑠

1

𝑄
1

=
𝑠

2

𝑄
2

=
𝑠

3

𝑄
3

● Cross Law: (cosine rule)𝑄
1

+ 𝑄
2

− 𝑄
3()2 = 4𝑄

1
𝑄

2
(1 − 𝑠

3
)

49

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.10. Projective Geometry

The cross ratio (anharmonic ratio) of any four
collinear points is invariant under perspective projection:

Cross ratio = =
|𝐴𝐶||𝐵𝐷|
|𝐵𝐶||𝐴𝐷|

|𝑎𝑐||𝑏𝑑|
|𝑏𝑐||𝑎𝑑|

2.2.11. Mass Point Geometry (Barycentric Coordinates)

50

All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.12. Spherical Geometry and Trigonometry (Non-Euclidean Geometry)

For a triangle made from three great circle arcs of unit radius:

a, b, c represent both (arc) lengths and angles subtended from the
centre of the sphere O (in radians) i.e.∠AOB = c,∠BOC = a,∠COA =
b.

Spherical Cosine Rule: cos a = cos b cos c + sin b sin c cos A

Spherical Sine Rule: = =
𝑠𝑖𝑛 𝐴
𝑠𝑖𝑛 𝑎

𝑠𝑖𝑛 𝐵
𝑠𝑖𝑛 𝑏

𝑠𝑖𝑛 𝐶
𝑠𝑖𝑛 𝑐

Inverse Cosine Rule: cos A = sin B sin C cos a cos B cos C−

Area of triangle△ABC (on sphere) = A + B + C π (Girard’s Theorem)−

Solid Angles: trihedral angles measured from O (units: steradians [sr]; full sphere = 4π sr.)

● Spherical triangle, ABC from O: ΩO = A + B + C π−

● Cone, vertex O, apex angle 2θ: ΩO = 4π sin2
θ
2

● Irregular tetrahedron OABC: tan =
Ω

𝑂

2
𝑂𝐴 · 𝑂𝐵 × 𝑂𝐶

|𝑂𝐴||𝑂𝐵||𝑂𝐶| + (𝑂𝐴 · 𝑂𝐵)|𝑂𝐶| + (𝑂𝐵 · 𝑂𝐶)|𝑂𝐴| + (𝑂𝐶 · 𝑂𝐴)|𝑂𝐵|

cos ΩO = (cos∠AOB + cos∠BOC + cos∠COA)
1
3

The solid angle of a polyhedron is the sum of solid angles of the non-overlapping tetrahedra
sharing the vertex (e.g. compute from Delauney tetrahedral mesh of 3D point cloud).

2.2.13. Hyperbolic Geometry (Non-Euclidean, Lobachevsky Geometry)

Klein disk model (projective model): points represented as being inside a unit disk.

51

All Notes 2.3. 2D Coordinate Geometry

2.3. 2D Coordinate Geometry
2.3.1. Coordinates

A point P can lie in the xy Cartesian coordinate plane with origin O (frame xOy).

The coordinates of P can be written as P(x, y). (x: abscissa of P, y: ordinate of P)

2.3.2. Equations of Lines

Gradient-Intercept: Point-Slope: Two-point Interpolation:

=𝑦 = 𝑚𝑥 + 𝑐 𝑦 − 𝑦
1

= 𝑚(𝑥 − 𝑥
1
)

𝑦 − 𝑦
1

𝑥 − 𝑥
1

𝑦
2
 − 𝑦

1

𝑥
2
 − 𝑥

1

2.3.3. Ratio Division of a Line Segment

Internal Division: External Division:

If |AP| : |PB| = m : n, then If |AQ| : |BQ| = m : n, then

P = () Q = ()
𝑛𝑥

𝐴
 + 𝑚𝑥

𝐵

𝑚 + 𝑛 ,
𝑛𝑦

𝐴
 + 𝑚𝑦

𝐵

𝑚 + 𝑛

𝑚𝑥
𝐵

 − 𝑛𝑥
𝐴

𝑚 + 𝑛 ,
𝑚𝑦

𝐵
 − 𝑛𝑦

𝐴

𝑚 + 𝑛

2.3.4. Tangential Angle and Angle Between Lines

For a tangent line of gradient m, the angle with the x-axis is ψ, where

m = = tan ψ ∆ψ = tan-1
𝑑𝑦
𝑑𝑥

𝑚
1
 − 𝑚

2

1 + 𝑚
1
𝑚

2

|||
|||

2.3.5. Parallel and Perpendicular Lines

If lines L1 and L2 have gradients m1 and m2 then

52

m1 = m2 ⇔ L1 || L2 and m1m2 = -1⇔ L1 ⊥ L2.

53

All Notes 2.3. 2D Coordinate Geometry

2.3.6. Area of an Irregular Plane Polygon From Coordinates

Shoelace formula: if an n-sided irregular polygon has vertices (ordered cyclically
anticlockwise) at coordinates (x1, y1), (x2, y2), …, (xn, yn) then the area enclosed is

In the case of a triangle, n = 3, this is equivalent to

2.3.7. Collinearity of Points and Concurrency of Lines

Collinearity: three points (x1, y1), (x2, y2), (x3, y3) lie on the same line if

Concurrency: three lines a1x + b1y + c1 = 0, a2x + b2y + c2 = 0 and a3x + b3y + c3 = 0 intersect at a
single point if

In homogeneous coordinates (Section 4.2.3), there is a duality between collinearity of
points (X, Y, Z) and lines (A, B, C).

2.3.8. Equation of a Circle

For a circle with centre (x0, y0) and radius r, the equation is (𝑥 − 𝑥
0
)2 + (𝑦 − 𝑦

0
)2 = 𝑟2

Standard form:
(𝑥 − 𝑥

0
)2

𝑟2 +
(𝑦 − 𝑦

0
)2

𝑟2 = 1

54

https://www.codecogs.com/eqnedit.php?latex=%20A%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cbegin%7Bvmatrix%7D%20x_i%20%26%20x_%7Bi%2B1%7D%20%5C%5C%20y_i%20%26%20y_%7Bi%2B1%7D%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(%5Cbegin%7Bvmatrix%7D%20x_1%20%26%20x_2%20%5C%5C%20y_1%20%26%20y_2%20%5Cend%7Bvmatrix%7D%20%2B%20%5Cbegin%7Bvmatrix%7D%20x_2%20%26%20x_3%20%5C%5C%20%20y_2%20%26%20y_3%20%5Cend%7Bvmatrix%7D%20%2B%20...%20%2B%20%5Cbegin%7Bvmatrix%7D%20x_n%20%26%20x_1%20%5C%5C%20y_n%20%26%20y_1%20%5Cend%7Bvmatrix%7D%20%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20A%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbegin%7Bvmatrix%7D%20x_1%20%26%20y_1%20%26%201%20%5C%5C%5C%5C%20%20x_2%20%26%20y_2%20%26%201%20%5C%5C%5C%5C%20%20x_3%20%26%20y_3%20%26%201%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(%20x_1%20y_2%20-%20x_2%20y_1%20%2B%20x_2%20y_3%20-%20x_3%20y_2%20%2B%20x_3%20y_1%20-%20x_1%20y_3%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bvmatrix%7D%20x_1%20%26%20y_1%20%26%201%20%5C%5C%20x_2%20%26%20y_2%20%26%201%20%5C%5C%20x_3%20%26%20y_3%20%26%201%20%5Cend%7Bvmatrix%7D%20%3D%200%20%5C%20%5C%20%5C%20%5C%20%5CLeftrightarrow%20%5C%20%5C%20%5C%20%5C%20x_1%20y_2%20-%20x_2%20y_1%20%2B%20x_2%20y_3%20-%20x_3%20y_2%20%2B%20x_3%20y_1%20-%20x_1%20y_3%20%3D%200.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bvmatrix%7D%20a_1%20%26%20b_1%20%26%20c_1%20%5C%5C%20a_2%20%26%20b_2%20%26%20c_2%20%5C%5C%20%20a_3%20%26%20b_3%20%26%20c_3%20%5Cend%7Bvmatrix%7D%20%3D%200%20%5C%20%5C%20%5C%20%5C%20%5CLeftrightarrow%20%5C%20%5C%20%5C%20%5C%20a_1(b_2%20c_3%20-%20b_3%20c_2)%20-%20b_1(a_2%20c_3%20-%20a_3%20c_2)%20%2B%20c_1%20(a_2%20b_3%20-%20a_3%20b_2)%20%3D%200%20#0

All Notes 2.3. 2D Coordinate Geometry

2.3.9. Centres of a Triangle: Incentre, Excentres, Circumcentre, Barycentre, Orthocentre

For a triangle with vertices A = (xA, yA), B = (xB, yB), C = (xC, yC) opposite sides of length a, b, c:

Incentre: , Inradius:𝑂 =
𝑎𝑥

𝐴
 + 𝑏𝑥

𝐵
 + 𝑐𝑥

𝐶

𝑎 + 𝑏 + 𝑐 ,
𝑎𝑦

𝐴
 + 𝑏𝑦

𝐵
 + 𝑐𝑦

𝐶

𝑎 + 𝑏 + 𝑐() 𝑟 =
2 △𝐴𝐵𝐶

𝑎 + 𝑏 + 𝑐

Excentre (of C): , Exradius: (on AB)𝑂' =
𝑎𝑥

𝐴
 + 𝑏𝑥

𝐵
 − 𝑐𝑥

𝐶

𝑎 + 𝑏 − 𝑐 ,
𝑎𝑦

𝐴
 + 𝑏𝑦

𝐵
 − 𝑐𝑦

𝐶

𝑎 + 𝑏 − 𝑐() 𝑅' =
2 △𝐴𝐵𝐶

𝑎 + 𝑏 − 𝑐

Circumcentre: 𝑂'' =
𝑥

𝐴
2 + 𝑦

𝐴
2() 𝑦

𝐵
 − 𝑦

𝐶() + 𝑥
𝐵

2 + 𝑦
𝐵

2() 𝑦
𝐶
 − 𝑦

𝐴() + 𝑥
𝐶

2 + 𝑦
𝐶

2() 𝑦
𝐴

 − 𝑦
𝐵()

2 𝑥
𝐴

𝑦
𝐵

 − 𝑦
𝐶() + 𝑥

𝐵
𝑦

𝐶
 − 𝑦

𝐴() + 𝑥
𝐶

𝑦
𝐴

 − 𝑦
𝐵()() ,

𝑥
𝐴

2 + 𝑦
𝐴

2() 𝑥
𝐶
 − 𝑥

𝐵() + 𝑥
𝐵

2 + 𝑦
𝐵

2() 𝑥
𝐴

 − 𝑥
𝐶() + 𝑥

𝐶
2 + 𝑦

𝐶
2() 𝑥

𝐵
 − 𝑥

𝐴()
2 𝑥

𝐴
𝑦

𝐵
 − 𝑦

𝐶() + 𝑥
𝐵

𝑦
𝐶
 − 𝑦

𝐴() + 𝑥
𝐶

𝑦
𝐴

 − 𝑦
𝐵()() ()

Circumradius: 𝑅 =
𝑎𝑏𝑐

4 △𝐴𝐵𝐶

Barycentre: ⅔ along any median line from vertex𝑋 =
𝑥

𝐴
 + 𝑥

𝐵
 + 𝑥

𝐶

3 ,
𝑦

𝐴
 + 𝑦

𝐵
 + 𝑦

𝐶

3()
Orthocentre: (A, B, C: angles)𝑂 =

𝑥
𝐴

 𝑡𝑎𝑛 𝐴 + 𝑥
𝐵

 𝑡𝑎𝑛 𝐵 + 𝑥
𝐶
 𝑡𝑎𝑛 𝐶

𝑡𝑎𝑛 𝐴 + 𝑡𝑎𝑛 𝐵 + 𝑡𝑎𝑛 𝐶 ,
𝑦

𝐴
 𝑡𝑎𝑛 𝐴 + 𝑦

𝐵
 𝑡𝑎𝑛 𝐵 + 𝑦

𝐶
 𝑡𝑎𝑛 𝐶

𝑡𝑎𝑛 𝐴 + 𝑡𝑎𝑛 𝐵 + 𝑡𝑎𝑛 𝐶()
● Every triangle has a unique incentre, circumcentre, barycentre (centroid) and orthocentre.
● Every triangle has three distinct excentres.
● The size order of the excircles follows the size order of the lengths of the tangent edges, or equivalently,

the size order of the opposite internal angles.
● The incentre, excentre and external point (O, O’, C) are collinear.
● Area relations for incircle and excircle:

△𝐴𝐵𝐶 = △𝐴𝑂𝐵 + △𝐵𝑂𝐶 + △𝐶𝑂𝐴 = 1
2 𝑎𝑟 + 1

2 𝑏𝑟 + 1
2 𝑐𝑟 = 𝑠𝑟

△𝐴𝐵𝐶 = △𝑂'𝐵𝐶 + △𝑂'𝐴𝐶 − △𝑂'𝐴𝐵 = 1
2 𝑎𝑅' + 1

2 𝑏𝑅' − 1
2 𝑐𝑅' = (𝑠 − 𝑐)𝑅'

● The Appolonius circle to the three excircles is internally tangent to all three and has radius .
𝑟2 + 𝑠2

4𝑟
55

All Notes 2.3. 2D Coordinate Geometry

2.3.10. Properties of Conic Sections

Ellipse Parabola Hyperbola

Diagram

Cartesian
equation

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1 𝑦2 = 4𝑎𝑥
𝑥2

𝑎2 − 𝑦2

𝑏2 = 1

Polar
equations

(pole at O)𝑟 = 𝑏

1 − 𝑒2 𝑐𝑜𝑠2 θ

(pole at A)𝑑
1

= 𝑏2

𝑎(1 + 𝑒 𝑐𝑜𝑠 ϕ)

(pole at O)𝑟 = 4𝑎 𝑐𝑜𝑠 θ

𝑠𝑖𝑛2 θ

(pole at A)𝑑 = 2𝑎
1 − 𝑐𝑜𝑠 ϕ

(pole at O)𝑟 = 𝑏

𝑒2 𝑐𝑜𝑠2 θ − 1

(pole at A)𝑑
1

= 𝑏2

𝑎(1 − 𝑒 𝑐𝑜𝑠 ϕ)

Parametric
equations

x = a cos t, y = b sin t
x = ± a sech t, y = b tanh t

x = t 2, y = t1
4𝑎

x = a sec t, y = b tan t
x = ± a cosh t, y = b sinh t

Definitions

O: centre
A, B: focal points (foci)
a: semi-major axis
b: semi-minor axis
e: eccentricity

O: vertex
A: focal point (focus)

a: focal length
e: eccentricity
x = -a: directrix

O: centre
A, B: focal points (foci)
a: semi-major axis
e: eccentricity

y = ± x: asymptotes𝑏
𝑎

Eccentricity e2 = 1 - ; 0 ≤ e < 1𝑏
𝑎()2

e = 1 e2 = 1 + ; e > 1𝑏
𝑎()2

Plane-cone
intersection

Plane gradient shallower
than the cone.

Plane gradient equals
that of the cone.

Plane gradient steeper than
the cone.

Reflective
property

Internal rays on AP are
reflected into B.

Incident rays on PQ
are reflected into A.

External rays parallel to AP
are reflected towards B.

Distance
property

|AP| + |BP| = d1 + d2 = 2a |AP| = |PQ| = d = x + a ||AP| - |BP|| = |d1 - d2| = 2a

56

All Notes 2.3. 2D Coordinate Geometry

2.3.11. Conic-Line Intersections

For a line L: , and conics translated to the origin given by𝑦 = 𝑚𝑥 + 𝑐

ellipse E: , hyperbola H: , parabola P:𝑥2

𝑎2 + 𝑦2

𝑏2 = 1 𝑥2

𝑎2 − 𝑦2

𝑏2 = 1 𝑦2 = 4𝑎𝑥

Then L makes either zero, one or two intersections with any conic, with x-coordinates of
all intersections at the roots of

● Ellipse-line: 𝑎2𝑚2 + 𝑏2()𝑥2 + 2𝑎2𝑚𝑐 𝑥 + 𝑎2 𝑐2 − 𝑏2() = 0

● Hyperbola-line: 𝑎2𝑚2 − 𝑏2()𝑥2 + 2𝑎2𝑚𝑐 𝑥 + 𝑎2 𝑐2 + 𝑏2() = 0

● Parabola-line: 𝑚2 𝑥2 + 2𝑚𝑐 − 4𝑎()𝑥 + 𝑐2 = 0

Condition for tangency: discriminant of the quadratic is zero.

57

All Notes 2.3. 2D Coordinate Geometry

2.3.12. Canonical Matrix Equation of Conic Sections (Homogeneous Coordinates)

Equation of a Conic Section: any conic plane curve can be represented by the equation

A x2 + B y2 + 2C xy + 2D x + 2E y + F = 0

which can be represented in homogeneous coordinates (see Section 4.2.3) as

xT Q x = 0

where and is a symmetric 3 × 3 matrix.

Conic Equation from Points: five points on a conic define the conic: (xi, yi) (i = 1, 2, 3, 4, 5).

The coefficients A…F can be found by evaluating the
six 5 × 5 sub-determinants across the top row.

Note that C, D, E have an extra factor of 2.

Affine Transformations on Conic Sections: transformations can be applied to a conic using

Q’ = (R-1)T Q R-1 where R is a 3 × 3 affine transformation matrix mapping
a conic represented by Q into a conic represented by Q’

For the general form of the affine transformation matrix R, see Section 4.2.3.

Geometric Parameters from a Conic Canonical Matrix: using singular value decomposition.

For any conic section xT Q’ x = 0, define the matrixM as the 2 × 2 matrix formed from the first two
rows and columns of Q’ (i.e.M : Q→ Q’ is a linear transformation matrix from a conic Q aligned
with the {i, j} axes into the conic represented by Q’ translated to the origin).

If the singular value decomposition (SVD, see Section 4.3.7) is written asM = UΣVT, then:

● The columns of U represent the normalised principal axes of Q’.

● The columns of V (rows of VT) represent the vectors on the original quadric Q which are
mapped to the principal axes of Q’.

● The singular values are the linear scale factors in the corresponding axes.

58

All Notes 2.3. 2D Coordinate Geometry

2.3.13. Radius of Curvature

A curve in 2D space has a curvature κ, with associated circular radius of curvature R, where

Cartesian, y(x): (x: independent var, y: dependent var)

Parametric, {x(t), y(t)}: (t: parameter)

Polar, r(θ): (r: radial distance, θ: polar angle)

Intrinsic, s(ψ): (s: arc length, ψ: tangential angle)

where f ’ is the derivative with respect to its argument.

2.3.14. Areas, Arc Lengths and Centres of Mass for Plane Curves by Integration

Area A Arc Length s Centre of Mass (of plane region under curve)

Cartesian
𝑎

𝑏

∫ 𝑦 𝑑𝑥
𝑎

𝑏

∫ 1 + 𝑑𝑦
𝑑𝑥()2

 𝑑𝑥 𝑥 = 1
𝐴

𝑎

𝑏

∫ 𝑥𝑦 𝑑𝑥, 𝑦 = 1
2𝐴

𝑎

𝑏

∫ 𝑦2 𝑑𝑥

Parametric
𝑡

1

𝑡
2

∫ 𝑦 𝑑𝑥
𝑑𝑡 𝑑𝑡

𝑡
1

𝑡
2

∫ 𝑑𝑥
𝑑𝑡()2

+ 𝑑𝑦
𝑑𝑡()2

 𝑑𝑡 𝑥 = 1
𝐴

𝑡
1

𝑡
2

∫ 𝑥𝑦 𝑑𝑥
𝑑𝑡 𝑑𝑡, 𝑦 = 1

2𝐴
𝑡

1

𝑡
2

∫ 𝑦2 𝑑𝑥
𝑑𝑡 𝑑𝑡

Polar (use Cartesian substitutions)1
2

θ
1

θ
2

∫ 𝑟2 𝑑θ
θ

1

θ
2

∫ 𝑟2 + 𝑑𝑟
𝑑θ()2

 𝑑θ

59

https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20s'%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0

All Notes 2.3. 2D Coordinate Geometry

2.3.15. Tessellation (Tiling) and Partitioning of the Plane

Tessellation uses a fixed set of tile shapes to tile the plane completely, using only rotation
and translation of the tiles to form unit cells which span the plane.

Delaunay triangulation (DT) is a mapping from a set of vertex points {P}i to a set of
triangles {T}j connecting the points {P}i such that no point in {P}i is inside any triangle in
the set. DT results in the maximisation of the smallest angle in every triangle. The convex
hull of the vertices is the smallest convex polygon containing all vertices. If there are n
vertices, of which h are on the convex hull, then there are 2n - 2 - h triangles and 3n - 3 - h
edges on the Delaunay triangulation.

The Voronoi diagram of a set of vertex points {P}i is a partitioning of the plane into
convex irregular polygonal cells. The vertices of these polygons are the circumcentres of
the corresponding Delaunay triangles (duality). Gradually expanding circles at equal rates
from each vertex produces the Voronoi diagram when any two circles ‘collide’. The
closest vertex to any given point is the vertex contained within the cell.

Delaunay Triangulation Voronoi Diagram
vertices in black, circumcentres in red vertices in black, cells (partitions) in red

The Delaunay and Voronoi partitions are useful in modelling a wide variety of phenomena.
They can also be extended to higher dimensions.

The Bowyer-Watson algorithm computes the Delauney triangulation of a vertex set.

60

All Notes 2.4. Vectors and 3D Geometry

2.4. Vectors and 3D Geometry
2.4.1. Direction Cosines

If a vector a = (ax, ay, az) makes angles α, β, γ with an orthogonal set of x-, y- and z-axes, then:

● the quantities cos α, cos β and cos γ are the direction cosines of a.
● cos α = ax / |a|, etc.
● a = |a| (cos α i + cos β j + cos γ k).

The direction cosines represent the component of a unit vector along a parallel
to each axis.

2.4.2. Scalar Product (Dot Product) and Vector Product (Cross Product) Algebra

The scalar and vector products are defined by components as

In terms of magnitudes and angles,

Commutative / anticommutative properties:

Useful identities: (for the triple product identities see Section 2.4.4)

(Lagrange’s identity)

(from cosine rule)

(Jacobi identity)

(Binet-Cauchy identity)

61

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D%20%3D%20%5Cmathbf%7Ba%7D%5E%5Ctop%20%20%5Cmathbf%7Bb%7D%20%3D%20%5Csum_%7Bi%7D%5E%7B%7D%20a_i%20b_i%20%3D%20a_xb_x%20%2B%20a_yb_y%20%2B%20a_zb_z%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ctimes%20%5Cmathbf%7Bb%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%20%5Cmathbf%7Bi%7D%20%26%20%5Cmathbf%7Bj%7D%20%26%20%5Cmathbf%7Bk%7D%20%5C%5C%20a_x%20%26%20a_y%20%26%20a_z%5C%5C%20b_x%20%26%20b_y%20%26%20b_z%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cleft%20(%20a_y%20b_z%20-%20a_z%20b_y%20%5Cright%20)%20%5Cmathbf%7Bi%7D%20%2B%20%5Cleft%20(%20a_zb_x%20-%20a_xb_z%20%5Cright%20)%20%5Cmathbf%7Bj%7D%20%2B%20%5Cleft%20(%20a_x%20b_y%20-%20a_yb_x%20%5Cright%20)%20%5Cmathbf%7Bk%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D%20%3D%20%7C%5Cmathbf%7Ba%7D%7C%20%7C%5Cmathbf%7Bb%7D%7C%20%5Ccos%20%5Ctheta%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ctimes%5Cmathbf%7Bb%7D%20%3D%20%7C%5Cmathbf%7Ba%7D%7C%20%7C%5Cmathbf%7Bb%7D%7C%20%5Csin%5Ctheta%20%5C%20%20%5Cmathbf%7B%5Chat%7Bn%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D%20%3D%20%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Ba%7D%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ctimes%5Cmathbf%7Bb%7D%20%3D%20-%5Cmathbf%7Bb%7D%20%5Ctimes%5Cmathbf%7Ba%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%7C%20%5Cmathbf%7Ba%7D%20%5Ctimes%20%5Cmathbf%7Bb%7D%20%5Cright%20%7C%5E2%20%2B%20%5Cleft%20%7C%20%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D%20%5Cright%20%7C%5E2%20%3D%20%5Cleft%20(%7C%5Cmathbf%7Ba%7D%7C%20%7C%5Cmathbf%7Bb%7D%7C%20%20%5Cright%20)%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%7C%5Cmathbf%7Ba%7D%20%5Cpm%20%20%5Cmathbf%7Bb%7D%7C%5E2%20%3D%20%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Ba%7D%20%2B%20%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D%20%5Cpm%202%20(%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bb%7D)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Ba%7D%20%5Ctimes%20(%5Cmathbf%7Bb%7D%20%5Ctimes%20%5Cmathbf%7Bc%7D)%20%2B%20%5Cmathbf%7Bc%7D%20%5Ctimes%20(%5Cmathbf%7Ba%7D%20%5Ctimes%20%5Cmathbf%7Bb%7D)%20%2B%20%5Cmathbf%7Bb%7D%20%5Ctimes%20(%5Cmathbf%7Bc%7D%20%5Ctimes%20%5Cmathbf%7Ba%7D)%20%3D%20%5Cmathbf%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20(%5Cmathbf%7Ba%7D%20%5Ctimes%20%5Cmathbf%7Bb%7D)%20%5Ccdot%20(%5Cmathbf%7Bc%7D%20%5Ctimes%20%5Cmathbf%7Bd%7D)%20%3D%20(%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bc%7D)(%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Bd%7D)%20-%20(%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Bc%7D)(%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bd%7D)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20(%5Cmathbf%7Ba%7D%20%5Ctimes%20%5Cmathbf%7Bb%7D)%20%5Ccdot%20(%5Cmathbf%7Bc%7D%20%5Ctimes%20%5Cmathbf%7Bd%7D)%20%3D%20(%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bc%7D)(%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Bd%7D)%20-%20(%5Cmathbf%7Bb%7D%20%5Ccdot%20%5Cmathbf%7Bc%7D)(%5Cmathbf%7Ba%7D%20%5Ccdot%20%5Cmathbf%7Bd%7D)%20#0

All Notes 2.4. Vectors and 3D Geometry

2.4.3. Right-Hand Rules for Vector Product Orientation

Right hand rule: Right hand grip rule:
for rotations

2.4.4. Triple Products

Scalar triple product:

Vector triple product:

2.4.5. Vector Products for Areas and Volumes

Area of triangle spanned by a and b: A = |a × b|
1
2

Volume of parallelepiped spanned by a, b and c: V = | a ⋅ (b × c) |

Volume of tetrahedron spanned by a, b and c: V = | a ⋅ (b × c) |
1
6

Volume of a polyhedron of N faces, triangulated as {ai, bi, ci}:
𝑖=1

𝑁

⋂

62

All Notes 2.4. Vectors and 3D Geometry

2.4.6. Equations of Lines and Planes

Line (p = [px py pz]T: point on line, d = [dx dy dz]T: direction vector):

r = p + t d (r - p) × d = 0
𝑥 − 𝑝

𝑥

𝑑
𝑥

=
𝑦 − 𝑝

𝑦

𝑑
𝑦

=
𝑧 − 𝑝

𝑧

𝑑
𝑧

(= 𝑡)

scalar (if not parallel to any axis) parametric non-parametric

Plane (p: point on plane, {a, b}: vectors in plane, n = [nx ny nz]T: normal vector to plane):

r = p + s a + t b (r - p)・n = 0𝑛
𝑥
𝑥 + 𝑛

𝑦
𝑦 + 𝑛

𝑧
𝑧 = 𝑑

scalar parametric non-parametric

Plane-Plane Intersection: Π1: (r - p1)・n1 = 0 and Π2: (r - p2)・n2 = 0 intersect in a line with
direction vector given by (n1 × n2). In a view parallel to this vector, the two planes are
projected as straight lines parallel to all viewing planes, which can simplify problems.

2.4.7. Shortest Distances Between Points, Planes and Lines

Point c to line r = p + t d: dmin = |(c - p) × d|

Point c to plane (r - p)・n = 0:

Skew lines r1 = p1 + t d1 and r2 = p2 + t d2:

To find the point(s) of closest approach, define generalised point(s) (r1 and r2) on the object(s) in parametric
form and assert perpendicularity: solve (r1 - r2)・d1 = 0 and (r1 - r2)・d2 = 0 for parameters t1 and t2.

Shortest distance to an (external) sphere is shortest distance to its centre, minus the radius of the sphere.
Shortest distance to an (external) cylinder is the shortest distance to its axis, minus the radius of the cylinder.

2.4.8. Vector Equations of Curved Surfaces

Sphere, centre c, radius R: (r - c)・(r - c) = R2 or |r - c| = R

Double cone, axis n, opening half-angle θ: (r・n)2 = r・r cos2 θ or r・n = |r| cos θ

Cylinder, axis n, radius R: (r × n)・(r × n) = R2 or |r × n| = R

Ellipsoid of revolution, |r - f1| + |r - f2| = 2a
foci f1 and f2, semi-major axis a:

Hyperboloid of revolution (two sheets), ||r - f1| |r - f2|| = 2a−
foci f1 and f2, semi-major axis a:

63

All Notes 2.4. Vectors and 3D Geometry

2.4.9. Surfaces and Volumes of Revolution and their Centres of Mass

For a plane curve rotated 360o about a horizontal axis to produce an axisymmetric solid or
surface (shell), properties are:

Volume COM (solid) Surface area COM (shell)

Cartesian, y(x)
revolving around

the x-axis
π

𝑎

𝑏

∫ 𝑦2 𝑑𝑥 𝑎

𝑏

∫𝑥𝑦2 𝑑𝑥

𝑎

𝑏

∫𝑦2 𝑑𝑥
2π

𝑎

𝑏

∫ 𝑦 1 + (𝑦')2 𝑑𝑥 𝑎

𝑏

∫ 𝑦2 1 + (𝑦')2 𝑑𝑥

𝑎

𝑏

∫ 𝑦 1 + (𝑦')2 𝑑𝑥

Parametric,
{x(t), y(t)}

revolving around
the x-axis

π
𝑎

𝑏

∫ 𝑦2 𝑥' 𝑑𝑡 𝑎

𝑏

∫𝑥𝑦2𝑥' 𝑑𝑡

𝑎

𝑏

∫𝑦2𝑥' 𝑑𝑡
2π

𝑎

𝑏

∫ 𝑦 (𝑥')2 + (𝑦')2 𝑑𝑡 𝑎

𝑏

∫ 𝑥'𝑦2 (𝑥')2 + (𝑦')2 𝑑𝑡

𝑎

𝑏

∫ 𝑥'𝑦 (𝑥')2+ (𝑦')2 𝑑𝑡

The COM (centre of mass) is given as its x-coordinate, , and assumes uniform density. The𝑥
other ordinates are .𝑦 = 𝑧 = 0

For COMs of common geometric figures, see Section 6.3.

For Pappus’ theorems for solids of revolution and solids swept along a curve, see Section 2.1.5.

64

All Notes 2.4. Vectors and 3D Geometry

2.4.10. Quadric Surfaces (3D Extensions of Conic Sections)

Surface Cartesian Parametric Canonical Matrix Q

Ellipsoid

𝑥2

𝑎2 + 𝑦2

𝑏2 + 𝑧2

𝑐2 = 1

a, b, c: semi-axes

x = a cos u sin v
y = b sin u sin v
z = c cos v

0 ≤ u < 2π, 0 ≤ v < π

Cone

𝑧2

𝑐2 = 𝑥2

𝑎2 + 𝑦2

𝑏2

, : slopes in xz𝑐
𝑎

𝑐
𝑏

and yz planes

x = av cos u
y = bv sin u
z = cv

0 ≤ u < 2π

Elliptic Paraboloid

𝑧
𝑐 = 𝑥2

𝑎2 + 𝑦2

𝑏2

, :𝑧
𝑐 𝑎 𝑧

𝑐 𝑏
semi-axes of ellipse
cross-section at z

x = a v cos u
y = b v sin u
z = cv2

0 ≤ u < 2π, v ≥ 0

Hyperbolic Paraboloid

𝑧
𝑐 = 𝑥2

𝑎2 − 𝑦2

𝑏2

: focal length𝑧
𝑐 𝑎
of hyperbola

cross-section at z

x = a v cosh u
y = b v sinh u
z = cv2,

(only for ≤)𝑦
𝑥

|| ||
𝑏
𝑎

Hyperboloid, one sheet

𝑥2

𝑎2 + 𝑦2

𝑏2 − 𝑧2

𝑐2 = 1

:1 + 𝑧2

𝑐2 𝑎, 1 + 𝑧2

𝑐2 𝑏

semi-axes of ellipse
cross-section at z

x = a cos u cosh v
y = b sin u cosh v

z = c sinh v

0 ≤ u < 2π

Hyperboloid, two sheets

− 𝑥2

𝑎2 − 𝑦2

𝑏2 + 𝑧2

𝑐2 = 1

:𝑧2

𝑐2 − 1 𝑎, 𝑧2

𝑐2 − 1 𝑏

semi-axes of ellipse
cross-section at z

x = a cos u sinh v
y = b sin u sinh v
z = ± c cosh v

0 ≤ u < π

65

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B1%7D%7Bc%5E2%7D%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%20-1%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7Bc%5E2%7D%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7B2c%7D%20%5C%5C%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7B2c%7D%20%26%200%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%20-%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7B2c%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7B2c%7D%20%26%200%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%5Cfrac%7B1%7D%7Bc%5E2%7D%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%20-1%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20-%5Cfrac%7B1%7D%7Ba%5E2%7D%20%26%200%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%20-%5Cfrac%7B1%7D%7Bb%5E2%7D%20%26%200%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B1%7D%7Bc%5E2%7D%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%20-1%20%5Cend%7Bbmatrix%7D%20#0

All Notes 2.4. Vectors and 3D Geometry

2.4.11. Quadrics in Homogeneous Coordinates

Any quadric surface can be represented by the equation

axx x2 + ayy y2 + azz z2 + 2axy xy + 2ayz yz + 2axz xz + 2ax x + 2ay y + 2az z + a1 = 0

which can be represented in matrix form as xT Q x = 0 (canonical form) where

and is a symmetric 4 × 4 matrix.

Quadric Equation from Points: nine points on a quadric define the quadric: (xi, yi) (i = 1, 2, … 9).

The coefficients axx, axy … a1 can be found by evaluating the ten 9 × 9 sub-determinants across the top
row of the 10 × 10 matrix A, where row 1 is [x2 y2 z2 xy yz xz x y z 1] and rows 2-10 are:

[xi2 yi2 zi2 xi yi yi zi xi zi xi yi zi 1]

The equation satisfies |A| = 0. Note that the off-diagonal coefficients in Q have a factor of ½.

Quadric-Line Intersection (Raytracing of Quadric Surfaces)

A line x = p + λn intersects a quadric xT Q x = 0 at values of λ satisfying the quadratic

(nT Q n) λ2 + (2 nT Q p) λ + (pT Q p) = 0.

A quadric generally intersects a plane in a conic section curve in the plane.

Affine Transformations on Quadric Surfaces

Transformations can be applied to a quadric using

Q’ = (R-1)T Q R-1 where R is a 4 × 4 affine transformation matrix mapping
a quadric represented by Q into a quadric represented by Q’

For the general form of the affine transformation matrix R, see Section 4.2.3.

Singular Value Decomposition of a Quadric Canonical Matrix

For any quadric xT Q’ x = 0, define the matrixM as the 3 × 3 matrix formed from the first three
rows and columns of Q’ (i.e.M : Q→ Q’ is a linear transformation matrix from a quadric Q aligned
with the {i, j, k} axes into the quadric represented by Q’ translated to the origin).

If the singular value decomposition (SVD, see Section 4.3.7) is written asM = UΣVT, then:

● The columns of U represent the normalised principal axes of Q’.
● The columns of V (rows of VT) represent the vectors on the original quadric Q which are

mapped to the principal axes of Q’.
● The singular values are the linear scale factors in the corresponding axes.

66

All Notes 3.1. Limits and Numerical Methods

M3. CALCULUS

3.1. Limits and Numerical Methods
3.1.1. Formal Definition of Limits

Let f (x) be defined for all real x ≠ a over an open interval containing a. We say that

(the (two-sided) limit of f (x) as x approaches a is L)
𝑥 𝑎
lim
→

𝑓(𝑥) = 𝐿

if, for every ε > 0, there exists some δ > 0, such that if 0 < |x - a| < δ, then | f (x) - L | < ε:

𝑥 𝑎
lim
→

𝑓(𝑥) = 𝐿 ⇔ (∀ε > 0)(∃δ > 0)(∀𝑥 ∈ 𝐷): (0 < |𝑥 − 𝑎| < δ ⇒ |𝑓(𝑥) − 𝐿| < ε)

The one-sided limits are (right-sided) and (left-sided).
𝑥 𝑎+
lim
→

𝑓(𝑥)
𝑥 𝑎−
lim
→

𝑓(𝑥)

● For limits to infinity, the condition is x > δ (if a is +∞) or x < -δ (if a is -∞).
● For one-sided limits, use 0 < x - a < δ (right-sided) or 0 < a - x < δ (left-sided).

3.1.2. Limits at Discontinuities and Circle Notation

A graph of a function y = f (x) should include open circles〇 for limiting values and closed
circles ● for defined values. For example:

(removable discontinuity)
𝑥 −2

lim
→

𝑓(𝑥) = 0

but (jump discontinuity)
𝑥 −1

lim
→

𝑓(𝑥) = − 1 𝑓(− 1) = 1

and
𝑥 0−
lim
→

𝑓(𝑥) = 0
𝑥 0+
lim
→

𝑓(𝑥) = 𝑓(0) = 1

and and
𝑥 1−
lim
→

𝑓(𝑥) = 0
𝑥 1+
lim
→

𝑓(𝑥) = 3 𝑓(1) = 2

and do not exist.
𝑥 0
lim
→

𝑓(𝑥)
𝑥 1
lim
→

𝑓(𝑥)

A discontinuity at x = a is said to be removable if exists. Continuity can be
𝑥 𝑎
lim
→

𝑓(𝑥)

established by including x = a in the domain of f (x), at which f (a) := .
𝑥 𝑎
lim
→

𝑓(𝑥) =
𝑥 𝑎±
lim
→

𝑓(𝑥)

67

All Notes 3.1. Limits and Numerical Methods

3.1.2. Standard Limits

Asymptotic (x→∞) growth order: xx >> x! >> ax >> xa, x2 >> x log x >> x >> log x >> 1.

Limits to values:

●

●

●

●

●

●

●

Limits to functions:

●

●

●

Derivative and integral as limit definitions:

● (forward difference)

● (Riemann summation: rectangular rule)

For Stirling’s formula involving asymptotic expressions for n! and ln n!, see Section 1.7.1.

68

https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%20%5Cinfty%20%7D%20%5Cleft%20(x%5Ea%20%20p%5Ex%20%5Cright%20)%20%3D%200%20%5C%20%5C%20%5C%20%7Cp%7C%20%3C%201%2C%20%5C%20%5Cforall%20a%20%5Cin%20%5Cmathbb%7BR%7D.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%200%20%7D%20%5Cleft%20(x%5Ea%20%5Cln%20x%20%20%5Cright%20)%20%3D%200%2C%20%5C%20%5C%20%5Cforall%20a%20%3E%200.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%200%7D%20%5Cfrac%7B%5Csin%20ax%7D%7Bx%7D%20%3D%20%5Clim_%7Bx%20%5Crightarrow%200%7D%20%5Cfrac%7B%5Ctan%20ax%7D%7Bx%7D%20%3D%20a%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%20%5Cinfty%20%7D%20%5Cleft%20(%20%5Cfrac%7Ba%5Ex%7D%7Bx!%7D%20%5Cright%20)%20%3D%200.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%20a%7D%20%5Cfrac%7Bx%5En%20-%20a%5En%7D%7Bx%20-%20a%7D%20%3D%20na%5E%7Bn-1%7D%2C%20%5C%20%5C%20%5C%20n%20%5Cin%20%5Cmathbb%7BQ%7D.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%200%7D%20%5Cfrac%7Be%5Ex%20-%201%7D%7Bx%7D%20%3D%201.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bx%20%5Crightarrow%200%7D%20%5Cfrac%7Ba%5Ex%20-%201%7D%7Bx%7D%20%3D%20%5Cln%20a%2C%20%5C%20%5C%20%5C%20a%20%3E%200.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20%5Cleft%20(%201%20%2B%20%5Cfrac%7Bx%7D%7Bn%7D%20%5Cright%20)%5En%20%3D%20%5Clim_%7Bn%20%5Crightarrow%200%7D%20%5Cleft%20(%201%20%2B%20nx%20%5Cright%20)%5E%7B1%2Fn%7D%20%3D%20e%5Ex%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20%5Ccos%5En%5Cleft%20(%20%5Cfrac%7Bx%7D%7B%5Csqrt%7Bn%7D%7D%20%5Cright%20)%20%3D%20e%5E%7B-%5Cfrac%7B1%7D%7B2%7Dx%5E2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20%5Ccosh%5En%20%5Cleft%20(%20%5Cfrac%7Bx%7D%7B%5Csqrt%7Bn%7D%7D%20%5Cright%20)%20%3D%20e%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%5E2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bn%20%5Crightarrow%20%5Cinfty%7D%20n%5Cleft%20(%20f%5Cleft%20(%20x%20%2B%20%5Cfrac%7Ba%7D%7Bn%7D%20%5Cright%20)%20-%20f(x)%20%5Cright%20)%20%3D%20a%20f'(x)%2C%20%5C%20%5C%20%5C%20%5C%20%5Cforall%20a%20%5Cin%20%5Cmathbb%7BR%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%7D%20%5Csum_%7Bk%3D0%7D%5E%7Bn%7D%20f%5Cleft%20(%20%5Cfrac%7Bk%7D%7Bn%7D%20%5Cright%20)%20%3D%20%5Cint_%7B0%7D%5E%7B1%7D%20f(x)%20%5C%20%5Ctextup%7Bd%7Dx%20#0

All Notes 3.1. Limits and Numerical Methods

3.1.3. Numerical Differentiation

Difference Quotients (finite difference approximations to derivatives):

● First derivative, forward difference: +𝑓'(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ 𝑂(ℎ)

● First derivative, backward difference: +𝑓'(𝑥) ≈
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ 𝑂(ℎ)

● First derivative, central difference: +𝑓'(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ 𝑂(ℎ2)

● Second derivative, central difference: +𝑓''(𝑥) ≈
𝑓(𝑥 + ℎ) − 2 𝑓(𝑥) + 𝑓(𝑥 − ℎ)

ℎ2 𝑂(ℎ2)

For partial derivatives (central differences):

● First partials: and
∂𝑓(𝑥, 𝑦)

∂𝑥 ≈
𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥 − ℎ, 𝑦)

2ℎ
∂𝑓(𝑥, 𝑦)

∂𝑦 ≈
𝑓(𝑥, 𝑦 + ℎ) − 𝑓(𝑥, 𝑦 − ℎ)

2ℎ

● Second partials:
∂2 𝑓(𝑥, 𝑦)

∂𝑥2 ≈
𝑓(𝑥 + ℎ, 𝑦) − 2 𝑓(𝑥, 𝑦) + 𝑓(𝑥 − ℎ, 𝑦)

ℎ2

● Mixed partials:
∂2 𝑓(𝑥, 𝑦)

∂𝑥 ∂𝑦 ≈
𝑓(𝑥 + ℎ, 𝑦 + ℎ) − 𝑓(𝑥 − ℎ, 𝑦 + ℎ) − 𝑓(𝑥 + ℎ, 𝑦 − ℎ) + 𝑓(𝑥 − ℎ, 𝑦 − ℎ)

4ℎ2

For discrete sequences:

● One-sided:
𝑢

𝑛+1
 − 𝑢

𝑛

∆𝑡 = 𝑑𝑢
𝑑𝑡 + 𝑑2𝑢

𝑑𝑡2
∆𝑡
2! +...

● Two-sided:
𝑢

𝑛+1
 − 𝑢

𝑛−1

2 ∆𝑡 = 𝑑𝑢
𝑑𝑡 + 𝑑3𝑢

𝑑𝑡3
∆𝑡2

3! +...

Python (SciPy): f is a callable function

from scipy.misc import derivative

gradient = derivative(f, x, dx=h)

69

All Notes 3.1. Limits and Numerical Methods

3.1.4. Numerical Integration by Riemann Summation

A definite integral can be approximated by splitting the interval [a, b] into N𝐼 =
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥

equally-spaced intervals containing N + 1 ordinates from x0 = a to xN = b inclusive.

Midpoint Rule Trapezium Rule Simpson’s Rule (N even)

● Midpoint Rule:

● Trapezium Rule:

● Simpson’s Rule:

(Simpsons’ pattern of factors: 1, 4, 2, 4, 2, …, 4, 1)

Maximum error bounds: if E is the absolute error in the approximation to I, then

Midpoint Error Trapezium Error Simpson’s Error

where | f ’’(x) | ≤ K and | f (4)(x) | ≤ M for all a ≤ x ≤ b.

Python (SciPy): f is a callable function representing the integrand

from scipy import integrate

val, abserr = integrate.quad(f, a, b)

70

https://www.codecogs.com/eqnedit.php?latex=%20%7C%20E_M%20%7C%20%5Cleq%20%5Cfrac%7BK%20(b-a)%5E3%7D%7B24%20N%5E2%7D%2C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%20E_T%20%7C%20%5Cleq%20%5Cfrac%7BK%20(b-a)%5E3%7D%7B12%20N%5E2%7D%2C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%20E_S%20%7C%20%5Cleq%20%5Cfrac%7BM%20(b-a)%5E5%7D%7B180%20N%5E4%7D.%20#0

All Notes 3.1. Limits and Numerical Methods

3.1.5. Fixed Point Iteration for Solving Algebraic Equations

A root x = α to a single-variable equation f (x) = 0 can sometimes be found by writing the
equation in the form g (x) = x (so that g(x) = f (x) + x) and iterating (for suitable x1):

if𝑥
𝑛+1

= 𝑔(𝑥
𝑛
) ⇔

𝑛 ∞
lim
→

𝑥
𝑛

= α = 𝑔(α) 𝑔'(α)| | ≤ 1

The iteration process, if it converges, can be represented as:

Convergent Staircase Convergent Cobweb

Convergence Behaviour: the type of iteration depends on the gradient of g(x) in the
region between the initial point and the true root. Convergence requires |g’(x)| < 1. If
the true root is x = α then the behaviour around the root is:

● Convergent Staircase: when 0 ≤ ≤ 1.𝑔'(α)
● Convergent Cobweb: when -1 ≤ < 0.𝑔'(α)
● Divergent Staircase: when > 1.𝑔'(α)
● Divergent Cobweb: when < -1.𝑔'(α)

If 0 < |g’(x)| < 1 then convergence is linear: .
𝑛 ∞
lim
→

𝑥
𝑛+1

 − α

𝑥
𝑛
 − α = 𝑔'(α)

If then convergence is quadratic: = λ (some constant).𝑔'(α) = 0
𝑛 ∞
lim
→

𝑥
𝑛+1

 − α| |
𝑥

𝑛
 − α| |2

71

All Notes 3.1. Limits and Numerical Methods

3.1.6. Newton-Raphson Method (Gradient Descent) For Solving Algebraic Equations

A root x = α to a single-variable equation f (x) = 0 can be found by iterating (for suitable x1):

(if convergent)𝑥
𝑛+1

= 𝑥
𝑛

−
𝑓(𝑥

𝑛
)

𝑓'(𝑥
𝑛
) ⇔

𝑛 ∞
lim
→

𝑥
𝑛

= α

The iteration process forms a pattern as follows:

Convergence Behaviour: convergence of Newton’s method is generally difficult to predict.

If the root is a single root then convergence is quadratic.

If the root is repeated (algebraic multiplicity m) then convergence is linear, but can be

accelerated to quadratic by using the iteration instead.𝑥
𝑛+1

= 𝑥
𝑛

− 𝑚 ×
𝑓(𝑥

𝑛
)

𝑓'(𝑥
𝑛
)

Generalisation to Multivariable Equations: for systems of algebraic equations of the
form f (x) = 0, where f is a vector-valued function containing each equation and x is a
vector of variables, Newton’s method is xn+1 = xn J-1(xn) f(xn) where J is the Jacobian−
matrix (Section 3.5.2) of f. For increased efficiency and numerical stability, instead of
computing J-1, the system of linear equations J(xn) (xn+1 xn) = f(xn) can be solved for− −
xn+1 - xn at each iteration.

Python: f is a callable function representing the system (input: array x; output: array f (x))

from scipy.optimize import fsolve

root = fsolve(f, x0)

72

All Notes 3.1. Limits and Numerical Methods

3.1.7. Numerical Methods for ODEs

An ODE integrator operates on either an individual ODE (y’ = f (t, y)) or a system of
coupled ODEs (y’ = f (t, y)). The iteration is of fixed step size h, i.e. tn+1 = tn + h.

Euler’s Method: Euler’s Improved Method: Predictor-Corrector (Heun’s method):

Störmer-Verlet Integrator (symplectic: ideal for position-velocity-acceleration equations)

For a 2nd-order ODE given by x’’ = A(t, x, v), (with v = x’ and tn+1 = tn + ∆t)

For the more sophisticated Gauss-Jackson integration algorithm, see Section 9.1.6.

Runge-Kutta Method (RK4; implicit 4th order): Butcher Tableau for RK4
(see Section 3.1.7.)

Programming:

MATLAB: implements RK4. f is a callable function for the RHS.

[t, y] = ode45(f, [t_start, t_end], y0)

Python (SciPy): f is a callable function representing the RHS (inputs: t and y; output: y’)

from scipy.integrate import odeint

y = odeint(f, y0, t_array)

73

All Notes 3.1. Limits and Numerical Methods

3.1.8. Butcher Tableau for Generalised Runge-Kutta ODE Integrators

A general RK method has an iteration step of the form .𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ
𝑖=1

𝑠

∑ 𝑏
𝑖
 𝑘

𝑛𝑖

(s: order of the method, bi: coefficients, kni evaluations of f near tn and yn (below)).

Explicit Scheme Implicit Scheme

𝑘
𝑛𝑖

= 𝑓 𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑦

𝑛
+ ℎ

𝑗=1

𝑖−1

∑ 𝑎
𝑖𝑗

𝑘
𝑛𝑗() 𝑘

𝑛𝑖
= 𝑓 𝑡

𝑛
+ 𝑐

𝑖
ℎ, 𝑦

𝑛
+ ℎ

𝑗=1

𝑠

∑ 𝑎
𝑖𝑗

𝑘
𝑛𝑗()

This allows any RK method to be represented as a matrix a, a vector b and a vector c,
allowing for efficient computation.

74

All Notes 3.2. Series Expansions

3.2. Series Expansions
3.2.1. Single Variable Definitions of Maclaurin Series and Taylor Series

The Maclaurin series about x = 0:

The sequence of coefficients of xn is given by where Z -1 is the inverse
z-transform (see Section 3.4.12).

The Taylor series about some value a:

This can also be written in the form (expanding about a fixed x)

75

https://www.codecogs.com/eqnedit.php?latex=%20f(x)%20%3D%20%5Csum_%7Br%3D0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7Bf%5E%7B(r)%7D(0)%7D%7Br!%7D%5Ccdot%20x%5Er%20%3D%20f(0)%20%2B%20f'(0)%20x%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20f''(0)%20x%5E2%20%2B%20%5Cfrac%7B1%7D%7B6%7D%20f'''(0)%20x%5E3%20%2B%20...%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BZ%7D%5E%7B-1%7D%20%5B%20f(x%5E%7B-1%7D)%5D%20(n)%20#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%20f(x)%20%3D%20%5Csum_%7Br%3D0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7Bf%5E%7B(r)%7D(a)%7D%7Br!%7D%20%5Ccdot%20(x%20-%20a)%5Er%20%3D%20f(a)%20%2B%20f'(a)%20(x%20-%20a)%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20f''(a)%20(x%20-%20a)%5E2%20%2B%20%E2%80%A6%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f(x%20%2B%20%5Cdelta%20x)%20%3D%20%5Csum_%7Br%3D0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7Bf%5E%7B(r)%7D(x)%7D%7Br!%7D%20%5Ccdot%20h%5Er%20%3D%20f(x)%20%2B%20f'(x)%20%5Cdelta%20x%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20f''(x)%20(%5Cdelta%20x)%5E2%20%2B%20%5Ccdots%20%20#0

All Notes 3.2. Series Expansions

3.2.3. Maclaurin Series Expansions of Common Functions

Exponentials and Logarithms:

for all complex x

for all complex x

for all |x| ≤ 1, x ≠ -1, principal value

for all |x| ≤ 1, x ≠ -1, principal value

Generalised binomial series expansion:

for all |x| < 1

Trigonometric and hyperbolic functions:

for all complex x

for all complex x

for all |x| < π
2

for all |x| < π
2

for all complex x

for all complex x

for all |x| < π
2

for all |x| < π
2

76

All Notes 3.2. Series Expansions

Inverse trigonometric and inverse hyperbolic functions:

for all |x| ≤ 1

for all |x| ≤ 1

for all |x| ≤ 1, x ≠ ±i

for all |x| ≤ 1, x ≠ ±i

for all |x| < 1

for all |x| < 1

Special Functions:

for all x

77

All Notes 3.2. Series Expansions

3.2.4. Lagrange’s Inversion Theorem

If and therefore then a Taylor series for x about a is given by𝑦 = 𝑓(𝑥) 𝑥 = 𝑓−1(𝑦)

𝑓−1(𝑦) = 𝑥 = 𝑎 +
𝑛=1

∞

∑
𝑔

𝑛

𝑛! 𝑦 − 𝑓(𝑎)()𝑛

The coefficients are where .
𝑔

𝑛

𝑛! 𝑔
𝑛

=
𝑥 𝑎
lim
→

𝑑𝑛−1

𝑑𝑥𝑛−1
𝑥 − 𝑎

𝑓(𝑥) − 𝑓(𝑎)()𝑛

For shifting of Maclaurin series, the inverse function of is .𝑓(𝑥 + 𝑎) 𝑓−1(𝑥) − 𝑎

The radius of convergence is not easily determined from the function alone.

3.2.5. Laurent Series

Laurent series allow for inclusion of poles by summing over all integer powers of x, often
used for complex functions f (z). The Laurent series for f (z) about c is given by

𝑓(𝑧) =
𝑛=−∞

∞

∑ 𝑔
𝑛
 (𝑧 − 𝑐)𝑛

The coefficients are dz.𝑔
𝑛

=
1

2π𝑖 γ
∮

𝑓(𝑧)

(𝑧 − 𝑐)𝑛+1

(Cauchy contour integral around γ: counterclockwise Jordan curve where f (z) holomorphic)

78

All Notes 3.3. Differentiation and Integration

3.3. Differentiation and Integration
3.3.1. Continuity, Differentiability and Smoothness

A function f (x) is said to be

● Continuous at x = a: if
𝑥 𝑎
lim
→

𝑓(𝑥) = 𝑓(𝑎)

● Differentiable at x = a: if exists
ℎ 0
lim
→

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

● Smooth (infinitely differentiable) at x = a: if f (n)(x) is continuous at x = a for all
nonnegative integer n.

If these terms are used without specifying a point x = a, then the condition must hold for
all values of a in the domain of f.

3.3.2. Limit Definition of a Derivative

The first and second derivatives as limits are (as forward differences, assuming they exist):

𝑓'(𝑥) =
ℎ 0
lim
→

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ 𝑓''(𝑥) =

𝑓(𝑥 + ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 − ℎ)

ℎ2

3.3.3. Limit Definition of a Definite Integral (Riemann Sum)

In general,

where and .∆𝑥 =
𝑏 − 𝑎

𝑛 𝑥
𝑟

= 𝑎 + (𝑟 − 1) ∆𝑥

3.3.4. Mean Value Theorem and Intermediate Value Theorem

Mean Value Theorem: for a monotonically increasing function f (x), we have f (a) ≤ M ≤ f (b)

where is the mean value of f (x) on a < x < b.𝑀 = 1
𝑏 − 𝑎

𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥

Intermediate Value Theorem: for a continuous function f (x) on the domain [a, b], for all y
such that f (a) ≤ y ≤ f (b), there exists some a ≤ x ≤ b such that y = f (x).

Bolzano’s Theorem: if a continuous function has values of opposite sign inside an
interval, then it has a root in that interval.

79

All Notes 3.3. Differentiation and Integration

3.3.5. Derivatives and Integrals of Functions

Algebraic, Exponential, Logarithmic, Trigonometric and Hyperbolic functions:

Function, f (x) Derivative, f ‘(x) Integral, F(x) (+ C)

1 0 x

xn nxn-1 1
𝑛 + 1 𝑥𝑛+1

𝑥
1

2 𝑥
2
3 𝑥3/2

ex ex ex

ax (ln a) ax 𝑥𝑎

𝑙𝑛 𝑎

ln |x| 1
𝑥 x(ln x 1)−

sin x cos x cos x−

cos x sin x− sin x

tan x sec2 x ln |sec x|

sec x sec x tan x ln |sec x + tan x| = ln |tan + |𝑥
2

π
4

csc x csc x cot x− ln|csc x + cot x| = ln |tan |− 𝑥
2

cot x csc2 x− ln|sin x|

sinh x cosh x cosh x

cosh x sinh x sinh x

tanh x sech2 x ln cosh x

sech x sech x tanh x− 2 tan-1 tanh = tan-1 sinh x𝑥
2

csch x csch x coth x− ln|csch x + coth x| = ln |tanh |− 𝑥
2

coth x csch2 x− ln |sinh x|

80

All Notes 3.3. Differentiation and Integration

Rationals with Radicals and Inverse Trigonometric / Inverse Hyperbolic Functions:

Function, f (x) Derivative, f ‘(x) Function, f (x) Integral, F(x) (+ C)

sin-1 x
1

1 − 𝑥2

1

𝑎2 − 𝑥2
sin-1

𝑥
𝑎

cos-1 x
−1

1 − 𝑥2

𝑎

𝑥4 − 𝑎2𝑥2
sec-1

𝑥
𝑎

tan-1 x
1

1 + 𝑥2
1

𝑎2 + 𝑥2
sinh-1

𝑥
𝑎

sec-1 x
1

|𝑥| 𝑥2 − 1

1

𝑥2 − 𝑎2
cosh-1

𝑥
𝑎

sinh-1 x
1

1 + 𝑥2

1

𝑎2 + 𝑥2 tan-1
1
𝑎

𝑥
𝑎

cosh-1 x
1

𝑥2 − 1
(|x| < a)

1

𝑎2 − 𝑥2 tanh-1
1
𝑎

𝑥
𝑎

tanh-1 x,
coth-1 x

1

1 − 𝑥2 (|x| > a)
1

𝑎2 − 𝑥2 coth-1
1
𝑎

𝑥
𝑎

Integrals of radical functions:

Other common useful integrands:

81

https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20%5Csqrt%7Ba%5E2%20%2B%20x%5E2%7D%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(x%20%5Csqrt%7Ba%5E2%20%2B%20x%5E2%7D%20%2B%20a%5E2%20%5Csinh%5E%7B-1%7D%20%5Cfrac%7Bx%7D%7Ba%7D%20%5Cright%20)%20%2B%20C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20%5Csqrt%7Ba%5E2%20-%20x%5E2%7D%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(x%20%5Csqrt%7Ba%5E2%20-%20x%5E2%7D%20%2B%20a%5E2%20%5Csin%5E%7B-1%7D%20%5Cfrac%7Bx%7D%7Ba%7D%20%5Cright%20)%20%2B%20C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20%5Csqrt%7Bx%5E2%20-%20a%5E2%7D%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(x%20%5Csqrt%7Bx%5E2%20-%20a%5E2%7D%20-%20a%5E2%20%5Ccosh%5E%7B-1%7D%20%5Cfrac%7Bx%7D%7Ba%7D%20%5Cright%20)%20%2B%20C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20%5Csec%5E3%20x%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%20(%5Csec%20x%20%5Ctan%20x%20%2B%20%5Cln%5Cleft%20%7C%20%5Csec%20x%20%2B%20%5Ctan%20x%20%5Cright%20%7C%20%20%5Cright%20)%20%2B%20C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20e%5E%7Bax%7D%20%5Csin%20bx%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7Be%5E%7Bax%7D%5Cleft%20(%20a%20%5Csin%20bx%20-%20b%20%5Ccos%20bx%20%5Cright%20)%7D%7Ba%5E2%20%2B%20b%5E2%7D%20%2B%20C%20%3D%20%5Cfrac%7Be%5E%7Bax%7D%20%5Csin(bx%20-%20%5Ctan%5E%7B-1%7D%20%5Cfrac%7Bb%7D%7Ba%7D%20)%7D%7B%5Csqrt%7Ba%5E2%20%2B%20b%5E2%7D%7D%20%2B%20C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint%20e%5E%7Bax%7D%20%5Ccos%20bx%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7Be%5E%7Bax%7D%5Cleft%20(%20a%20%5Ccos%20bx%20%2B%20b%20%5Csin%20bx%20%5Cright%20)%7D%7Ba%5E2%20%2B%20b%5E2%7D%20%2B%20C%20%3D%20%5Cfrac%7Be%5E%7Bax%7D%20%5Ccos(bx%20-%20%5Ctan%5E%7B-1%7D%20%5Cfrac%7Bb%7D%7Ba%7D%20)%7D%7B%5Csqrt%7Ba%5E2%20%2B%20b%5E2%7D%7D%20%2B%20C%20#0

All Notes 3.3. Differentiation and Integration

3.3.6. Indefinite Integral Reduction Formulas

Integral, In Recurrence Relation

82

https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20%5Cfrac%7Bx%5En%7D%7B%5Csqrt%7Bax%2Bb%7D%7D%20%5C%20%5Ctextup%7Bd%7Dx%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cfrac%7B2x%5En%5Csqrt%7Bax%2Bb%7D%7D%7Ba(2n%2B1)%7D%20-%20%5Cfrac%7B2nb%7D%7Ba(2n%2B1)%7DI_%7Bn-1%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20%5Cfrac%7B%5Ctextup%7Bd%7Dx%7D%7Bx%5En%20%5Csqrt%7Bax%2Bb%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20-%5Cfrac%7B%5Csqrt%7Bax%2Bb%7D%7D%7B(n-1)bx%5E%7Bn-1%7D%7D%20-%20%5Cfrac%7Ba(2n-3)%7D%7B2b(n-1)%7DI_%7Bn-1%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20x%5En%20%5Csqrt%7Bax%2Bb%7D%20%5C%20%5Ctextup%7Bd%7Dx%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cfrac%7B2x%5En%5Csqrt%7B(ax%2Bb)%5E3%7D%7D%7Ba(2n%2B3)%7D%20-%20%5Cfrac%7B2nb%7D%7Ba(2n%2B3)%7DI_%7Bn-1%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20%5Cfrac%7B%5Ctextup%7Bd%7Dx%7D%7B(px%20%2B%20q)%5En%20%5Csqrt%7Bax%2Bb%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20-%5Cfrac%7B%5Csqrt%7Bax%2Bb%7D%7D%7B(n-1)(aq-bp)(px%2Bq)%5E%7Bn-1%7D%7D%20%2B%20%5Cfrac%7Ba(2n-3)%7D%7B2(n-1)(aq-bp)%7DI_%7Bn-1%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20%5Csin%5En%20ax%20%5C%20%5Ctextup%7Bd%7Dx%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20-%5Cfrac%7B1%7D%7Ban%7D%20%5Csin%5E%7Bn-1%7Dax%20%5Ccos%20ax%20%2B%20%5Cfrac%7Bn-1%7D%7Bn%7DI_%7Bn-2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cint%20%5Ccos%5En%20ax%20%5C%20%5Ctextup%7Bd%7Dx%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_n%20%3D%20%5Cfrac%7B1%7D%7Ban%7D%20%5Csin%20ax%20%5Ccos%5E%7Bn-1%7D%20ax%20%2B%20%5Cfrac%7Bn-1%7D%7Bn%7DI_%7Bn-2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I_%7Bm%2C%20n%7D%20%3D%20%5Cint%20%5Csin%5Em%20ax%20%5Ccos%5En%20bx%20%5C%20%5Ctextup%7Bd%7Dx%20%20#0

All Notes 3.3. Differentiation and Integration

3.3.7. Special Definite and Improper Integrals

(for even n)

k!! is the double factorial, see Section 1.7.7.

83

https://www.codecogs.com/eqnedit.php?latex=%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%5Cexp(-ax%5E2)%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7Ba%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20x%5E%7B2n%7D%20%5Cexp(-ax%5E2)%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B(2n%20-%201)!!%7D%7B(2a)%5En%7D%5Csqrt%7B%5Cfrac%7B%5Cpi%7D%7Ba%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20x%5E%7Bn%7D%20%5Cexp(-ax)%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7Bn!%7D%7Ba%5E%7Bn%2B1%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%5Csin%20ax%7D%7Bx%7D%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cpi%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cint_%7B0%7D%5E%7B%5Cpi%20%2F%202%7D%20%5Csin%5Em%20x%20%5Ccos%5En%20x%20%5C%20%5Ctextup%7Bd%7Dx%20%3D%20%5Cfrac%7B(m-1)!!%20(n-1)!!%7D%7B(m%2Bn)!!%7D%5Ctimes%20C%2C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20C%20%3D%20%5Cbegin%7Bcases%7D%20%5Cpi%2F2%20%26%20%5Ctext%7Bif%20%7D%20m%2C%20n%20%5Ctextup%7B%20both%20even%7D%5C%5C%201%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D%20#0

All Notes 3.3. Differentiation and Integration

3.3.8. Differentiation Rules: Product Rule, Quotient Rule, Chain Rule

If u, v, w… are functions then:

● Product rule: (𝑢𝑣)' = 𝑢𝑣' + 𝑢'𝑣 (𝑢𝑣𝑤)' = 𝑢𝑣𝑤' + 𝑢𝑣'𝑤 + 𝑢'𝑣𝑤

● Leibniz rule for repeated differentiation of a product:

(𝑢𝑣)(𝑛) = 𝑢(𝑛)𝑣 + 𝑛𝑢(𝑛−1)𝑣' + ... + 𝑛𝐶
𝑝
 𝑢(𝑛−𝑝)𝑣(𝑝) + ... + 𝑢𝑣(𝑛) =

𝑝=0

𝑛

∑ 𝑛𝐶
𝑝
 𝑢(𝑛−𝑝)𝑣(𝑝)

● Quotient rule:
𝑢
𝑣()' =

𝑢'𝑣 − 𝑣'𝑢

𝑣2

● Chain rule and Implicit differentiation: if z = u(v(x)) then

=𝑧' = (𝑢 ◦ 𝑣)' = 𝑢(𝑣)' = 𝑢'(𝑣) 𝑣'
𝑑𝑧
𝑑𝑥

𝑑𝑧
𝑑𝑣 ×

𝑑𝑣
𝑑𝑥

3.3.9. Integration Rules: Integration by Parts, Integration by Substitution

Integration by parts:

Integration by substitution:

Leibniz Integral Rule for differentiation under the integral sign (Feynman’s Technique):

3.3.10. Dirac Delta Functions (Impulse Function) and the Sifting Theorem

The delta function δ(x) is zero for all x ≠ 0 and ‘spikes’ to +∞ at x = 0, such that .
−∞

∞

∫ δ(𝑥) 𝑑𝑥 = 1

Integral of delta function: (H: Heaviside unit step function)
−∞

𝑥

∫ δ(𝑥 − 𝑎) 𝑑𝑥 = 𝐻(𝑥 − 𝑎)

Sifting property: (Convolution: .)
−∞

∞

∫ 𝑓(𝑥) δ(𝑥 − 𝑎) 𝑑𝑥 = 𝑓(𝑎) 𝑓(𝑥) * δ(𝑥 − 𝑎) = 𝑓(𝑥 − 𝑎)

For unilateral convolutions (integrating from 0 to x), the RHS is multiplied by H(x).

84

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%5C%20%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%20f(x%2C%20y)%20%5C%20%5Cmathrm%7Bd%7D%20y%20%3D%20f(x%2C%20b)%20%5C%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20b%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20-%20f(x%2C%20a)%20%5C%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20a%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%2B%20%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%20%5Cfrac%7B%5Cpartial%20f(x%2C%20y)%7D%7B%5Cpartial%20x%7D%20%5C%20%5Cmathrm%7Bd%7D%20y%20#0

All Notes 3.3. Differentiation and Integration

3.3.11. Standard Substitutions for Integration

Integrals of radicals should use trigonometric (trig sub) or hyperbolic substitutions:

● or → let x = a sin θ or x = a cos θ(𝑎2 − 𝑥2) 𝑎2 − 𝑥2

● or → let x = a tan θ or x = a sinh θ(𝑎2 + 𝑥2) 𝑎2 + 𝑥2

● or → let x = a sec θ or x = a cosh θ(𝑥2 − 𝑎2) 𝑥2 − 𝑎2

Integrals of rational functions of x and radicals should use:

● → let u2 = px + q
1

(𝑎𝑥 + 𝑏) 𝑝𝑥 + 𝑞

● → let = ax + b
1

(𝑎𝑥 + 𝑏) 𝑝𝑥2 + 𝑞𝑥 + 𝑟

1
𝑢

More complicated rational functions of x and should use Euler substitutions:𝑝𝑥2 + 𝑞𝑥 + 𝑟

● if p > 0: → let → x =𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 𝑢 ± 𝑥 𝑝
𝑟 − 𝑢2

±2𝑢 𝑝 − 𝑞

● if r > 0: → let → x =𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 𝑥𝑢 ± 𝑟
±2𝑢 𝑟 − 𝑞

𝑝 − 𝑢2

● if q2 - 4pr > 0: → let → x =𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 𝑝(𝑥 − α)(𝑥 − β) = (𝑥 − α)𝑢
𝑝β − α𝑢2

𝑝 − 𝑢2

Integrals of rational functions of (sin x and/or cos x) or (sinh x and/or cosh x) should use
the Weierstrass substitution (tangent half-angle substitution):

● → let t = tan → sin x = , cos x = , dx =
𝑃(𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠 𝑥)
𝑄(𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠 𝑥)

𝑥
2

2𝑡

1 + 𝑡2
1 − 𝑡2

1 + 𝑡2
2 𝑑𝑡

1 + 𝑡2

● → let t = tanh → sinh x = , cosh x = , dx =
𝑃(𝑠𝑖𝑛ℎ 𝑥, 𝑐𝑜𝑠ℎ 𝑥)
𝑄(𝑠𝑖𝑛ℎ 𝑥, 𝑐𝑜𝑠ℎ 𝑥)

𝑥
2

2𝑡

1 − 𝑡2
1 + 𝑡2

1 − 𝑡2
2 𝑑𝑡

1 − 𝑡2

85

All Notes 3.3. Differentiation and Integration

3.3.12. Identities for Definite Integrals

Simple identities: ,
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 = −
𝑏

𝑎

∫ 𝑓(𝑥) 𝑑𝑥
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 =
𝑎

𝑏

∫ 𝑓(𝑦) 𝑑𝑦

Reflections (King’s rules): f (a + b x) dx,
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 =
𝑎

𝑏

∫ −
𝑎

𝑏

∫
𝑓(𝑥)

𝑓(𝑥) + 𝑓(𝑎 + 𝑏 − 𝑥) 𝑑𝑥 =
𝑏 − 𝑎

2

Periodic function, T: for any a, b and integers n
𝑎

𝑎 + 𝑛𝑇

∫ 𝑓(𝑥) 𝑑𝑥 = 𝑛
𝑏

𝑏 + 𝑇

∫ 𝑓(𝑥) 𝑑𝑥

Parity: odd: , even:
−𝑎

𝑎

∫ 𝑓(𝑥) 𝑑𝑥 = 0
−𝑎

𝑎

∫ 𝑓(𝑥) 𝑑𝑥 = 2
0

𝑎

∫ 𝑓(𝑥) 𝑑𝑥

Absolute values:
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 ≤
𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥
||||

||||
≤

𝑎

𝑏

∫ 𝑓(𝑥)| | 𝑑𝑥

Cauchy-Schwarz inequality:
𝑎

𝑏

∫ 𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥
||||

||||

2

≤
𝑎

𝑏

∫ 𝑓(𝑥)2 𝑑𝑥() 𝑎

𝑏

∫ 𝑔(𝑥)2 𝑑𝑥()
Monotonically increasing:

𝑎

𝑏

∫ 𝑓(𝑥) 𝑑𝑥 +
𝑓(𝑎)

𝑓(𝑏)

∫ 𝑓−1(𝑥) 𝑑𝑥 = 𝑏 𝑓(𝑏) − 𝑎 𝑓(𝑎)

86

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4. Ordinary Differential Equations, Laplace and Z-Transforms

3.4.1. Classification of Ordinary Differential Equations (ODEs)

Ordinary differential equation (ODE): an equation relating a dependent variable y and its
derivatives (y’, y’’, etc) with respect to a single independent variable x.

(The dependent function is sometimes also written as y(x) or x(t), or any other variables.)

Linear ODE: (n: order, ar: coefficient functions)
𝑟=0

𝑛

∑ 𝑎
𝑟
(𝑥) 𝑦(𝑟)(𝑥) = 𝑓(𝑥)

Homogeneous ODE: linear ODE with f (x) = 0. (nonhomogeneous: f (x) ≠ 0)

Autonomous ODEs have no explicit dependence on x e.g. y dy/dx = 1 - y.

Nonlinear ODEs may have functions of the derivatives or products of variables e.g. xy, y2, exp y’.
The degree of a nonlinear ODE is the exponent on the highest-order derivative
e.g. x(y’’)3 - (y’)4 = 1 is a nonlinear second-order ordinary differential equation with degree 3.

3.4.2. Separable DEs (First Order, Nonlinear)

For a separated ODE of the form , the solution can be found by integrating𝑓(𝑦) 𝑑𝑦 = 𝑔(𝑥) 𝑑𝑥

both sides. Initial conditions y(x0) = y0 can be applied with .
𝑦

0

𝑦

∫ 𝑓(𝑦) 𝑑𝑦 =
𝑥

0

𝑥

∫ 𝑔(𝑥) 𝑑𝑥

3.4.3. Linear DEs (First Order, Linear)

To solve an ODE of the form , multiply both sides by the integrating
𝑑𝑦
𝑑𝑥 + 𝑃(𝑥) 𝑦 = 𝑄(𝑥)

factor I (x) = exp(∫ P(x) dx) and use the product rule so that the solution is given by
I(x) y(x) = ∫ I(x) Q(x) dx. The computation of I(x) does not require an arbitrary constant +C,
even if initial conditions are not given.

87

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.4. Homogeneous DEs (First Order, Nonlinear) and Common Substitutions

To solve an ODE of the form = f , substitute u = so that = u + x , which
𝑑𝑦
𝑑𝑥

𝑦
𝑥() 𝑦

𝑥
𝑑𝑦
𝑑𝑥

𝑑𝑢
𝑑𝑥

yields , which is a separable DE in u(x).
𝑑𝑢

𝑓(𝑢) − 𝑢 =
𝑑𝑥
𝑥

To solve an ODE of the form = f (ax + by + c), substitute u = ax + by + c so that
𝑑𝑦
𝑑𝑥

= , which yields = b f (u) + a, which is a separable DE in u(x).
𝑑𝑦
𝑑𝑥

1
𝑏

𝑑𝑢
𝑑𝑥 −

𝑎
𝑏

𝑑𝑢
𝑑𝑥

To solve an ODE of the form , substitute x = u + h and y = v + k, where
𝑑𝑦
𝑑𝑥 =

𝑎
1
𝑥 + 𝑏

1
𝑦 + 𝑐

1

𝑎
2
𝑥 + 𝑏

2
𝑦 + 𝑐

2

h and k are the constant solutions to the system { , }.𝑎
1
ℎ + 𝑏

1
𝑘 + 𝑐

1
= 0 𝑎

2
ℎ + 𝑏

2
𝑘 + 𝑐

2
= 0

Then, = and the DE becomes = , which is a homogeneous DE in .
𝑑𝑦
𝑑𝑥

𝑑𝑣
𝑑𝑢

𝑑𝑣
𝑑𝑢 −

𝑎
1
 + 𝑏

1
 𝑣

𝑢

𝑎
2
 + 𝑏

2
 𝑣

𝑢

𝑣
𝑢

88

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.5. Linear DEs with Constant Coefficients (Second Order, Linear)

To solve an ODE of the form : (or with higher order)𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦
𝑑𝑥 + 𝑐 𝑦 = 𝑓(𝑥)

● Solve the characteristic equation, . (or with higher order)𝑎λ2 + 𝑏λ + 𝑐 = 0

● Depending on the nature of the roots λ, find the complementary function, yCF:

○ If λ1 and λ2 are real and distinct,

or C cosh λ1x + D sinh λ2x𝑦
𝐶𝐹

(𝑥) = 𝐴 𝑒
λ

1
𝑥

+ 𝐵 𝑒
λ

2
𝑥

𝑦
𝐶𝐹

(𝑥) =

○ If λ1 = λ2 = λ is the real repeated root,
𝑦

𝐶𝐹
(𝑥) = (𝐴 + 𝐵𝑡)𝑒λ𝑡

○ If λ1 = α + iβ and λ2 = α - iβ are the distinct complex conjugate roots,

or𝑦
𝐶𝐹

(𝑥) = 𝑒α𝑥 𝐴 𝑐𝑜𝑠 β𝑥 + 𝐵 𝑠𝑖𝑛 β𝑥() 𝑦
𝐶𝐹

= 𝐶 𝑒α𝑥 𝑠𝑖𝑛(β𝑥 − 𝐷)

● Find the particular integral yPI using one of the following methods:
(note that if f (x) = 0 (homogeneous) then yPI(x) = 0.)

○ Method of Undetermined Coefficients: choose a suitable trial function based on
the form of f (x) from the table in Section 3.4.5, substituting it into the differential
equation and equating linearly independent terms to solve for the coefficients.

○ Variation of Parameters: evaluate the Wronskian,
where y1 and y2 are the basis functions of yCF.
The particular integral is then

𝑦
𝑃𝐼

(𝑥) = − 𝑦
1
(𝑥) ∫

𝑦
2
(𝑥) 𝑓(𝑥)

𝑊(𝑥) 𝑑𝑥 + 𝑦
2
(𝑥) ∫

𝑦
1
(𝑥) 𝑓(𝑥)

𝑊(𝑥) 𝑑𝑥

● By superposition, the solution is ,𝑦(𝑥) = 𝑦
𝐶𝐹

(𝑥) + 𝑦
𝑃𝐼

(𝑥)

● The remaining constants in the yCF(x) term can be found using initial/boundary conditions.

Alternative methods without solving the characteristic equation are:

● Laplace transform (Section 3.4.15.): take LT of both sides, rearrange for Y(s), take ILT

● Convolution: if the impulse response g(t) is known, then .𝑦(𝑡) = (𝑓 * 𝑔)(𝑡)
Note that for an LTI system with y(0) = 0 the impulse response is the derivative of the step response i.e.
let f (x) = 1 and differentiate the solution. This is the 1D Green’s function approach.

89

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.6. Trial Functions for Nonhomogeneous Differential Equations

For linear differential equations with constant coefficients, where f (x) is linearly
independent of the complementary function:

f (x) Trial function

1 C

xn, for integer n C xn + D xn-1 +… + C0

kx C kx

ekx C ekx

x ekx (Cx + D) ekx

xn ekx (C xn + D xn-1 +… + C0) ekx

sin px or cos px C sin px + D cos px

ekx sin px or ekx cos px (C sin px + D cos px) ekx

xn ekx sin px or xn ekx cos px (C xn + D xn-1 +… + C0)(CS sin px + CC cos px) ekx

where C, D, …, CC, CS are undetermined coefficients.

If f (x) has a component which is not linearly independent of yCF(x), then the corresponding
component in the trial function must be multiplied by x, or by x2 in the case where this is
still not linearly independent (i.e. repeated real roots solution with the same form as f (x).)

3.4.7. Cauchy-Euler DEs (Second Order, Linear)

To solve an ODE of the form , substitute u = ln x so that𝑎𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑏𝑥
𝑑𝑦
𝑑𝑥 + 𝑐 𝑦 = 𝑓(𝑥)

= and = ,
𝑑𝑦
𝑑𝑥

1
𝑥

𝑑𝑦
𝑑𝑢

𝑑2𝑦

𝑑𝑥2
1

𝑥2
𝑑2𝑦

𝑑𝑢2 − 𝑑𝑦
𝑑𝑢()

which yields a second-order differential equation with constant coefficients. The resulting
RHS will be f (eu), for which a particular integral may often be found.

3.4.8. Bernoulli DEs (First Order, Nonlinear)

To solve an ODE of the form , substitute so that
𝑑𝑦
𝑑𝑥 + 𝑃(𝑥) 𝑦(𝑥) = 𝑄(𝑥) [𝑦(𝑥)]𝑛 𝑢(𝑥) = 𝑦1−𝑛(𝑥)

= , which yields a linear ODE in u(x): .
𝑑𝑦
𝑑𝑥

1
1 − 𝑛 𝑢

𝑛
1−𝑛 𝑑𝑢

𝑑𝑥
𝑑𝑢
𝑑𝑥 + (1 − 𝑛) 𝑃(𝑥) 𝑢 = (1 − 𝑛) 𝑄(𝑥)

90

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.9. Exact DEs (First Order, Nonlinear)

An ODE M(x, y) dx + N(x, y) dy = 0 ↔ N(x, y) + M(x, y) = 0 is exact if there exists a
𝑑𝑦
𝑑𝑥

‘potential function’ F(x, y) such that and .∂𝐹
∂𝑥 = 𝑀(𝑥, 𝑦) ∂𝐹

∂𝑦 = 𝑁(𝑥, 𝑦)

The condition for exactness is met if (by Clairhaut’s theorem).∂𝑀
∂𝑦 = ∂𝑁

∂𝑥

To solve, find F(x, y) by integrating M and N, separating the components for each variable.
Use unknown functions f (x) and g(y) for the arbitrary constants of integration, and solve to
make the antiderivatives equal to each other. The solutions are the contour lines of
F(x, y), implicitly satisfying F(x, y) = C for some arbitrary constant C.

Almost Exact DEs:

An ODE M(x, y) dx + N(x, y) dy = 0 that is not exact can sometimes be multiplied by an

integrating factor on both sides to make an ODE thatµ(𝑥, 𝑦) 𝑀(𝑥, 𝑦) 𝑑𝑥 + 𝑁(𝑥, 𝑦) = 0

is exact i.e. (where and).∂𝑀
∂𝑦 = ∂𝑁

∂𝑥 𝑀(𝑥, 𝑦) = µ(𝑥, 𝑦) 𝑀(𝑥, 𝑦) 𝑁(𝑥, 𝑦) = µ(𝑥, 𝑦) 𝑁(𝑥, 𝑦)

Techniques for finding such an integrating factor, if it exists:

● If is a function of x only, then exp dx.1
𝑁(𝑥, 𝑦)

∂𝑀
∂𝑦 − ∂𝑁

∂𝑥() µ(𝑥) = ∫ 1
𝑁(𝑥, 𝑦)

∂𝑀
∂𝑦 − ∂𝑁

∂𝑥()
● If is a function of y only, then exp dy.1

𝑀(𝑥, 𝑦)
∂𝑁
∂𝑥 − ∂𝑀

∂𝑦() µ(𝑦) = ∫ 1
𝑀(𝑥, 𝑦)

∂𝑁
∂𝑥 − ∂𝑀

∂𝑦()

91

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.10. Power Series Solution of DEs (Taylor Series Expansions) (Any Order, Linear)

To find the power series expansion of the solution to a DE of the form𝑦(𝑥) =
𝑛=0

∞

∑ 𝑎
𝑛
 𝑥𝑛

, valid in some neighbourhood around x = 0:
𝑘=0

𝑁

∑ 𝑝
𝑘
(𝑥) 𝑦(𝑘)(𝑥) = 𝑓(𝑥)

Power Series Method:

● Let … in the DE.𝑦(𝑥) =
𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛 ⇒ 𝑦'(𝑥) =

𝑛=0

∞

∑ 𝑛 𝑎
𝑛
 𝑥𝑛−1 ⇒ 𝑦''(𝑥) =

𝑛=0

∞

∑ 𝑛(𝑛 − 1) 𝑎
𝑛
 𝑥𝑛−2

● Write the power series for each and f (x) and absorb these powers into the series.𝑝
𝑘
(𝑥) 𝑦(𝑛)

● Re-index the summations to make them all have the same exponents of x.
● Pull out the first few terms of summations to make them all start at the same index n.
● Combine the summations and factor out the xn term.
● Set everything inside the summation to zero to yield a recurrence relation in an, and set the pulled out

terms to zero.

● Use initial conditions e.g. , or let for a linearly independent set𝑎
𝑛

= 𝑦(𝑛)(0)
𝑛! (𝑎

0
, 𝑎

1
, ...) ∈ {(1, 0), (0, 1), ...}

of basis solutions.

Leibniz-Maclaurin Method:

● Differentiate both sides of the differential equation with respect to x, n times, using the
general Leibniz rule for differentiating products.

● Let x = 0, convert the derivatives to series coefficients i.e. to yield a recurrence relation in an.𝑎
𝑛

= 𝑦(𝑛)(0)
𝑛!

● If there are undetermined coefficients, evaluate the original DE at x = 0 to find them.

Frobenius Method: used when any and f (x) is not infinitely differentiable at x = 0.𝑝
𝑘
(𝑥)

For the DE :𝑦'' + 𝑝(𝑥) 𝑦' + 𝑞(𝑥) 𝑦 = 0
● Solve the indicial equation, r(r - 1) + u0r + v0 = 0, where u0 and v0 are the constant terms in the Taylor

series expansion of u(x) = x p(x) and v(x) = x2 q(x) respectively, for r.
● Case 1: Distinct real roots where r1 and r2 do not differ by an integer:

○ Use power series method with , find recurrence relation in terms of r𝑦 =
𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛+𝑟

○ Sub in each root: 𝑦 = 𝐴
𝑛=0

∞

∑ 𝑎
𝑛
𝑥

𝑛+𝑟
1 + 𝐵

𝑛=0

∞

∑ 𝑏
𝑛
𝑥

𝑛+𝑟
2

● Case 2: repeated roots. 𝑦 = (𝐴 + 𝐵 𝑙𝑛 𝑥)
𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛+𝑟 + 𝐵

𝑛=1

∞

∑ 𝑏
𝑛
𝑥𝑛+𝑟, 𝑏

𝑛
=

𝑑𝑎
𝑛

𝑑𝑟 (0)

● Case 3: roots that differ by an integer. 𝑦 = (𝐴 + 𝐵 𝑙𝑛 𝑥)
𝑛=0

∞

∑ 𝑎
𝑛
𝑥

𝑛+𝑟
1 + 𝐵

𝑛=0

∞

∑ 𝑏
𝑛
𝑥

𝑛+𝑟
1, 𝑏

𝑛
=

𝑑𝑎
𝑛

𝑑𝑟 (0)

Fuch’s theorem: radius of convergence of Frobenius series, R ≥ min{Rp(x), Rq(x), Rr(x)}.
If x = 0 is the only ‘regular singular point’ (u(x) and v(x) infinitely differentiable at x = 0) then the
Frobenius series converges everywhere. Otherwise, R is the distance to the nearest singular point.

92

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.11. Higher Order DEs as Systems of First Order DEs

An Nth order ODE can be written as a set of N first-order ODEs.
𝑛=0

𝑁

∑ 𝑎
𝑛
(𝑥) 𝑦(𝑛)(𝑥) = 𝑓(𝑥)

Label the N new dependent variables .𝑦 → 𝑦
0
, 𝑑𝑦

𝑑𝑥 → 𝑦
1
, ... 𝑑𝑁−1𝑦

𝑑𝑥𝑁−1 → 𝑦
𝑁−1{ }

The system is then .
𝑑𝑦

0

𝑑𝑥 = 𝑦
1
,

𝑑𝑦
1

𝑑𝑥 = 𝑦
2
, ...,

𝑑𝑦
𝑁−2

𝑑𝑥 = 𝑦
𝑁−1

,
𝑑𝑦

𝑁−1

𝑑𝑥 = 𝑓(𝑥) −
𝑛=0

𝑁−1

∑ 𝑎
𝑛
(𝑥) 𝑦

𝑛

⎰
⎱

⎱
⎰

Initial conditions correspond directly to the initial condition for each equation in the system.
The method still works for nonlinear higher order ODEs but the resulting system will be nonlinear.

ODEs in this form are readily solved by computer/numerical methods.

93

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.12. Systems of Differential Equations

A system of n first-order ODEs can be written in the form where x is a vector of
unknown functions: x = [x1(t), x2(t), …, xN(t)]T.

An autonomous system is one in which f(x, t) = f(x) i.e. explicitly independent of t.

Linear homogeneous systems with constant coefficients:

● Standard form: (A: square n × n matrix of constant coefficients)

● Ansatz: x = exp(At) x0 (x0: initial conditions at t = 0)

● General solution (for a 2 × 2 system): (u: eigenvectors of A, λ: eigenvalues of A)

(u: eigenvectors of A, λ: eigenvalues of A)

Linear nonhomogeneous systems with constant coefficients:

● Standard form: + f(t)

Solution methods include the method of undetermined coefficients (using the
complementary solution from the homogeneous case) or variation of parameters. The
formula for variation of parameters is

(X: matrix where each column is a linearly independent
part of the complementary solution)

Phase plane and equilibrium point stability: equilibrium point(s) occur when dx/dt = 0.

● For linear homogeneous systems, the origin is the only equilibrium point.

● The eigenvectors of A are directed along the asymptotic trajectories of the system (nullclines).

● An equilibrium point is the intersection of the x and y nullclines, for which and .𝑑𝑥
𝑑𝑡 = 0 𝑑𝑦

𝑑𝑡 = 0
● For nonlinear systems, the nullclines may be curved.

94

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7B%5Cdot%7Bx%7D%7D%20%3D%20%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Bx%7D(t)%20%3D%20%5Cbegin%7Bcases%7D%20c_1%20e%5E%7B%5Clambda_1%20t%7D%20%5Cmathbf%7Bu%7D_1%20%2B%20c_2%20e%5E%7B%5Clambda_2%20t%7D%20%5Cmathbf%7Bu%7D_2%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%5C%20%5Ctext%7Bare%20real%7D%20%5C%5C%20c_1%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20%2B%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%2B%20c_2%20e%5E%7B%5Calpha%20t%7D%20(%5Cmathbf%7Bu%7D_1%20%5Ccos%20%5Cbeta%20t%20-%20%5Cmathbf%7Bu%7D_2%20%5Csin%20%5Cbeta%20t)%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda_%7B1%2C2%7D%20%3D%20%5Calpha%20%5Cpm%20%5Cbeta%20i%20%5C%20%5Ctext%7Bare%20complex%7D%20%5C%5C%20c_1%20e%5E%7B%5Clambda%20t%7D%20%5Cmathbf%7Bu%7D%20%2B%20c_2%20e%5E%7B%5Clambda%20t%7D%20(%5Cmathbf%7Bu%7Dt%20%2B%20%5Cmathbf%7Bv%7D)%2C%20%5C%20%5Ctext%7Bfor%20any%7D%20%5C%20%5Cmathbf%7Bv%7D%20%3A%20(%5Cmathbf%7BA%7D%20-%20%5Clambda%20%5Cmathbf%7BI%7D)%20%5Cmathbf%7Bv%7D%20%3D%20%5Cmathbf%7Bu%7D%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Clambda%20%5C%20%5Ctext%7Bis%20a%20repeated%20defective%20eigenvalue%7D%20%5Cend%7Bcases%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7B%5Cdot%7Bx%7D%7D%20%3D%20%5Cmathbf%7BA%7D%5Cmathbf%7Bx%7D%20#0

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.13. Graphical Representations of Differential Equations

Slope Field (Direction Field) of a Differential Equation

For a differential equation , the slope field is a unit vector field in the x-y
𝑑𝑦
𝑑𝑥 = 𝑓(𝑥, 𝑦)

plane given by u(x, y) = i + j.1

1 + 𝑓(𝑥, 𝑦)2

𝑓(𝑥, 𝑦)

1 + 𝑓(𝑥, 𝑦)2

Every solution to the differential equation is a field line of the vector field.

Curves with = k for constant k are ‘isoclines’.
𝑑𝑦
𝑑𝑥 = 𝑓(𝑥, 𝑦)

Example: slope field for .
𝑑𝑦
𝑑𝑥 = 𝑥2 − 𝑥 − 2

The curves represent solutions for initial conditions y(0) = 4,
y(0) = 0 and y(0) = -4.

Phase Plane of a System of Differential Equations

For a system of two ODEs { = f (x, y, t), = g (x, y, t) }, the phase space plot is a vector
𝑑𝑥
𝑑𝑡

𝑑𝑦
𝑑𝑡

field in the x-y plane given by u(x, y, t) = i + j.𝑓(𝑥, 𝑦, 𝑡)

𝑓(𝑥, 𝑦, 𝑡)2 + 𝑔(𝑥, 𝑦, 𝑡)2

𝑔(𝑥, 𝑦, 𝑡)

𝑓(𝑥, 𝑦, 𝑡)2 + 𝑔(𝑥, 𝑦, 𝑡)2

If the system is autonomous (no t dependence), this is a static vector field.

Example: phase portrait for { = x(7 - x - 2y), = y(5 - y - x) }
𝑑𝑥
𝑑𝑡

𝑑𝑦
𝑑𝑡

Lines for = 0 are shown in blue (x-nullclines: x = 0, x + 2y = 7)
𝑑𝑥
𝑑𝑡

Lines for = 0 are shown in red (y-nullclines: y = 0, x + y = 5)
𝑑𝑦
𝑑𝑡

A fixed point occurs at the intersection of nullclines.

95

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.14. Special Forms of DEs (Second Order, Nonlinear)

Bessel’s differential equation (generalised):

Spherical Bessel’s differential equation (a particular case of the above):

In the case n = 0, the solution is , for which B’ = 0 if y(0) is finite.𝑦 = 𝐴' 𝑠𝑖𝑛 λ𝑥
λ𝑥 − 𝐵' 𝑐𝑜𝑠 λ𝑥

λ𝑥

Generalised Laguerre differential equation:

Hypergeometric differential equation:

Confluent Hypergeometric differential equation:

Hermite’s differential equation:

(For the special function definitions, see Section 1.7.)

96

https://www.codecogs.com/eqnedit.php?latex=%20x%5E2%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%20y%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D%20%2B%20(2p%20%2B%201)x%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%2B%20%5Cleft%20(%20%5Clambda%20%5E2%20x%5E%7B2q%7D%20%2B%20%5Calpha%5E2%20%5Cright%20)y%20%3D%200%20%5C%20%5C%20%5C%20%5C%20%5CRightarrow%20%5C%20%5C%20%5C%20%5C%20%20y%20%3D%20x%5E%7B-p%7D%20%5Cleft%20(%20A%20%5Ccdot%20J_%7B%5Cfrac%7B%5Csqrt%7Bp%5E2%20-%20%5Calpha%5E2%7D%7D%7Bq%7D%7D%20%5Cleft%20(%20%5Cfrac%7B%5Clambda%7D%7Bq%7D%20x%5Eq%20%5Cright%20)%20%2B%20B%20%5Ccdot%20Y_%7B%5Cfrac%7B%5Csqrt%7Bp%5E2%20-%20%5Calpha%5E2%7D%7D%7Bq%7D%7D%20%5Cleft%20(%20%5Cfrac%7B%5Clambda%7D%7Bq%7D%20x%5Eq%20%5Cright%20)%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%5E2%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%20y%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D%20%2B%202x%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%2B%20%5Cleft%20(%20%5Clambda%20%5E2%20x%5E2%20-%20n(n%2B1)%20%5Cright%20)y%20%3D%200%20%5C%5C%20%5C%5C%20%5CRightarrow%20%5C%20%5C%20%5C%20%5C%20y%20%3D%20A%20%5Ccdot%20%5Cfrac%7BJ_%7Bn%2B%5Cfrac%7B1%7D%7B2%7D%7D(%5Clambda%20x)%7D%7B%5Csqrt%7B%5Clambda%20x%7D%7D%20%2B%20B%20%5Ccdot%20%5Cfrac%7BY_%7Bn%2B%5Cfrac%7B1%7D%7B2%7D%7D(%5Clambda%20x)%7D%7B%5Csqrt%7B%5Clambda%20x%7D%7D%20%3D%20A'%20%5Ccdot%20j_n(%5Clambda%20x)%20%2BB'%20%5Ccdot%20y_n(%5Clambda%20x)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%20y%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D%20%2B%20(%5Calpha%20%2B%201-x)%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%2B%20ny%20%3D%200%20%5C%20%5C%20%20%5CRightarrow%20%5C%20%5C%20y%20%3D%20A%20%5Ccdot%20L_n%5E%7B(%5Calpha)%7D(x)%20%2B%20B%20%5Ccdot%20U(-n%2C%20%5Calpha%20%2B%201%2C%20x)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x(1-x)%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%20y%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D%20%2B%20(c%20-%20(a%2Bb%2B1)x)%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20-%20aby%20%3D%200%20%5C%5C%20%5C%5C%20%20%5CRightarrow%20%5C%20%5C%20y%20%3D%20A%20%5Ccdot%20%5C%20_2F_1(a%2C%20b%3B%20c%3B%20x)%20%2B%20B%20%5Ccdot%20(-x)%5E%7B1-c%7D%20%5C%20_2F_1(a-c%2B1%2C%20b-c%2B1%3B%202-c%3B%20x)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%20y%7D%7B%5Cmathrm%7Bd%7D%20x%5E2%7D%20%2B%20(c%20-%20x)%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20-%20ay%20%3D%200%20%5C%20%5C%20%5CRightarrow%20%5C%20%5C%20y%20%3D%20A%20%5Ccdot%20%5C%20_1F_1(a%3B%20c%3B%20x)%20%2B%20B%20%5Ccdot%20%5C%20U(a%2C%20c%2C%20x)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%5Cleft%20(%20e%5E%7B-%5Cfrac%7B1%7D%7B2%7Dx%5E2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5Cright%20)%20%2B%20%5Clambda%20e%5E%7B-%5Cfrac%7B1%7D%7B2%7Dx%5E2%7Dy%20%3D%200%20%5C%20%5C%20%5CRightarrow%20%5C%20%5C%20y%20%3D%20A%20%5Ccdot%20H_%7B%5Clambda%7D%5Cleft%20(%20%5Cfrac%7Bx%7D%7B%5Csqrt%7B2%7D%7D%20%5Cright%20)%20%2B%20B%20%5Ccdot%20%5C%20_1F_1(-%5Cfrac%7B%5Clambda%7D%7B2%7D%3B%20%5Cfrac%7B1%7D%7B2%7D%3B%20%5Cfrac%7Bx%5E2%7D%7B2%7D)%20#0

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.15. Laplace Transforms

Derivatives, Integrals, Deltas and Algebraic Functions:

f (t) F(s)

Powers, Exponential, Trigonometric and Hyperbolic:

f (t) F(s) f (t) F(s)

Initial Value / Final Value Theorem: and .𝑓(0+) =
𝑠 ∞
lim
→

𝑠 𝐹(𝑠)
𝑡 ∞
lim
→

𝑓(𝑡) =
𝑠 0
lim
→

𝑠 𝐹(𝑠)

97

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.16. Convolution Theorem

The Laplace transform of a convolution is the product of their transforms:

equivalently

The convolution theorem also applies to Fourier transforms (Section 3.6.5).

3.4.17. Inverse Laplace Transform by the Cauchy Residue Theorem

The inverse Laplace transform is defined as (Fourier-Mellin formula)

where γ is a constant larger than the real part of any pole of F(s).

If γ = 0 (i.e. no unstable poles: Re(sk) < 0) then this is similar to the inverse Fourier transform.

Using the Residue Theorem and Jordan’s Lemma (using a semicircular contour), this is
equivalent to (by complex analysis):

with the sum over all residues at the poles of F(s). The residue is defined as

where n is the multiplicity of pole sk.

If n = 1 then the residue simplifies to

which is the formalised ‘cover-up method’ of partial fractions if F is rational.

98

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BL%7D%5C%7B(f%20*%20g)(t)%20%5C%7D%20%3D%20F(s)%20%5Ccdot%20%20G(s)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5C%7B%20F(s)%20G(s)%20%5C%7D%20%3D%20(f%20*%20g)(t)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f(t)%20%3D%20%5Cmathcal%7BL%7D%5E%7B-1%7D%20%5C%7B%20F(s)%20%5C%7D%20%3D%20%5Cfrac%7B1%7D%7B2%20%5Cpi%20i%7D%20%5Cint%20%5Cdisplaylimits_%7B%5Cgamma%20-i%20%5Cinfty%7D%5E%7B%5Cgamma%20%2Bi%20%5Cinfty%7D%20F(s)%20%5C%20e%5E%7Bst%7D%20%5C%20%5Ctextup%7Bd%7Ds%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f(t)%20%3D%202%5Cpi%20i%20%5Csum_%7Bk%7D%5E%7B%7D%20%7B%5Ctextup%7BRes%7D%7D%5BF(s)%2C%20s_k%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%7B%5Ctextup%7BRes%7D%7D%5BF(s)%2C%20s_k%5D%20%3D%20%5Cfrac%7B1%7D%7B(n-1)!%7D%5Clim_%7Bs%5Crightarrow%20s_k%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E%7Bn-1%7D%7D%7B%5Cmathrm%7Bd%7D%20x%5E%7Bn-1%7D%7D%20(s-s_k)%5En%20F(s)%20#0

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.18. Linear Difference Equations

Difference Equations are discretised differential equations, expressed as a recurrence
relation between terms of a sequence {y}n for n = 0, 1, 2, …

To solve a second-order difference equation of the form (or higher order)

,𝑎 𝑦
𝑛

+ 𝑏 𝑦
𝑛−1

+ 𝑐 𝑦
𝑛−2

= 𝑓(𝑛)

● Solve the characteristic equation, . (or higher order)𝑎λ2 + 𝑏λ + 𝑐 = 0

● Depending on the nature of the roots λ, find the complementary function, yn(CF):

○ If λ1 and λ2 are real and distinct,

𝑦
𝑛

(𝐶𝐹) = 𝐴 λ
1

𝑛 + 𝐵 λ
2

𝑛

○ If λ1 = λ2 = λ is the real repeated root,

𝑦
𝑛

(𝐶𝐹) = 𝐴 λ
1

𝑛 + 𝐵𝑛 λ
2

𝑛

○ If λ1 = R exp iθ and λ2 = R exp -iθ are the distinct complex conjugate roots,

𝑦
𝑛

(𝐶𝐹) = 𝑅𝑛 𝐴 𝑐𝑜𝑠 𝑛θ + 𝐵 𝑠𝑖𝑛 𝑛θ()

● Use the Method of Undetermined Coefficients to determine the particular ‘integral’,
yn(PI) (note that if f (n) = 0 then yn(PI) = 0). The trial functions are identical to the case
of a nonhomogeneous differential equation (Section 3.4.5.), with x replaced by n.

● By superposition, the solution is yn = yn(CF) + yn(PI) where the remaining constants can
be found using given conditions.

Alternative methods without solving the characteristic equation are:

● Z-transform / generating function (Section 3.4.19): yn = Z -1(Y(z)), where Y(z) is the
generating function with x = z-1 given by Y(z) = ∑n yn z-n (the Z transform). (The
generating function is Y(x) = ∑n yn xn.)

● Convolution: if the impulse response gn is known, then yn = (f * g)[n].
For the definition of the discrete convolution, see Section 5.4.7.

99

All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.19. Z-Transforms, Inverse Z Transforms and Generating Functions

Initial Value / Final Value Theorem: and𝑦
0

=
𝑧 ∞
lim
→

𝑌(𝑧)
𝑛 ∞
lim
→

𝑦
𝑛

=
𝑧 1
lim
→

(𝑧 − 1) 𝑌(𝑧)

Note: the final value theorem requires the poles of (z - 1) Y(z) to have |z| < 1.

The Laplace-analogous residue formula for the Inverse Z-Transform is

where the residue Res is defined in Section 3.4.10. Note the extra factor of zn-1.
100

https://www.codecogs.com/eqnedit.php?latex=%20g_n%20%3D%20%5Cmathcal%7BZ%7D%5E%7B-1%7D%20%5C%7B%20G(z)%20%5C%7D%20%3D%20%5Cfrac%7B1%7D%7B%5C2%20%5Cpi%20i%7D%20%5Coint%20_C%20G(z)%20%5C%20z%5E%7Bn-1%7D%20%5C%20%5Ctextup%7Bd%7Dz%20%3D%20%5Csum%20_k%20%5Ctextup%7BRes%7D%20%5Cleft%20%5B%20G(z)%20z%5E%7Bn-1%7D%20%2C%20z_k%20%5Cright%20%5D%20#0

All Notes 3.5. Multivariable and Vector Calculus

3.5. Multivariable and Vector Calculus
3.5.1. Differentiation of Vector Products

For vector-valued functions a(t), b(t), and scalar-valued functions u(t) of a single variable,

3.5.2. Jacobian Matrix

For a vector valued function f of n variables x1…xn, the Jacobian J is :𝐽
𝑖𝑗

=
∂𝑓

𝑖

∂𝑥
𝑗

3.5.3. Hessian Matrix

For a scalar valued function f of n variables x1…xn, the Hessian H is :𝐻
𝑖𝑗

=
∂2𝑓

∂𝑥
𝑖
 ∂𝑥

𝑗

The Hessian for a vector-valued function f = [f1, f2, …, fn] is the third-rank Hessian tensor
whose elements are [Hf1, Hf2, …, Hfn], where Hfi is the Hessian matrix of fi.

101

All Notes 3.5. Multivariable and Vector Calculus

3.2.3. Multivariable Taylor Series

For a scalar-valued function f (x) about x0,

In the case of a two-variable scalar function f about (x0, y0),

The quadratic approximation is

f (x0 + h) ≈ f (x0) + hT ∇f + hT H(x0) h + …
1
2!

where H(x0) is the Hessian matrix of f (Section 3.5.3) at x0. The linear term hT ∇f is the
directional derivative of f in the direction of h, also written as Dh f (x0) =∇f・h.

For a vector-valued function f(x) about x0,

The quadratic approximation is

f(x0 + h) ≈ f(x0) + J(x0) h + hT H(x0) h + …
1
2!

where H(x0) is the Hessian tensor of f (Section 3.5.3) at x0, and J(x0) is the Jacobian matrix of
f at x0. In Einstein summation notation (Section 4.4.1), this quadratic approximation is

fi (x0 + h) ≈ fi (x0) + Jij(x0) hj + Hijk(x0) hj hk + …
1
2!

102

All Notes 3.5. Multivariable and Vector Calculus

3.5.4. Stationary Points of a Scalar-Valued Multivariable Function

A function ϕ(x1, …, xn) has a stationary point when ∇ϕ = 0 i.e. = = … =
∂ϕ
∂𝑥

1

∂ϕ
∂𝑥

2

∂ϕ
∂𝑥

𝑛

0.

If the determinant of the Hessian matrix ∆ = |H| ≠ 0 at a stationary point, then

● Minimum point: ∆ > 0 and all > 0. (ϕ is locally convex)
∂2ϕ

∂𝑥
𝑖
2

● Maximum point: ∆ > 0 and all < 0. (ϕ is locally concave)
∂2ϕ

∂𝑥
𝑖
2

● Saddle point: all other cases for which ∆ ≠ 0.

The case ∆ = 0 can be a maximum, a minimum, a saddle point, or none of these.

For two variables, ϕ(x, y), ∆ = .
∂2ϕ

∂𝑥2
∂2ϕ

∂𝑦2 − ∂2ϕ
∂𝑥 ∂𝑦()2

Second partial derivatives are symmetric (Clairhaut’s theorem): .
∂2ϕ

∂𝑥 ∂𝑦 = ∂2ϕ
∂𝑦 ∂𝑥

3.5.5. Total Differentials

For a function ϕ(x, y, z...), dϕ = dx + dy + dz + …
𝑑ϕ
𝑑𝑥

𝑑ϕ
𝑑𝑦

𝑑ϕ
𝑑𝑧

If f (x, y) dx + g(x, y) dy = dϕ, then = (an exact differential).
∂𝑓
∂𝑦

∂𝑔
∂𝑥

3.5.6. Multivariable Chain Rule

If x, y, z are functions of u, v, w…

103

104

All Notes 3.5. Multivariable and Vector Calculus

3.5.7. Derivatives on Curved Lines and Curved Surfaces

For a curve defined parametrically as r(t) = [x(t) y(t) z(t)]T, the unit tangent vector T,
unit normal vector N and unit binormal vector B are given by

so that {T, N, B} forms a right-handed orthonormal set.

The equation of the tangent line at r = r0 is then (r - r0) × r’ = 0.

The vectors T, N and B vary with arc length s along the curve by (Frenet-Serret formulas):

(κ: curvature, τ: torsion)

The associated radius of curvature is R = κ -1 and the ‘osculating circle’ lies in the plane
spanned by T and N, with B as its normal.

For a surface defined implicitly as ϕ(x, y, z) = 0, the unit tangent vector T (defined as being
the projection of some vector u in (x, y)-space onto the surface) and unit normal vector N are

where k is the unit vector in the z-direction and Da f is the directional derivative, defined
as Da f =∇f・a, representing the component of the gradient parallel to a.

The equation of the tangent plane at r = r0 is then (r - r0)・∇ϕ(r0) = 0.

If N is evaluated at a vector r0 which does not lie on the surface, then N can instead be
interpreted as the direction of steepest ascent for ϕ at r = r0 (since ϕ ≠ 0 off the surface).

For a scalar-valued function ϕ(r), the regions of constant ϕ are called isosurfaces (contour
surfaces; level surfaces) in 3D or isolines (contour lines) in 2D.

These results are easily generalisable to other dimensional functions, except the binormal

vector which is only uniquely defined in R3.

105

https://www.codecogs.com/eqnedit.php?latex=%20D_%5Cmathbf%7Ba%7D%20%5C%20f%20%3D%20%5Cnabla%20f%20%5Ccdot%20%5Cmathbf%7Ba%7D%20#0

All Notes 3.5. Multivariable and Vector Calculus

3.5.8. Reduction of a Multiple Integral with Common Bounds to a Single Integral

Double integral to single integral:
𝑎

𝑥

∫
𝑎

𝑢

∫ 𝑓(𝑡) 𝑑𝑡 𝑑𝑢 =
𝑎

𝑥

∫(𝑥 − 𝑡) 𝑓(𝑡) 𝑑𝑡

Triple integral to single integral:
𝑎

𝑥

∫
𝑎

𝑢

∫
𝑎

𝑣

∫ 𝑓(𝑡) 𝑑𝑡 𝑑𝑣 𝑑𝑢 =
1
2 𝑎

𝑥

∫(𝑥 − 𝑡)2 𝑓(𝑡) 𝑑𝑡

These can be useful for simplifying numerical integration of multiple integrals.

3.5.9. Change of Variables for Multiple Integration

Surface Integrals:

For a change of variables in a surface integral from (x, y) → (u(x, y), v(x, y)),

For surface integrals involving vector normals,
where the sign is chosen to preserve the sense.

Volume integrals:

For a change of variables in a volume integral from (x, y, z) → (u(x, y, z), v(x, y, z), w(x, y, z)),

The inverse Jacobian determinant is the same as that of the inverse substitution:

106

All Notes 3.5. Multivariable and Vector Calculus

3.5.10. Vector Calculus in Cartesian Coordinates

Parameters: (x, y, z), all real ordinates

Scalar field:

Vector field:

Kinematics:

Position:

Velocity:

Acceleration:
Angular velocity: (fixed)

Unit vectors: (fixed)

Differential Elements Distance:

Line element:
Volume element:
Surface elements:

Vector Operators:

Gradient: Divergence:

Curl: Laplacian:

Biharmonic:

3.5.11. Vector Calculus in Spherically Symmetric (Radial) Coordinates

Parameters: r ≥ 0 (radial coordinate): uniform in every direction

Gradient: Divergence: Curl:

Laplacian: (auxiliary function: u(r) = r f(r)

Biharmonic:

Volume element: (shell element)
107

https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7Br%7D%20%3D%20x%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2B%20y%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2B%20z%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7Bu%7D%20%3D%20u_x%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2B%20u_y%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2B%20u_z%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Br%7D%20%3D%20x%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2B%20y%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2B%20z%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Cdot%7Bx%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2B%20%5Cdot%7By%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2B%20%5Cdot%7Bz%7D%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cddot%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Cddot%7Bx%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2B%20%5Cddot%7By%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2B%20%5Cddot%7Bz%7D%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7B%5Comega%7D%20%3D%20%5Cmathbf%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7B%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%20%7D%7D%20%3D%20%5Cmathbf%7B0%7D%2C%20%5C%20%5Cdot%7B%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%20%7D%7D%20%3D%20%5Cmathbf%7B0%7D%2C%20%5C%20%5Cdot%7B%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%7D%20%3D%20%5Cmathbf%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%5Cmathbf%7Br%7D%20%3D%20dx%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%20%7D%20%2B%20dy%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%20%7D%20%2B%20dz%20%5C%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dV%20%3D%20dx%20dy%20dz%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dS_x%20%3D%20dy%20dz%2C%20%5C%20dS_y%20%3D%20dx%20dz%2C%20%5C%20dS_z%20%3D%20dx%20dy%20#0

All Notes 3.5. Multivariable and Vector Calculus

3.5.12. Vector Calculus in Cylindrical Coordinates

Parameters: r: radius, 0 ≤ θ ≤ 2π: polar angle, z: elevation
Scalar field:

Vector field:

Coordinate Conversions to and from Cartesian (x, y, z):

Unit Vector Conversions to and from Cartesian ():

Kinematics: time derivatives of displacement r
Position:

Velocity:

Acceleration:

Angular Velocity:

Unit vectors: , ,

Differential Elements

Line element:
Volume element: (Jacobian:)

Surface elements:

Distance:

Vector Operators

Gradient: Divergence:

Curl: Laplacian:

Biharmonic:

108

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Br%7D%20%3D%20r%20%5C%20%5Cmathbf%7B%5Chat%7Br%7D%7D%20%2B%20z%20%5C%20%5Cmathbf%7B%5Chat%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7Bu%7D%20%3D%20u_r%20%5Cboldsymbol%7B%5Chat%7Br%7D%7D%20%2B%20u_%7B%5Ctheta%7D%20%5Cboldsymbol%7B%5Chat%7B%5Ctheta%7D%7D%20%2B%20u_z%20%5Cboldsymbol%7B%5Chat%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%20%3D%20r%20%5Ccos%20%5Ctheta%2C%20%5C%20y%20%3D%20r%20%5Csin%20%5Ctheta%2C%20%5C%20z%20%3D%20z%20#0
https://www.codecogs.com/eqnedit.php?latex=%20r%20%3D%20%5Csqrt%7Bx%5E2%20%2B%20y%5E2%7D%2C%20%5C%20%5Ctheta%20%3D%20%5Ctextup%7Batan2%7D(y%2C%20x)%2C%20%5C%20z%20%3D%20z%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2C%20%5Chat%7B%5Cmathbf%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Ccos%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%20%7D%7D%20%2B%20%5Csin%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%20%7D%7D%2C%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%3D%20-%5Csin%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%20%7D%7D%20%2B%20%5Ccos%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%20%7D%7D%2C%20%5C%20%5Chat%7B%5Cmathbf%7Bz%7D%7D%20%3D%20%5Chat%7B%5Cmathbf%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%20%7D%7D%20%3D%20%5Ccos%20%5Ctheta%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20-%20%5Csin%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%2C%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%20%7D%7D%20%3D%20%5Csin%20%5Ctheta%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20%5Ccos%20%5Ctheta%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%2C%20%5C%20%5Chat%7B%5Cmathbf%7Bk%7D%7D%20%3D%20%5Chat%7B%5Cmathbf%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Br%7D%20%3D%20r%20%5C%20%5Cmathbf%7B%5Chat%7Br%7D%7D%20%2B%20z%20%5C%20%5Cmathbf%7B%5Chat%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Cdot%7Br%7D%20%5Cmathbf%7B%5Chat%7Br%7D%7D%20%2B%20r%20%5Cdot%7B%5Ctheta%7D%20%5Cboldsymbol%7B%5Chat%7B%5Ctheta%7D%7D%20%2B%20%5Cdot%7Bz%7D%20%5Cmathbf%7B%5Chat%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7B%5Comega%7D%20%3D%20%5Cdot%7B%5Ctheta%7D%20%5Chat%7B%5Cmathbf%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7B%5Cdot%7B%5Chat%7Br%7D%7D%7D%20%3D%20%5Cdot%7B%5Ctheta%7D%20%5Cboldsymbol%7B%5Cdot%7B%5Chat%7B%5Ctheta%7D%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7B%5Cdot%7B%5Chat%7B%5Ctheta%7D%7D%7D%20%3D%20-%20%5Cdot%7B%5Ctheta%7D%20%5Cmathbf%7B%5Cdot%7B%5Chat%7Br%7D%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7B%5Cdot%7B%5Chat%7Bz%7D%7D%7D%20%3D%20%5Cmathbf%7B0%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%5Cmathbf%7Br%7D%20%3D%20dr%20%5C%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20r%20d%20%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20dz%20%5C%20%5Chat%7B%5Cmathbf%7Bz%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dV%20%3D%20r%20%5C%20dr%20d%5Ctheta%20dz%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dS_%7Br%7D%20%3D%20r%20%5C%20d%5Ctheta%20dz%2C%20%5C%20dS_%7B%5Ctheta%7D%20%3D%20dr%20dz%2C%20%5C%20dS_%7Bz%7D%20%3D%20r%20%5C%20dr%20d%5Ctheta%20#0

All Notes 3.5. Multivariable and Vector Calculus

3.5.13. Vector Calculus in Spherical Coordinates

Parameters: r: radius, 0 ≤ θ ≤ 2π: azimuth/longitude angle,
0 ≤ ϕ ≤ π: zenith/colatitude angle

Vector field:

Coordinate Conversions to and from Cartesian (x, y, z):

Unit Vector Conversions to and from Cartesian ():

,

,

,

Kinematics: time derivatives of displacement r

Position:

Velocity:
Acceleration:

Angular Velocity:

Unit vectors:

Differential Elements

Line element:

Volume element: (Jacobian:)

Surface elements:

Distance:

Vector Operators

Gradient: Divergence:

Curl:

Laplacian:
109

https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7Bu%7D%20%3D%20u_r%20%5Cboldsymbol%7B%5Chat%7Br%7D%7D%20%2B%20u_%7B%5Ctheta%7D%20%5Cboldsymbol%7B%5Chat%7B%5Ctheta%7D%7D%20%2B%20u_%7B%5Cphi%7D%20%5Cboldsymbol%7B%5Chat%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%20%3D%20r%20%5Csin%20%5Cphi%20%5Ccos%20%5Ctheta%2C%20%5C%20y%20%3D%20r%20%5Csin%20%5Cphi%20%5Csin%20%5Ctheta%2C%20%5C%20z%20%3D%20r%20%5Ccos%20%5Cphi%20#0
https://www.codecogs.com/eqnedit.php?latex=%20r%20%3D%20%5Csqrt%7Bx%5E2%20%2B%20y%5E2%20%2B%20z%5E2%7D%2C%20%5C%20%5Ctheta%20%3D%20%5Ctextup%7Batan2%7D(y%2C%20x)%2C%20%5C%20%5Cphi%20%3D%20%5Ccos%5E%7B-1%7D%20%5Cfrac%7Bz%7D%7Br%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%2C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%2C%20%5Chat%7B%5Cmathbf%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Csin%20%5Cphi%20%5Ccos%20%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%20%7D%20%2B%20%5Csin%20%5Cphi%20%5Csin%20%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%20%7D%20%2B%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%7D%20%3D%20%5Ccos%20%5Ctheta%20%5Csin%20%5Cphi%20%5C%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20-%20%5Csin%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20%5Ccos%20%5Ctheta%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%3D%20-%20%5Csin%20%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%20%7D%20%2B%20%5Ccos%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%20%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%7D%20%3D%20%5Csin%20%5Ctheta%20%5Csin%20%5Cphi%20%5C%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20%5Ccos%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20%5Csin%20%5Ctheta%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20%3D%20%5Ccos%20%5Ctheta%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cimath%7D%20%7D%20%2B%20%5Csin%20%5Ctheta%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cjmath%7D%20%7D%20-%20%5Csin%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Cboldsymbol%7Bk%7D%7D%20%3D%20%5Ccos%20%5Cphi%20%5C%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20-%20%5Csin%20%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7Br%7D%20%3D%20r%20%5C%20%5Cmathbf%7B%5Chat%7Br%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7B%5Cmathbf%7Br%7D%7D%20%3D%20%5Cdot%7Br%7D%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20r%20%5Cdot%7B%5Ctheta%7D%20%5Csin%20%5Cphi%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20r%20%5Cdot%7B%5Cphi%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cboldsymbol%7B%5Comega%7D%20%3D%20%5Cdot%7B%5Ctheta%7D%20%5Ccos%20%5Cphi%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20%5Cdot%7B%5Cphi%7D%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20-%20%5Cdot%7B%5Ctheta%7D%20%5Csin%20%5Cphi%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20%3D%20%5Cdot%7B%5Cphi%7D%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20%5Cdot%7B%5Ctheta%7D%20%5Chat%7B%5Cmathbf%7Bk%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7B%5Chat%7B%5Cmathbf%7Br%7D%7D%7D%20%3D%20-%5Cdot%7B%5Ctheta%7D%20%5Csin%20%5Cphi%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20%5Cdot%7B%5Cphi%7D%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%2C%20%5C%20%5Cdot%7B%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%7D%20%3D%20-%5Cdot%7B%5Ctheta%7D%20%5Csin%20%5Cphi%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20%5Cdot%7B%5Ctheta%7D%20%5Ccos%20%5Cphi%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%2C%20%5C%20%5Cdot%7B%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%7D%20%3D%20%5Cphi%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20-%20%5Cdot%7B%5Ctheta%7D%20%5Ccos%20%5Cphi%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%5Cmathbf%7Br%7D%20%3D%20dr%20%5C%20%5Chat%7B%5Cmathbf%7Br%7D%7D%20%2B%20r%20%5Csin%20%5Cphi%20%5C%20d%20%5Ctheta%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Ctheta%7D%7D%20%2B%20r%20d%5Cphi%20%5C%20%5Chat%7B%5Cboldsymbol%7B%5Cphi%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dV%20%3D%20r%5E2%20%5Csin%20%5Cphi%20%5C%20dr%20d%5Ctheta%20d%5Cphi%20#0
https://www.codecogs.com/eqnedit.php?latex=%20dS_r%20%3D%20r%5E2%20%5Csin%20%5Cphi%20%5C%20d%5Ctheta%20d%5Cphi%2C%20%5C%20dS_%7B%5Ctheta%7D%20%3D%20r%20dr%20d%5Cphi%2C%20%5C%20dS_%7B%5Cphi%7D%20%3D%20r%20%5Csin%20%5Cphi%20%5C%20dr%20d%5Ctheta%20#0

All Notes 3.5. Multivariable and Vector Calculus

3.5.14. Vector Fields

Field Lines of a Vector Field

The plot of a vector-valued function u = f (x, y, z) = f (r) = uxi + uyj + uzk is a vector field.

The equations of the field lines (curves with tangent vectors u) are given by ,𝑑𝑥
𝑢

𝑥
= 𝑑𝑦

𝑢
𝑦

= 𝑑𝑧
𝑢

𝑧

so that e.g. the field lines in the plane z = 0 satisfy .
𝑑𝑦
𝑑𝑥 =

𝑢
𝑦
(𝑥, 𝑦, 0)

𝑢
𝑥
(𝑥, 𝑦, 0)

Potentials of Vector Fields

● Irrotational (conservative) field: if∇ × u = 0 (curl free). In this case, then there exists
a scalar potential f such that u =∇f. For some applications it is more natural to use u =
−∇f . The isosurfaces of f are the equipotentials of u, and u is perpendicular to these
isosurfaces (the normal vectors of u) everywhere.

● Solenoidal (incompressible) field: if∇・u = 0 (divergence free). In this case, then
there exists a vector potential A such that u =∇ × A.
A is usually chosen so that∇・A = 0. Then, u is the vorticity field of A.

Decompositions of Vector Fields

● Helmholtz Decomposition: a field u can be written as u = ∇f +∇ × A (irrotational−
part plus solenoidal part). The expressions for f and A are

● Poloidal-Toroidal (Chandrasekhar-Kendall) Decomposition: if∇・u = 0 (solenoidal) and
u is defined in spherical coordinates {er, eθ, eϕ}, then the vector potential u =∇ × A can be
written as A = T + P, where T = T er (toroidal part) and P =∇ × (P er) =∇P × er (poloidal
part).
The toroidal part satisfies er・T = 0. The poloidal part satisfies er・(∇ × P) = 0.

T(r) and P(r) are scalar fields that satisfy the Poisson equations er・(∇ × u) = T and− ∆
𝐻

er・u = P, where is the scalar Laplacian containing only the {θ, ϕ} (‘horizon’) terms.− ∆
𝐻

∆
𝐻

110

All Notes 3.5. Multivariable and Vector Calculus

3.5.15. Vector Calculus Identities

Properties of Vector Calculus Operators with Vector Operators: for scalar-valued
functions f and vector-valued functions u,

∇(f1 + f2) =∇f1 +∇f2 ∇・(u1 + u2) =∇・u1 +∇・u2
∇ × (u1 + u2) =∇ × u1 +∇ × u2 ∇・(fu) = f∇・u + (∇f)・u

∇ × (fu) = f∇ × u + (∇f) × u ∇・(u1 × u2) = u2・∇ × u1 u1・∇ × u2−

∇・∇ × u = 0 ∇ ×∇f = 0

∇ × (∇ × u) =∇(∇・u) ∇2u ∇ × (u1 × u2) = u1∇・u2 u2∇・u1 + (u2・∇)u1 (u1・∇)u2− − −
u × (∇ × u) + (u・∇)u = ∇(u2) (∇2u = [∇2ux,∇2uy,∇2uz]T: vector Laplacian.)

1
2

Gauss Theorem (divergence theorem): for a closed surface S enclosing a volume V, with
the outward normal taken for dA, the total emitted flux Φ is equal to the net internal divergence

Stokes Theorem (curl theorem): for an open surface S bounded by a closed curve C circulating
S anti-clockwise, the circulation Γ is equal to the net enclosed rotation (flux of vorticity):

Green’s Theorem: in planar 2D space, Stokes’ theorem reduces to:

Green’s First Identity: divergence theorem with u = f∇g and ∇・(f ∇g) =∇f・∇g + f ∇・∇g.

Green’s Second Identity: difference of symmetric forms of first identity.

111

https://www.codecogs.com/eqnedit.php?latex=%20%5CGamma%20%3D%20%5Coint_C%20%5Cmathbf%7Bu%7D%20%5Ccdot%20d%5Cmathbf%7Bl%7D%20%3D%20%5Coint_C%20u_x%20%5C%20dx%20%2B%20u_y%20%5C%20dy%20%3D%20%5Ciint_%7BS%7D%5E%7B%7D%20%5Cfrac%7B%5Cpartial%20u_y%7D%7B%5Cpartial%20x%7D%20-%20%5Cfrac%7B%5Cpartial%20u_x%7D%7B%5Cpartial%20y%7D%20%5C%20dx%20dy%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Coiint_%7BS%7D%5E%7B%7D%20f%20%5Cnabla%20g%20%5Ccdot%20d%5Cmathbf%7BA%7D%20%3D%20%5Ciiint_%7BV%7D%5E%7B%7D%20(%5Cnabla%20f%20%5Ccdot%20%5Cnabla%20g)%20dV%20%2B%20%5Ciiint_%7BV%7D%5E%7B%7D%20f%20%5Cnabla%5E2%20g%20%5C%20dV%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Coiint_%7BS%7D%5E%7B%7D%20(f%20%5Cnabla%20g%20-%20g%20%5Cnabla%20f)%5Ccdot%20d%5Cmathbf%7BA%7D%20%3D%20%5Ciiint_%7BV%7D%5E%7B%7D%20(f%20%5Cnabla%5E2%20g%20-%20g%20%5Cnabla%5E2%20f)%5C%20dV%20#0

Green’s Third Identity: in the second identity, let f = G (a Green’s function, Section 3.7.4), chosen
suitably for the PDE to be solved such that G = 0 on the boundary. Substitute solutions for ∇G and
∇2G.

112

All Notes 3.5. Multivariable and Vector Calculus

3.5.16. Differential Operators

Expressions of derivatives of functions can be written as operators acting on functions.

nth partial differential operator: 𝐷
𝑥

𝑛 =
∂𝑛

∂𝑥𝑛 ⇒ 𝐷
𝑥

𝑛𝑦 =
∂𝑛𝑦

∂𝑥𝑛

Example: 𝐷𝑥𝐷 = 𝑑
𝑑𝑥 𝑥 𝑑

𝑑𝑥() = 𝑑
𝑑𝑥 + 𝑥 𝑑2

𝑑𝑥2 = 𝐷 + 𝑥𝐷2

General operators can be constructed e.g. 𝐿 = 2𝐷
𝑥

2 − 𝑥𝐷
𝑥
𝐷

𝑦
 ⇒ 𝐿ϕ = 2 ∂2ϕ

∂𝑥2 − 𝑥 ∂ϕ
∂𝑥

∂ϕ
∂𝑦

Differential operators are generally not commutative.
Linear differential operators with constant coefficients are commutative.

Separation of a coupled system of linear partial differential equations: using operators

If Li are commutative linear differential operators with L1L3 = L3L1 and L2L4 = L4L2 then the coupled
system of PDEs can be uncoupled to yield the two PDEs𝐿

1
𝑢 + 𝐿

2
𝑣 = 𝑓; 𝐿

3
𝑢 + 𝐿

4
𝑣 = 𝑔{ }

𝐿
4
𝐿

1
− 𝐿

2
𝐿

3()𝑢 = 𝐿
4
𝑓 − 𝐿

2
𝑔; 𝐿

3
𝐿

2
− 𝐿

1
𝐿

4()𝑣 = 𝐿
3
𝑓 − 𝐿

1
𝑔{ }

(u = u(x, y, …), v = v(x, y, …): dependent variables, Li: linear differential operators of {x, y, …}
with constant coefficients, {f = f (x, y, …), g = g(x, y, …)}: differentiable functions)

113

All Notes 3.5. Multivariable and Vector Calculus

3.5.17. Multivariable (Spatial) Continuous Fourier Transform

For the ordinary Fourier transform, see Section 3.6.4. When the input domain is multi-dimensional
(e.g. position space x = [x, y, z] rather than time t), the output frequency domain is also
multi-dimensional (e.g. spatial frequency k = [kx, ky, kz] rather than temporal frequency ω).

F(k) = f (x) exp(jk・x) dx f (x) = F (k) exp(jk・x) dk
𝐶𝑛
∫ −

1

(2π)𝑛
𝐶𝑛
∫

Forward Fourier Transform Inverse Fourier Transform

The integration is generally performed over all x∈ Cn and k∈ Cn. In many practical applications,
the function f (x) is real and even so F(k) is real and even so x∈ Rn and k∈ Rn.
In quantum mechanics f = ψ∈ C and k-space is momentum space (since p = ħk).

Multivariable Parseval’s Theorem: |f (x)|2 dx = |F(k)|2 dk
−∞

∞

∫ ...
−∞

∞

∫ 1

(2π)𝑛
−∞

∞

∫ ...
−∞

∞

∫

3.5.18. Multivariable (Spatial) Discrete Fourier Transform

For the ordinary discrete Fourier transform (DFT), see Section 3.6.5.

When the input domain is discrete multi-dimensional (e.g. pixel space w = [u, v]), the output
frequency domain is also discrete multi-dimensional (e.g. discrete spatial frequency k = [ku, kv]).

F(k) = f (w) exp f (w) = F(k) exp
𝑛

1
=0

𝑁
1
−1

∑ ...
𝑛

𝑚
=0

𝑁
𝑚

−1

∑ −
𝑎=1

𝑚

∑
2π𝑖 𝑘

𝑎
 𝑛

𝑎

𝑁
𝑎() 1

𝑁
1
...𝑁

𝑚 𝑘
1
=0

𝑁
1
−1

∑ ...
𝑘

𝑚
=0

𝑁
𝑚

−1

∑
𝑎=1

𝑚

∑
2π𝑖 𝑘

𝑎
 𝑛

𝑎

𝑁
𝑎()

Forward Discrete Fourier Transform Inverse Discrete Fourier Transform

Multivariable Convolution Theorem: F(k) G(k) = DFT{(f * g)(w)} (DFT: discrete FT)
where the convolution is circular (periodic). Common application: imagine filtering (Section 5.6.1).

3.5.18. Multivariable Z-Transform

For the ordinary Z-transform, see Section 3.4.19.

Forward Z-transform: F(z1, …, zm) = f (n1, …, nm)
𝑛

1
=−∞

∞

∑ ...
𝑛

𝑚
=−∞

∞

∑ × (𝑧
1

𝑛
1... 𝑧

𝑚
𝑛

𝑚)

114

All Notes 3.6. Fourier Series and Fourier Transforms

3.6. Fourier Series and Fourier Transforms
3.6.1. General Fourier Series Definition

Real-Valued Fourier Series

The real-valued Fourier series is defined for a function f (t) on 0 ≤ t < T as

If the function f (t) is periodic, of period T, then these relationships are valid for all t. The
integrals may then be taken over any range of T.

● If f (t) is even then bn = 0.
● If f (t) is odd then an = 0.
● If f (t) has zero mean value then d = 0.

The rate of convergence, O(n-(k+1)), is such that the k-th derivative of f (t) is discontinuous.

Complex-Valued Fourier Series

Equivalently, the complex-valued Fourier series is

The relationship between the complex and real forms of the coefficients is

and, for real functions f (t), we have c-n = cn*.

The (scientific) fundamental frequency is ω0 = and the (scientific) nth harmonic is nω0.
2π
𝑇

115

All Notes 3.6. Fourier Series and Fourier Transforms

3.6.2. Half-Range Fourier Series Definition

If a Fourier series representation of f (x) is required to be valid only in 0 ≤ x ≤ L, then it only
needs to contain either the sine terms alone or the cosine terms alone. For example

Note that the wavelength of the first term in the series (n = 1) is 2L rather than L (as would
be the case for the full-range series).

116

All Notes 3.6. Fourier Series and Fourier Transforms

3.6.3. Fourier Series of Common Waveforms

Half-wave Rectified Cosine

Full-wave Rectified Cosine

Square Wave

117

All Notes 3.6. Fourier Series and Fourier Transforms

Triangular Wave

Sawtooth Wave

Pulse Wave

118

All Notes 3.6. Fourier Series and Fourier Transforms

3.6.4. Fourier Transforms

The Fourier transform maps a continuous time domain t to a continuous frequency domain ω:

Forward Fourier Transform Inverse Fourier Transform

● Some sources handle the 2π factor differently and define transforms with differences in signs
of the exponent. All transform theorems are valid as long as it is done consistently.

● Fourier transforms are sometimes written in terms of frequency f = ω / 2π (as done below in the
analogous discrete Fourier transform).

● The Fourier transform is a slice along the imaginary axis of the Laplace transform: s = iω; ω = Im{s}.

3.6.5. Discrete Fourier Transforms

The discrete Fourier transform (DFT) maps a finite sequence (xn, n = 0, 1, . . ., N − 1) to a finite
sequence of discrete frequencies (Xk, k = 0, 1, . . ., N − 1)

Forward Discrete Fourier Transform Inverse Discrete Fourier Transform

Notes:

● The DFT gives a discrete approximation to the frequency spectrum of a continuous function
passing through all points xn containing frequency components no higher than , where T1

2𝑇
is the sampling period. The Nyquist frequency is equal to twice the highest frequency
contained in the original signal before sampling. Sampling at a rate below the Nyquist
frequency leads to high-frequency information loss and aliasing effects (distorsion).

● Time and frequency parameter relation: [] and [s] for integers 0 ≤ n, k < N.𝑓
𝑘

= 𝑘
𝑁𝑇 𝑡

𝑛
= 𝑛𝑇

● Total sampling time: NT. Fundamental frequency: . Sampling rate: .𝑓
1

= 1
𝑁𝑇 𝑓

𝑁
= 1

𝑇

● For real sequences, Xk* = XN-k, since the cosine waves at these frequencies pass the same points.

Common DFTs (for N = 4):
● Cosine: xn = cos i.e. xn = [1, 0, -1, 0] → Xk = [0, 2, 0, 2] (f1 = , f3 =)𝑛π

2
1

4𝑇
3

4𝑇

● Sine: xn = sin i.e. xn = [0, 1, 0, -1] → Xk = [0, -2i, 0, 2i]
𝑛π
2

For infinite discrete sequences (N→∞ and summing in both directions), the DFT is called the

‘Discrete-Time Fourier Transform’ (DTFT), , which is equivalent to the the𝑋(ω) =
𝑛=−∞

∞

∑ 𝑥
𝑛
 𝑒−𝑖ω𝑛

bilateral Z-transform of xn with z = eiω.𝑋(𝑧)
119

https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7By%7D(%5Comega)%20%3D%20%5Cint%20%5Cdisplaylimits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20y(t)%20%5C%20e%5E%7B-i%20%5Comega%20t%7D%20%5C%20%5Ctextup%7Bd%7D%20t%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20y(t)%20%3D%20%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Cint%20%5Cdisplaylimits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%5Chat%7By%7D(%5Comega)%20%5C%20e%5E%7Bi%20%5Comega%20t%7D%20%5C%20%5Ctextup%7Bd%7D%20%5Comega%20#0
https://www.codecogs.com/eqnedit.php?latex=%20X_k%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7BN-1%7D%20x_n%20e%5E%7B-2%20%5Cpi%20i%20kn%2FN%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20x_n%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum_%7Bk%3D0%7D%5E%7BN-1%7D%20X_k%20e%5E%7B2%20%5Cpi%20i%20kn%2FN%7D%20#0

All Notes 3.6. Fourier Series and Fourier Transforms

3.6.6. Fourier Transforms of Common Signals

Time-domain waveform g(t) Frequency spectrum G(ω)
1 (DC level) 2π δ(ω) = δ(𝑓)

H(t) (Heaviside step) π δ(ω) + 1
𝑗ω

(complex sinusoid)𝑒
𝑗ω

0
𝑡 2π δ(ω − ω

0
)

cos ω
0
𝑡 π δ(ω − ω

0
) + δ(ω + ω

0
)[]

sin ω
0
𝑡 π

𝑗 δ(ω − ω
0
) − δ(ω + ω

0
)[]

(Gaussian)𝑒−𝑎𝑡2 π
𝑎 𝑒

− 1
4𝑎 ω2

(impulse train)
𝑛 = −∞

∞

∑ δ(𝑡 − 𝑛𝑇) 2π
𝑇

𝑚 = −∞

∞

∑ δ(ω − 2π𝑚
𝑇)

a rect (rectangle function)
𝑡
𝑏 ab sinc

ω𝑏
2

where sinc x := (sin x) / x

a tri (triangle function)
𝑡
𝑏 ab sinc2

ω𝑏
2

main lobe bandwidth: 1 / b

a cos ・H(|x|)
π𝑡
𝑏

𝑡
𝑏 − [sinc + sinc]

𝑎𝑏
2

ω𝑏 − π
2

ω𝑏 + π
2

𝑎 𝑓(𝑡) + 𝑏 𝑔(𝑡) (linearity)𝑎 𝐹(ω) + 𝑏 𝐺(ω)
(time shift)𝑔(𝑡 − 𝑡

0
) 𝑒

−𝑗ω𝑡
0 𝐺(ω)

𝑒
𝑗ω

0
𝑡
 𝑔(𝑡) (frequency shift)𝐺(ω − ω

0
)

(differentiation)
𝑑𝑛𝑔(𝑡)

𝑑𝑡𝑛 (𝑗ω)𝑛 𝐺(ω)

(convolution)(𝑓 * 𝑔)(𝑡) =
−∞

∞

∫ 𝑓(τ) 𝑔(𝑡 − τ) 𝑑τ (multiplication)𝐹(ω) 𝐺(ω)

(multiplication)𝑓(𝑡) 𝑔(𝑡) (convolution)
1

2π (𝐹 * 𝐺)(ω)

(duality)𝐺(𝑡)
if g(t) → G(ω) then G(t) → 2π g(−ω) 2π g(−ω)

g(t)* (complex conjugate) G(−ω)*
real-valued even function g(t) real-valued even function G(ω)
real-valued odd function g(t) imaginary-valued odd function G(ω)

120

All Notes 3.6. Fourier Series and Fourier Transforms

3.6.7. Signal Energy, Power and Parseval’s Theorem of Energy Conservation

The energy of a signal g(t) is defined as .𝐸
𝑔

=
−∞

∞

∫ | 𝑔(𝑡) |2 𝑑𝑡

The power of a signal g(t) is defined as .𝑃
𝑔

=
𝑇 ∞
lim
→

1
𝑇

−𝑇/2

𝑇/2

∫ | 𝑔(𝑡) |2 𝑑𝑡

The power spectral density (power spectrum) is Sgg(ω) = |G(ω)|2 = |G(f)|2.1
2π

Parseval’s Theorem: The energy in the time and frequency domain must be the same:

For more on signal analysis, see Section 5.4.

121

https://www.codecogs.com/eqnedit.php?latex=%20E_g%20%3D%20%5Cint%20%5Cdisplaylimits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7C%20g(t)%20%7C%5E2%20%5C%20%5Ctextup%7Bd%7Dt%20%3D%20%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%5Cint%20%5Cdisplaylimits_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20%7C%20G(%5Comega)%20%7C%5E2%20%5C%20%5Ctextup%7Bd%7D%5Comega%20#0

All Notes 3.7. Partial Differential Equations and Variational Calculus

3.7. Partial Differential Equations and Variational Calculus
3.7.1. Classification of Linear Second-Order Partial Differential Equations (PDEs)

A PDE of the form

is said to be

● Elliptic: if (e.g. Laplace equation, Poisson equation)𝐵2 < 𝐴𝐶

● Parabolic: if (e.g. Heat equation, Diffusion equation)𝐵2 = 𝐴𝐶

● Hyperbolic: if (e.g. Wave equation)𝐵2 > 𝐴𝐶

3.7.2. Classification of Boundary Conditions

A PDE requires initial conditions (ICs: u = f (x, 0)) and boundary conditions (BCs) to be
fully specified. The BCs constrain the value of the dependent variable on the boundary of
the region satisfying the PDE. The types of BCs are:

● Dirichlet: dependent variable specified on boundary
e.g. u = 0 when x = 0; u = 1 - e-3t when x = 1

● Neumann: gradient of dependent variable specified on boundary

e.g. = 0 when x = 0 and x = 1𝑑𝑢
𝑑𝑥

● Robin: an ODE for the dependent variable is specified on the boundary

e.g. + 2u = x when |x| = 1, defined for |x| ≤ 1.𝑑𝑢
𝑑𝑥

● Mixed: the boundary is split into several parts, each with different conditions

e.g. u = 4t when x = 0; = 1 - u when x = 1, defined on 0 ≤ x ≤ 1.𝑑𝑢
𝑑𝑥

122

https://www.codecogs.com/eqnedit.php?latex=%20A%20%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5E2%7D%20%2B%202B%20%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%20%5Cpartial%20y%7D%20%2B%20C%20%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20y%5E2%7D%20%2B%20D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%20%2B%20E%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%20%2B%20Fu%20%2B%20G%20%3D%200%20#0

All Notes 3.7. Partial Differential Equations and Variational Calculus

3.7.3. Common PDEs and their 2D General Solutions

Partial Differential Equations

Heat Equation Diffusion Equation Poisson’s Equation Wave Equation
(T: temperature, (c: concentration, (Laplace’s Equation if ρgen = 0) (ψ: scalar displacement,

α: thermal diffusivity, D: diffusion coefficient) (φ: scalar potential, c: phase velocity)
k: thermal conductivity, ρ: source density)

q: heat source per volume)

Heat Equation / Diffusion Equation: 2D Solutions

Separation of variables using with a negative separation constant𝑇(𝑥, 𝑡) = 𝑋(𝑥) 𝑇(𝑡) − λ2

gives and with solutions𝑋'' + λ2𝑋 = 0 𝑇' + αλ2𝑇 = 0
and .𝑋(𝑥) = 𝐴 𝑠𝑖𝑛 λ𝑥 + 𝐵 𝑐𝑜𝑠 λ𝑥 𝑇(𝑡) = 𝐶 𝑒𝑥𝑝(− αλ2𝑡)

Self-similar solution: let , separate as T(x, t) = H(η) . Find an ODE in H(η).η =
𝑥
α𝑡

𝑇(𝑡)

Heat flux: q = -k∇T; Diffusion flux: J = -D∇c; Convection boundary condition: 𝑘 ∂𝑇
∂𝑛

𝑜𝑢𝑡
= ℎ(𝑇

∞
− 𝑇)

Normalisation condition: all solutions satisfy (conservation law).
𝑑
𝑑𝑡 −∞

∞

∫ 𝑇(𝑥, 𝑡) 𝑑𝑥 = 0

Laplace’s Equation: 2D Solutions

General solutions may be Separation constant

usingϕ(𝑥, 𝑦) = 𝑋(𝑥) 𝑌(𝑦) = (𝐴 𝑠𝑖𝑛ℎ λ𝑥 + 𝐵 𝑐𝑜𝑠ℎ λ𝑥)(𝐶 𝑠𝑖𝑛 λ𝑦 + 𝐷 𝑐𝑜𝑠 λ𝑦) + λ2

using = (𝐴 𝑠𝑖𝑛 λ𝑥 + 𝐵 𝑐𝑜𝑠 λ𝑥)(𝐶 𝑠𝑖𝑛ℎ λ𝑦 + 𝐷 𝑐𝑜𝑠ℎ λ𝑦) − λ2

using = (𝐴𝑥 + 𝐵)(𝐶𝑦 + 𝐷) 0

Wave Equation: 1D Solutions

Separation of variables using with a negative separation constant𝑌(𝑥, 𝑡) = 𝑋(𝑥) 𝑇(𝑡) − λ2

gives and with solutions and𝑋'' + λ2𝑋 = 0 𝑇' + αλ2𝑇 = 0 𝑋(𝑥) = 𝐴 𝑠𝑖𝑛 λ𝑥 + 𝐵 𝑐𝑜𝑠 λ𝑥
.𝑇(𝑡) = 𝐶 𝑐𝑜𝑠 λ𝑐𝑡 + 𝐷 𝑠𝑖𝑛 λ𝑐𝑡

D’Alembert’s solution: consider the PDEs and let . It is clear that∂𝑦
∂𝑡 ± 𝑐 ∂𝑦

∂𝑥 = 0 η = 𝑐𝑡 ∓ 𝑥

any is a solution, so the general solution is . The𝑦 = 𝑓(η) 𝑦(𝑥, 𝑡) = 𝑓(𝑐𝑡 − 𝑥) + 𝑔(𝑐𝑡 + 𝑥)
lines ct − x = constant and ct + x = constant, along which the right and left running waves
move in the (x, t) plane, are the characteristics of the PDE. By differentiation, these PDEs are
jointly equivalent to the wave equation.

123

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%20%3D%20%5Calpha%20%5Cnabla%5E2%20T%20%2B%20%5Cfrac%7B%5Calpha%20%7D%7Bk%7D%20%5Cdot%7Bq%7D_%7B%5Ctextup%7Bgen%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20c%7D%7B%5Cpartial%20t%7D%20%3D%20D%20%5Cnabla%5E2%20c%20%2B%20%5Cdot%7Bc%7D_%7B%5Ctextup%7Bgen%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cnabla%5E2%20%5Cphi%20%3D%20%5Crho_%7B%5Ctextup%7Bgen%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%5E2%20%5Cpsi%20%7D%7B%5Cpartial%20t%5E2%7D%20%3D%20c%5E2%20%5Cnabla%5E2%20%5Cpsi%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%20%3D%20%5Calpha%20%5Cnabla%5E2%20T%20%2B%20%5Cfrac%7B%5Calpha%20%7D%7Bk%7D%20%5Cdot%7Bq%7D_%7B%5Ctextup%7Bgen%7D%7D%20#0

All Notes 3.7. Partial Differential Equations and Variational Calculus

3.7.4. Techniques for Solving Partial Differential Equations

For a typical PDE for a multivariable function u in terms of space x and time t,

Separation of Variables: assume .𝑢(𝑥, 𝑡) = 𝑋(𝑥) 𝑇(𝑡)

1. Substitute u = XT where X is a function of x only and T is a function of t only. Compute
the derivatives as e.g. uxx = X’’(x) T(x), ut = X(x) T’(t) etc.

2. Rearrange so that all X terms and all T terms are on opposite sides. Set both sides
equal to a separation constant, initially ±λ2.

3. Solve each ODE for X(x) and T(t) in terms of λ, selecting the appropriate sign (or zero)
depending on whether the behaviour can meet the boundary conditions: it may be
oscillatory, exponential, or linear.

4. Use initial conditions and boundary conditions to constrain or discretise λ and the
undetermined coefficients.

5. Use superposition to sum over remaining undetermined indices, if required.

Laplace Transforms: defined such that L{u(x, t)} = U(x, s) =
0

∞

∫ 𝑢(𝑥, 𝑡) 𝑒−𝑠𝑡 𝑑𝑡

1. Transform the PDE using e.g. L{ux} = Ux(x, s), L{ut} = s U(x, s) - u(x, 0), etc. Also
transform the boundary conditions e.g. {u(0, t) = f (t)} → {U(0, s) = F(s)}, and substitute
the initial condition for u(x, 0).

2. Solve the resulting ODE for U(x, s) and apply boundary conditions.
3. The inverse Laplace transform of U(x, s) (considering x as a constant) is u(x, t).

Fourier and other integral transforms may also be used.

Green’s Functions: multivariable convolution of input function with the impulse response
to solve the equation L[u] = f.

1. Identify independent linear differential operators L and the forcing functions
(nonhomogeneous components) f.

2. Find or look up (Section 3.7.5) the Green’s function G(x) for the operator L.

3. Apply initial conditions and boundary conditions to constrain G.

4. Apply the convolution theorem as u(x) = f (η) G(x - η) dη.∫

124

All Notes 3.7. Partial Differential Equations and Variational Calculus

3.7.5. Green’s Functions

A Green’s function G is the impulse response of a linear differential operator: L [G] = δ(x, t)
In the table, in 2D (or 3D). (H: step function, I: Bessel functions)𝑟2 = 𝑥2 + 𝑦2 (+ 𝑧2)

Differential operator L Green’s function G(x, y, [z, t])

2D Poisson equation

3D Poisson equation

Schrodinger equation

1D wave equation

2D wave equation

3D wave equation

1D diffusion equation

2D diffusion equation

3D diffusion equation

Telegrapher’s equation where 𝑢 = 𝑐2𝑡2 − 𝑟2

125

https://www.codecogs.com/eqnedit.php?latex=%20%5Cnabla_%7B2D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Cln%20r%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cnabla_%7B3D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20-%5Cfrac%7B1%7D%7B4%20%5Cpi%20r%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnabla_%7B3D%7D%5E2%20%2B%20k%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20-%5Cfrac%7Be%5E%7B-ikr%7D%7D%7B4%20%5Cpi%20r%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20t%5E2%7D%20-%20c%5E2%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20x%5E2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7B2c%7DH%5Cleft%20(%20t%20-%20%5Cleft%20%7C%20%5Cfrac%7Bx%7D%7Bc%7D%20%5Cright%20%7C%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20t%5E2%7D%20-%20c%5E2%20%5Cnabla_%7B2D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7B2%20%5Cpi%20c%20%5Csqrt%7Bc%5E2%20t%5E2%20-%20r%5E2%7D%7DH%5Cleft%20(%20t%20-%20%20%5Cfrac%7Br%7D%7Bc%7D%20%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7Bc%5E2%7D%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20t%5E2%7D%20-%20%5Cnabla_%7B3D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7B4%20%5Cpi%20r%7D%20%5Cdelta%20%5Cleft%20(%20t%20-%20%5Cfrac%7Br%7D%7Bc%7D%20%5Cright%20)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20t%7D%20-%20k%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20x%5E2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20(%20%5Cfrac%7B1%7D%7B4%20%5Cpi%20kt%7D%20%5Cright%20)%5E%7B1%2F2%7D%20%5Cexp%5Cleft%20(%20-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%20%5Cright%20)%20H(t)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20t%7D%20-%20k%20%5Cnabla_%7B2D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%20%5Cfrac%7B1%7D%7B4%20%5Cpi%20kt%7D%20%20%5Cexp%5Cleft%20(%20-%5Cfrac%7Br%5E2%7D%7B4kt%7D%20%5Cright%20)%20H(t)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20t%7D%20-%20k%20%5Cnabla_%7B3D%7D%5E2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20(%20%5Cfrac%7B1%7D%7B4%20%5Cpi%20kt%7D%20%20%5Cright%20)%5E%7B3%2F2%7D%20%20%5Cexp%5Cleft%20(%20-%5Cfrac%7Br%5E2%7D%7B4kt%7D%20%5Cright%20)%20H(t)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20t%5E2%7D%20%2B%202%5Cgamma%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20t%7D%20-%20c%5E2%20%5Cfrac%7B%5Cpartial%5E2%20%7D%7B%5Cpartial%20x%5E2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B1%7D%7B2%7De%5E%7B-%5Cgamma%20t%7D%20%5Cleft%20%5B%20%5Cdelta(ct-x)%20%2B%20%5Cdelta(ct%2Bx)%20%2B%20H(ct-%7Cx%7C)%20%5Cleft%20(%20%5Cfrac%7B%5Cgamma%7D%7Bc%7D%20I_0%5Cleft%20(%20%5Cfrac%7B%5Cgamma%20u%7D%7Bc%7D%20%5Cright%20)%20%2B%20%5Cfrac%7B%5Cgamma%20t%7D%7Bu%7D%20I_1%20%5Cleft%20(%20%5Cfrac%7B%5Cgamma%20u%7D%7Bc%7D%20%5Cright%20)%5Cright%20)%20%5Cright%20%5D%20#0

All Notes 3.7. Partial Differential Equations and Variational Calculus

3.7.6. Fundamental Lemma of Calculus of Variations

If a continuous function f on an open interval (a, b) satisfies for all
𝑎

𝑏

∫ 𝑓(𝑥)ℎ(𝑥) 𝑑𝑥 = 0

compactly supported smooth functions h on (a, b), then .𝑓(𝑥) ≡ 0

Corollary: if then (same conditions as above).
𝑎

𝑏

∫ 𝑓(𝑥)ℎ(𝑥) + 𝑔(𝑥)ℎ'(𝑥) 𝑑𝑥 = 0 𝑔'(𝑥) = 𝑓(𝑥)

3.7.7. Euler-Lagrange Equation

A ‘variation’ (or perturbation) f + δf of a function f (x) constrained to satisfy f (a) = A and f
(b) = B can be written as gε(x) = f (x) + ε η(x) where ε is small and η(x) is a differentiable
function satisfying η(a) = η(b) = 0.

Let S be a functional defined as

The function f for which S is stationary i.e. local gradient to small variations is zero,
satisfies the differential equation

If f is explicitly a function of higher derivatives of x, then the equation is

Note that x, x’ etc. are considered independent variables.

Common applications:

● Minimum action (Lagrangian / Hamiltonian for mechanical systems, see Section 6.2.12).
● Minimum distance on a curved surface (geodesics)
● Minimum energy configuration of a system

126

https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%20%3D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20t%7D%20%5Cleft%20(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20%5Cdot%7Bx%7D%7D%20%5Cright%20).%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%20-%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20t%7D%20%5Cleft%20(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20%5Cdot%7Bx%7D%7D%20%5Cright%20)%20%2B%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5E2%7D%7B%5Cmathrm%7Bd%7D%20t%5E2%7D%20%5Cleft%20(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20%5Cddot%7Bx%7D%7D%20%5Cright%20)%20-%20...%20%2B%20(-1)%5Ek%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5Ek%7D%7B%5Cmathrm%7Bd%7D%20t%5Ek%7D%20%5Cleft%20(%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%5E%7B(k)%7D%7D%20%5Cright%20)%20%3D%200.%20#0

All Notes 4.1. Vector and Matrix Algebra

M4. LINEAR ALGEBRA

4.1. Vector and Matrix Algebra
4.1.1. Properties of Real Matrices

Zero, Ones and Identity Matrices:

● Zero matrix: 0; Ones matrix 1; Identity matrix In (n × nmatrix with 1’s on leading diagonal)

Singular Matrices:

● If |A| = 0 then A is singular (non-invertible) and A-1 does not exist.

Symmetric and Antisymmetric Matrices

● If A = AT then A is symmetric (Aij = Aji) and A-1 exists.
● If A = AT then A is antisymmetric (skew-symmetric) (Aij = Aji), A-1 does not exist− −

and A has zeros on the leading diagonal.

Diagonal, Triangular and Sparse Matrices: special cases of square matrices

● If Aij = 0 for all i ≠ j then A is diagonal.
● If Aij = 0 for all i > j then A is upper-triangular.
● If Aij = 0 for all i < j then A is lower-triangular.
● If Aij = 0 for ‘most’ i ≠ j then A is sparse (informal definition but computationally useful)

Orthogonal Matrices:

● If AAT = ATA = I then A is orthogonal (orthonormal), A = AT = A-1, the rows and columns of
A are orthonormal vectors.

Full-Rank Matrices:

● If rank(A) = min(dim(A)) then A is full-rank.

Defective Matrices:

● If A does not have a full set of eigenvectors then A is defective (non-diagonalisable).
A defective n × n matrix A has at least one eigenvalue with algebraic multiplicity m >
1, with less than m associated eigenvectors.

127

All Notes 4.1. Vector and Matrix Algebra

Idempotent Matrices: for square matrices A,

● If A2 = A then A is idempotent.
● All A = In are idempotent. If A ≠ In is idempotent, then A is singular.

Positive Definite and Positive Semi-Definite Matrices: for symmetric matrices A = AT,

● If xTAx > 0 for all x ≠ 0 then A is positive definite (A > 0), and A has all positive eigenvalues.
● If xTAx ≥ 0 for all x then A is positive semi-definite (A ≥ 0), and A has all nonnegative eigenvalues.

Row Echelon Form and Reduced Row Echelon Form:

● A is in row echelon form if 1) all rows having only zero entries are at the bottom and 2) the
leading entry (the left-most nonzero entry) of every nonzero row (the pivot) is on the right of
the leading entry of every row above.

● A is in reduced row echelon form (RREF) if 1) A is in row echelon form, 2) the leading entry
in each nonzero row is 1 (a ‘leading one’) and 3) each column containing a leading 1 has
zeros in all its other entries.

4.1.2. Properties of Complex Matrices

Normal and Unitary Matrices:

● If AA* = A*A then A is normal.

● If AA* = A*A = I then A is unitary and A = A* = A-1. The matrix can be written as
A = exp(iH) where H is a Hermitian matrix, or diagonalised to A = UDU* where U is
unitary and D is diagonal and unitary.

Hermitian and Anti-Hermitian Matrices:

● If A = A* (A = AH) (Aij =) then A is Hermitian (self-adjoint).𝐴
𝑗𝑖

x*Ax is real for all complex vectors x. A has spectral decomposition A = UDU*
where U is unitary and D is diagonal. |A| is real.

● If A = A* (A = AH) then A is anti-Hermitian (skew-Hermitian) (Aij =).− − − 𝐴
𝑗𝑖

The entries of A on the leading diagonal have no real part.

For matrix decompositions, see Section 4.3.

128

All Notes 4.1. Vector and Matrix Algebra

4.1.2. Simple Properties of Matrix Operations

Matrix Multiplication:

● ABC = (AB)C = A(BC) (grouping / associative)
● A(B + C) = AB + AC (factorisation / distributive over addition)
● AB ≠ BA (not commutative in general)

Matrix Algebra: identical to scalar algebra, except:

● multiplication is not commutative e.g. (A + B)2 = A2 + AB + BA + B2 ≠ A2 + 2AB + B2

● vectors squared become xTx
● divisions become matrix inverses A-1

Determinants, Transpose, Conjugate Transpose, Inverse (if it exists) and Trace:

● tr(A) is the sum of all leading diagonal elements of A.
● A* is the conjugate transpose: element-wise complex conjugate and transpose

|AT| = |A| |A*| = |A|* |A-1| = |A|-1

|AB| = |A||B| (AB)T = BTAT (AB)* = B*A* (AB)-1 = B-1A-1

(AT)T = (A*)* = (A-1)-1 = A

tr(aA + bB) = a tr(A) + b tr(B) tr(AB) = tr(BA) tr(abT) = bTa

(a and b are column vectors of equal length)

129

All Notes 4.1. Vector and Matrix Algebra

4.1.3. Determinant of a Matrix

The determinant of a matrix A is written |A| or det A.

For a 2 × 2 matrix:

For a 3 × 3 matrix:

In general, the determinant of a larger square matrix is the alternating sum of products of
entries along any row or column with the determinant of the matrix formed by the
remaining entries (not in that row or column). Any row or column can be chosen: in the
above 3 × 3 expression, the top row was used.

Properties of Determinants:

1. Invariance under transpose and conjugation: |AT| = |A| and |A*| = |A|*
2. Determinant of an inverse: |A-1| = |A|-1

3. If A is either diagonal or upper/lower triangular, then |A| is the product of the diagonals.
4. When a single row or column is multiplied by a, the determinant is multiplied by a.
5. When a matrix is multiplied by a, the determinant is multiplied by an.
6. Replacing a row/column with itself plus another column does not change the determinant.
7. Swapping two rows/columns multiplies the determinant by -1.
8. If an entire row or column is zero, the determinant is zero.
9. The determinant is distributive over multiplication: |AB| = |A||B|.
10. If one row or column is written as a sum, then the determinant can be written as the sum

of two determinants:

Properties 3-7 are often used to help factorise algebraic determinants, exploiting the
circular permutation symmetry of the symbols, for example:

130

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bvmatrix%7D%201%20%26%20a%5E2%20%26%20bc%20%5C%5C%201%20%26%20b%5E2%20%26%20ca%20%5C%5C%201%20%26%20c%5E2%20%26%20ab%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%5Cbegin%7Bvmatrix%7D%201%20%26%20a%5E2%20%26%20bc%20%5C%5C%200%20%26%20b%5E2-a%5E2%20%26%20ca-bc%20%5C%5C%200%20%26%20c%5E2-a%5E2%20%26%20ab-bc%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%20b%5E2%20-%20a%5E2%20%26%20c(a-b)%20%5C%5C%20c%5E2-a%5E2%20%26%20b(a-c)%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20(b-a)(c-a)%20%5Cbegin%7Bvmatrix%7D%20b%2Ba%20%26%20-c%20%5C%5C%20c%2Ba%20%26%20-b%20%5C%5C%20%5Cend%7Bvmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%3D%20(b-a)(c-a)%20%5Cbegin%7Bvmatrix%7D%20b%2Ba%20%26%20-c%20%5C%5C%20c-b%20%26%20c-b%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20(b-a)(c-a)(c-b)%20%5Cbegin%7Bvmatrix%7D%20b%2Ba%20%26%20-c%20%5C%5C%201%20%26%201%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20(b-a)(c-a)(c-b)(a%2Bb%2Bc)%20#0

All Notes 4.1. Vector and Matrix Algebra

4.1.4. Inverse Matrix, Transpose and Conjugate Transpose

Inverse of a 2 × 2 matrix:

Inverse of a 3 × 3 matrix:

where C is the matrix of cofactors, which is the determinant of the 2 × 2 matrix formed by
the elements not in the corresponding row or column, multiplied by an alternating sign of
+1 or -1 (starting with +1 in the top left).

Transpose:

Conjugate Transpose (Hermitian transpose):

Results for complex matrices typically use A* instead of AT. For real matrices, A* = AT.

4.1.5. Outer Product

Outer product: a ⊗ b = abT so that the elements are (a ⊗ b)i,j = ai bj .

Self outer product: If n is a column vector, then n ⊗ n = nnT is a square, symmetric matrix.

4.1.6. Cross Product Matrix

The cross product matrix of a vector n is denoted [n]× and has the property [n]× a = n × a for
any vector a∈ R3. i.e. it represents a cross product as a linear transformation. It is defined as

The cross product matrix [n]× is always skew-symmetric. The columns of [n]× are the
cross products of n with each unit basis vector {i, j, k}.

131

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%20%5Calpha%20%2B%20%5Cbeta%20i%20%26%20%5Cgamma%20%2B%5Cdelta%20i%5C%5C%20%20%5Cvarepsilon%20%2B%5Czeta%20i%20%26%20%5Ceta%20%2B%5Ckappa%20i%20%5Cend%7Bbmatrix%7D%5E*%20%3D%20%5Cbegin%7Bbmatrix%7D%20%5Calpha%20-%20%5Cbeta%20i%20%26%20%5Cvarepsilon%20-%5Czeta%20i%5C%5C%20%20%5Cgamma%20-%5Cdelta%20i%20%26%20%5Ceta%20-%20%5Ckappa%20i%20%5Cend%7Bbmatrix%7D%20%5C%20%5C%20%5C%20%5C%20%5CLeftarrow%20%5C%20%5C%20%5C%20%5C%20(%5Cmathbf%7BA%7D%5E*)_%7Bij%7D%20%3D%20%5Cmathbf%7BA%7D_%7Bji%7D%5E*%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bnn%7D%5ET%20%3D%20%5Cbegin%7Bbmatrix%7D%20n_1%5C%5C%20n_2%5C%5C%20n_3%20%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D%20n_1%20%26%20n_2%20%26%20n_3%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20n_1%5E2%20%26%20n_1%20n_2%20%26%20n_1n_3%5C%5C%20n_1n_2%20%26%20n_2%5E2%20%26%20n_2n_3%5C%5C%20n_1n_3%20%26%20n_2n_3%20%26%20n_3%5E2%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5B%5Cmathbf%7Bn%7D%5D_%7B%5Ctimes%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20-n_3%20%26%20n_2%5C%5C%20n_3%20%26%200%20%26%20-n_1%5C%5C%20-n_2%20%26%20n_1%20%26%200%20%5Cend%7Bbmatrix%7D%20#0

All Notes 4.1. Vector and Matrix Algebra

4.1.7. Eigenvalues and Eigenvectors

Definitions: for a square n × n matrix A, the eigenvalues are denoted λ and eigenvectors are denoted u.

● Definition: Au = λu ↔ (A λI)u = 0 ↔ |A λI| = 0 (characteristic equation, degree n)− −
● Non-defective matrix: every λ (including repeated) has a unique corresponding u.
● Algebraic multiplicity a: the exponent of the factor (λ e)a in the characteristic polynomial.−
● Geometric multiplicity g: the number of linearly independent eigenvectors associated i.e. the

dimension of the null space of A eI.−
● Eigenbasis / eigenspace: the space spanned by the eigenvectors. If A is symmetric and the

eigenvectors are normalised, then the eigenbasis is an orthonormal basis.

Geometric interpretation: A : Rn →Rm is viewed as a linear transformation (Sections 4.2.2. and 4.3).

● The eigenvectors point along the invariant lines under A. These vectors are not rotated (only scaled).
● If λ = 1 then the corresponding line is a line of invariant points under A.
● A repeated eigenvalue represents an invariant plane under A (spanned by the eigenvectors).

Relationships Between Eigenvalues and Eigenvectors:

● Sums and products of eigenvalues: λ1 + λ2 + … + λn = tr(A) and λ1λ2…λn = det(A).
Sum of (n-1)-permutations: λ2λ3…λn + λ1λ3…λn + λ1λ2…λn-1 = λ1λ2λ3…λn (λ1-1 + λ2-1 + … + λn-1) = tr(C)
where C is the matrix of cofactors of A. The Faddeev-LeVerrier algorithm computes the coefficients of
the characteristic polynomial via Vieta’s formulas by applying Newton’s identities to these expressions.

● Linearity: eigenvalues of aA are aλ; eigenvalues of A + aI are λ + a; eigenvalues of An are λn
(including n = -1 as the inverse).

● Commutative matrices: if A and B have the same eigenvectors, then AB = BA.

● Polynomial of a matrix: for any polynomial f (x), the eigenvalues of f (A) are f (λ) (with the constant
term taken to be a multiple of I).

● Cayley-Hamilton theorem: a matrix A satisfies its own characteristic equation.

● Rayleigh’s quotient: if A is Hermitian, then the quantity is bounded by
λ1 ≤ C ≤ λn, where λ1 and λn are the smallest and largest eigenvalues of A respectively, and x is any
vector. Also, if x ≈ u then C ≈ λ, the (approximate) corresponding eigenvalue to eigenvector u of A.

● Spectral radius: the smallest circle in the complex plane containing all eigenvalues, ρ(A) = max |λi|.
For any integer k ≥ 1 and norm (Section 4.1.9), ρ(A) ≤ ||Ak||1/k, with equality in the limit of k→∞.

● Gershgorin circle theorem: every complex eigenvalue of A lies within the union of circles in the
complex plane, centred at the diagonal entries of A, with radii given by the sum of the magnitudes

of all off-diagonal entries in that row i.e. λ∈ {z : |z | ≤ }.
𝑖=1

𝑛

⋃ − 𝐴
𝑖𝑖

𝑗≠𝑖
∑ |𝐴

𝑖𝑗
|

● Singular values: the singular values σ of A are the square roots of the eigenvalues of AAT or ATA.

132

All Notes 4.1. Vector and Matrix Algebra

4.1.8. Approximations for Eigenvalues and Eigenvectors

Shifted Inverse Power Method

To approximate an eigenvalue of A:

● Choose an initial approximation α to the target eigenvalue of A.

● Calculate the matrix B = A - αI.

● Choose any initial normalised vector r0.

● Iterate: starting with n = 0 and incrementing,

○ Solve the system Brn+1 = rn, typically using efficient LU decomposition.
○ Calculate μn+1 = rn+1・rn as an estimate for the shifted eigenvalue.
○ Normalise rn+1 (in-place) and continue.

● Once sufficient convergence is achieved, calculate as the targetλ = 1
µ

∞
+ α

eigenvalue of A, where is the limiting (converged) value of sequence . The unitµ
∞

 µ
𝑛

vector rn has simultaneously converged to the corresponding eigenvector.

Note that if r0 happens to be chosen as a different eigenvector of A,
the method will not converge.

An initial estimate for α can often be found using the Gershgorin Circle Theorem
(see Section 4.1.7.), which works best when the matrix is sparse or near-diagonal (most
off-diagonal entries are zero or much smaller than the diagonal entries).

Rayleigh’s quotient (Section 4.1.7) can also be used to approximate the eigenvalue from
an eigenvector approximation, and bounds the eigenvalues.

133

All Notes 4.1. Vector and Matrix Algebra

4.1.9. Normed Vector Spaces and Matrix Norms

Norms are scalar-valued measures of the ‘typical size’ of an object (vector/function/matrix).

Vector Norms: if x is a vector with elements xi, four common norms are

● 1-norm: ||x||1 = (L1 norm / l1 norm / Manhattan norm / Taxicab norm)
𝑖

∑ |𝑥
𝑖
|

● 2-norm: ||x||2 = (L2 norm / l2 norm / quadratic norm / Euclidean norm)
𝑖

∑ 𝑥
𝑖
2

Inner product form: ||x||22 = x・x (in a Hilbert space)

● p-norm: ||x||p = (for p ≥ 1; l p norm / Lebesgue norm)
𝑖

∑ |𝑥
𝑖
|𝑝()1/𝑝

● ∞-norm: ||x||∞ =max {xi} (infinity norm / supremum norm)

Generalisation to Infinite Dimensions (Banach Spaces)

Discrete or continuous functions f : R → R can be considered infinite-dimensional vectors.

● lp norm: ||𝑥||
𝑝

= ∑ |𝑥
𝑖
|𝑝()1/𝑝

● Lp norm: (f defined in a Lebesgue space Lp(Ω))||𝑓||
𝑝

=
Ω
∫ |𝑓(𝑥)|𝑝 𝑑𝑥()1/𝑝

Matrix Norms: if A is a matrix with elements aij, four common norms are

● 1-norm: the maximum absolute column sum,

● Infinity-norm: the maximum absolute row sum,

● Euclidean norm: (Frobenius norm)

● 2-norm: the largest singular value of A. (spectral norm)

The condition number of an invertible square matrix A is defined by κ = ||A|| ||A-1||
evaluated using one of these norms (the same one in both places. If the 2-norm is used,
the condition number is the ratio of the largest to the smallest singular value of A.

134

All Notes 4.2. Transformation Matrices

4.2. Transformation Matrices
4.2.1. Rotations, Reflections, Shears and Projections as Transformation Matrices

Rotation Matrices: for a counterclockwise rotation about the origin, angle θ,

2D 3D, about x-axis 3D, about y-axis 3D, about z-axis

The general rotation about line r × n = 0 is given by (cos θ) I + (sin θ) [n]× + (1 - cos θ) (n ⊗ n).

In 3D, the rotation is considered counterclockwise when viewed inwards from the positive
axis, towards the origin. The eigenvalues are {1, eiθ, e-iθ}. The real eigenvector corresponding
to λ = 1 is the axis of rotation. The trace is 1 + 2 cos θ. The determinant is 1.

Reflection Matrices:

In 2D, the reflection in the line y = (tan θ)x is given by . Determinant is -1.

In 3D, the reflection in the plane r・n = 0 is given by I - 2nnT =

where n is the unit normal vector of the plane.

Shear Matrices: shear factor λ is given by I + λ n [1 1 1]: angle of shear: tan γ = λ

in x-axis in y-axis general 3D shear in line r × n = 0

Orthogonal Projection: the projection matrix of R3 onto the plane r・n = 0, where n is the
unit normal vector of the plane, is

This is a singular matrix since it involves a reduction in dimensionality (3→ 2).

135

https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%201%20%26%20%5Clambda%20%5C%5C%200%20%26%201%20%5Cend%7Bbmatrix%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Cbegin%7Bbmatrix%7D%201%20%26%200%20%5C%5C%20%5Clambda%20%26%201%20%5Cend%7Bbmatrix%7D%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbegin%7Bbmatrix%7D%201%20%2B%20%5Clambda%20n_1%20%26%20%5Clambda%20n_1%20%26%20%5Clambda%20n_1%5C%5C%20%5Clambda%20n_2%20%26%201%20%2B%20%5Clambda%20n_2%20%26%20%5Clambda%20n_2%5C%5C%20%5Clambda%20n_3%20%26%20%5Clambda%20n_3%20%26%201%20%2B%20%5Clambda%20n_3%20%5Cend%7Bbmatrix%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BI%7D%20-%20%5Cmathbf%7Bnn%7D%5E%5Ctextup%7BT%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%201%20-%20n_1%5E2%20%26%20-n_1n_2%20%26%20-n_1n_3%20%5C%5C%20-n_1n_2%20%26%201%20-%20n_2%5E2%20%26%20-n_2n_3%20%5C%5C%20-n_1n_3%20%26%20-n_2n_3%20%26%201%20-%20n_3%5E2%20%5Cend%7Bbmatrix%7D.%20#0

All Notes 4.2. Transformation Matrices

4.2.2. Geometric Interpretation of Invariance, Eigenvalues and Eigenvectors

For all linear transformations, the origin is invariant, which is not considered to ‘count’ here.

In 2D (or higher):

Invariant point: if Ap = p then p is invariant under A (p does not move).
p is an eigenvector of A, with eigenvalue 1.

Line of invariant points: a line r = λn for which all points on the line are invariant.
n is an eigenvector of A with eigenvalue 1.

Invariant line: a line r = λn for which points on the line are mapped to another point on
the line, so that the line as a whole does not move.
n is an eigenvector of A, with points being scaled by the eigenvalue.

In 3D (or higher):

Plane of invariant points: a plane r = λu + μv for which all points on the plane are invariant.
u and v are eigenvectors with repeated eigenvalue 1.

Invariant plane: a line r = λu + μv for which points on the plane are mapped to another
point on the plane, so that the plane as a whole does not move.
u and v are eigenvectors with the same repeated eigenvalue.

4.2.3. Affine Transformations

An affine transformation represents the combination of a linear transformation followed by a
translation in space. In 3D, they can be represented as 4 × 4 matrices, with space vectors
taking the form [x y z 1]T, known as homogeneous coordinates (with w = 1, WLOG).

A 3D affine transformation matrix R has the form

where Mxx’ are the entries of a 3 × 3 linear transformation matrixM and (Δx, Δy, Δz) are
translations parallel to the coordinate axes.

136

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BR%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20M_%7Bii%7D%20%26%20M_%7Bji%7D%20%26%20M_%7Bki%7D%20%26%20%5CDelta%20x%20%5C%5C%5C%5C%20M_%7Bij%7D%20%26%20M_%7Bjj%7D%20%26%20M_%7Bkj%7D%20%26%20%5CDelta%20y%20%5C%5C%5C%5C%20M_%7Bik%7D%20%26%20M_%7Bjk%7D%20%26%20M_%7Bkk%7D%20%26%20%5CDelta%20z%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%201%20%26%200%20%26%200%20%26%20%5CDelta%20x%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20%5CDelta%20y%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20%5CDelta%20z%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%7D_%7B%5Ctextup%7Btranslations%7D%7D%20%5C%20%5Cunderbrace%7B%5Cbegin%7Bbmatrix%7D%20M_%7Bii%7D%20%26%20M_%7Bji%7D%20%26%20M_%7Bki%7D%20%26%200%20%5C%5C%5C%5C%20M_%7Bij%7D%20%26%20M_%7Bjj%7D%20%26%20M_%7Bkj%7D%20%26%200%20%5C%5C%5C%5C%20M_%7Bik%7D%20%26%20M_%7Bjk%7D%20%26%20M_%7Bkk%7D%20%26%200%20%5C%5C%5C%5C%200%20%26%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%7D_%7B%5Ctextup%7Brotations%2C%20shears%2C%20projections...%7D%7D%20#0

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3. Fundamental Subspaces and Matrix Decompositions
4.3.1. Fundamental Subspaces

For any m × n matrix A of rank r, with y = Ax, (dims = number of dimensions in the space)

Subspace Form Dims Basis
Projection matrix onto

subspace

Input
space
(dim = n)

Row space
(domain)

C(AT) rcol nonzero rows of rref(A) AT(AAT)-1A

Null space
(kernel)

N(A) n - rcol Ax = 0 i.e. xTA = 0T I - AT(AAT)-1A

Output
space
(dim = m)

Column space
(image; range)

C(A) rrow columns of A corresponding to
columns of rref(A) with leading 1’s A(ATA)-1AT

Left null space
(cokernel)

N(AT) m - rcol yTA = 0T i.e. ATy = 0 I - A(ATA)-1AT

For any matrix A acting as a transformation of space Rn into space Rm,

● Vectors in the row space are mapped to the column space.
● Vectors in the null space are mapped to the origin.
● No vector is mapped to the left null space.
● The eigenvectors span the column space.

Orthogonal complements:
● The row space and the null space are orthogonal.
● The column space and the left null space are orthogonal.

Ranks:
● The column rank is the dimension of the row space. Full column rank: r = n.
● The row rank is the dimension of the column space. Full row rank: r = m.
● If A has full row rank then a solution x to the system Ax = b exists.
● If A has full rank (i.e. square, invertible) then the solution x to Ax = b is unique.

4.3.2. The Gram-Schmidt Orthonormalisation Process

Given a set of vectors ai, the Gram-Schmidt process gives a set of orthonormal vectors qi which
span the same space as ai, by subtracting off components parallel to each q.

Taking normalised a1 as q1, the vector qi is the normalised vector of qi’ = ai (ai・qk)qk.−
𝑘=1

𝑖−1

∑

The complete set qi is obtained when the resulting vector is 0.

137

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.3. LU Decomposition

For any m × n matrix A,
PA = LU

where P is a permutation matrix (sometimes omitted), L a square m × m lower triangular
matrix and U an m × n echelon matrix.

Manual computation:

● To compute U, use Gaussian elimination to convert A into row echelon form, using
row operations of the form rj’ = rj - a ri where j > i. If using partial pivoting, swap rows
before each elimination such that the pivot (diagonal entry of U) is maximised (by
magnitude), equivalently ensuring that the multiplier (entry in L) has |a| ≤ 1.

● To compute L, let each lower-triangular entry be equal to the coefficient a used in the
Gaussian elimination step to form a zero in the corresponding position in U. The
diagonal entries of L are all 1 and the upper-triangular entries are all 0. If using partial
pivoting, swap entries in L only when they are below the diagonal of the column, and
only in the column in which the swap was performed.

● To compute P, start with I and swap the same rows as done during the process of
computing U. If partial pivoting was not used, then P = I and can be omitted.

Programming functions:

● MATLAB: [L, U, P] = lu(A)

● Python: P, L, U = scipy.linalg.lu(A) where A is a NumPy array

Basis of subspaces:

● Column space: the columns of L corresponding to nonzero rows of U
● Left nullspace: the nullspace of AT

● Row space: the nonzero rows of U
● Nullspace: the nullspace of U

To solve a system of equations of the form Ax = b:

● Transform Ax = b into Ux = c where Lc = b can be solved by forward-substitution.
● Set all free variables to zero and find a particular solution x0.
● Set the RHS to zero, give each free variable in turn the value 1 while the others are

zero, and solve to find a set of vectors which span the null space of A: n1, n2, etc.
● The general solution is x = x0 + λn1 + µn2 + . . ., where λ, µ, etc. are arbitrary.

138

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.4. Cholesky Decomposition

For a Hermitian (if real, then symmetric), positive-definite matrix A,

A = LL* in general, or A = LLT for real matrices

where L is a lower triangular matrix. L* is the conjugate transpose.

Manual computation:

● For each row of L, compute the diagonal entry using this first formula below,
starting with the top left.

● Then compute the remaining entries on that row using the second formula below,
starting from the left and moving right until the diagonal. All other entries are 0.

● Move down to the next row, repeating until all rows of L are filled.

for real matrices for complex matrices

Programming functions:

● MATLAB: L = chol(A)

● Python: L = scipy.linalg.cholesky(A) where A is a NumPy array

To solve a system of equations of the form Ax = b:

● Transform Ax = b into L*x = c where Lc = b can be solved by forward-substitution.
● Solve L*x = c by back-substitution.

This method is approximately twice as fast as a solution using LU decomposition.

139

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.5. QR Decomposition and Least Squares Fitting

For any m × n matrix A,
A = QR

where Q is an orthonormal m × rmatrix and R is an invertible upper-triangular r × nmatrix,
where r is the rank of A.

Manual computation:

● To compute Q, use the Gram-Schmidt process (Section 4.3.2.) to find an
orthonormal set from the columns of A. These vectors form the columns of Q.

● To compute R, use

Rij = qi・aj if i ≤ j; otherwise Rij = 0

where qi is the ith column vector of Q and aj is the jth column vector of A.

Programming functions:

● MATLAB: [Q, R] = qr(A)

● Python: Q, R = scipy.linalg.qr(A) where A is a NumPy array

To solve a least-squares system Ax* = b: in general, x* = (ATA)-1 AT b, or more efficiently,

● Find A = QR.
● Solve Rx* = QTb by back-substitution.
● The solution x = x* satisfies min {x∈ Rn : ||Ax - b||22} =min {x∈ Rn : ∑i |Ai・x - bi|2}.

Least-squares system in tabulated form: mapping xi to yi (1 ≤ i ≤ n), the coefficients of a
best-fit line y = a + bx or parabola y = a + bx + cx2 can be found by solving the systems

140

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.6. Eigendecomposition (Diagonalisation)

If A is a square n × nmatrix with n linearly independent eigenvectors (diagonalisable,
nondefective), then

A = SΛS−1 and An = SΛnS−1

where S has the eigenvectors of A as its columns, and Λ is a diagonal matrix with the
corresponding eigenvalues along the diagonal. Matrices A and Λ are said to be similar, so
that they represent the same geometric transformation with a change of basis given by S.

Spectral theorem: If A is Hermitian then A = SΛS*
Spectral decomposition: If A is real and symmetric then A = SΛST.
where S the orthonormal matrix of normalised eigenvectors as its columns.

Programming functions (where D↔ Λ)

● MATLAB: [S, D] = eig(A).
● Python: D, S = np.linalg.eig(A) # can use eigh(A) if Hermitian

4.3.7. Singular Value Decomposition (SVD)

For any m × n matrix A,
A = Q1ΣQ2

T

● Q1 is an m × m orthonormal matrix with the normalised eigenvectors of AAT as its columns.
● Q2 is an n × n orthonormal matrix with the normalised eigenvectors of ATA as its columns.
● Σ is an m × n diagonal matrix containing the r singular values, arranged in descending order

on the leading diagonal, which are the square roots of the non-zero eigenvalues of both
AAT and ATA, where r is the rank of A.

Programming functions:

● MATLAB: [Q1, S, Q2] = svd(A)

● Python: Q1, S, Q2_T = np.linalg.svd(A) where A is a NumPy array

Basis of subspaces of A:

● Column space: the first r columns of Q1

● Left nullspace: the last m − r columns of Q1

● Row space: the first r columns of Q2

● Nullspace: the last n − r columns of Q2

141

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.8. Other Matrix Decompositions

Schur Decomposition: for any square matrix A,

A = UTU*

where U is unitary, and T is upper-triangular with the eigenvalues of A along its diagonal.
If A is normal then T is diagonal and the Schur form matches the spectral decomposition.

Polar Decomposition: for any square matrix A,

A = UP

where U is unitary and P is positive semi-definite and Hermitian. P is unique with P2 = AA*.
If P has spectral decomposition P = VDV* andW = UV then the SVD is A =WDV*.

Toeplitz decomposition: for any square matrix A,

A = H + G

where H is Hermitian and G is skew-Hermitian, with H = (A + A*) / 2 and G = (A A*) / 2.−

4.3.9. Matrix Exponentials

For a square m × m matrix A, the matrix exponential exp(A) is defined as

To compute exp(A) from its eigenvalues and eigenvectors, let A = SΛS−1

(eigendecomposition: Section 4.3.6). Then exp(A) = S exp(Λ) S−1.

Properties:

● exp(AT) = exp(A)T and exp(A*) = exp(A)*
● If AB = BA then eAeB = eBeA = eA + B

142

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cexp(%5Cmathbf%7BA%7D)%20%3D%20e%5E%7B%5Cmathbf%7BA%7D%7D%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%20%7D%20%5Cfrac%7B%5Cmathbf%7BA%7D%5En%7D%7Bn!%7D%20%3D%20%5Cmathbf%7BI%7D%20%2B%20%5Cmathbf%7BA%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Cmathbf%7BA%7D%5E2%20%2B%20%E2%80%A6%20#0

All Notes 4.3. Fundamental Subspaces and Matrix Decompositions

4.3.10. Statement of a Convex Optimisation Problem

Objective: to find x that minimises f0(x) such that fi (x) ≤ bi and hi (x) = 0, where

● x = [x1, x2, …, xn]T is an input state vector
● f0(x) is the objective function (scalar)
● fi (x) ≤ bi are bounds for valid regions (feasible region) of the input x
● hi (x) = 0 are constraints for valid contour lines (level sets) of the input x

Convex function: fi (αx + βy) ≤ α fi (x) + β fi (y) for all α + β = 1, α ≥ 0, β ≥ 0

In a convex optimisation problem, the objective and inequality constraint functions f0 and
fi are convex functions. Convex optimisation problems are guaranteed to have no more
than one local minima: if a minimum exists, then it is the global minimum.

The global minimum solution is denoted x = x*, so that f0(x*) = min {x∈ Rn : f0(x)} within
the specified constraints.

Least-Squares Optimisation

Objective: minimise f0(x) = ||Ax - b||22 (l2-norm of residual vector)
Constraints: (arbitrary)

The solution is given by x* = A+b (A+ = (ATA)-1AT: Moore-Penrose pseudoinverse).

Linear Programming (LP Problems)

Objective: minimise f0(x) = cTx (linear combination of variables)
Constraints: aiTx ≤ bi and x ≥ 0

The solution x* is guaranteed to lie on the vertex of the boundary of the constraint region.

Danzig’s simplex algorithm: visualise feasible region as a polytope (n-D polyhedron with
hyperplane faces) in a uniform gradient field∇f0 = c. Traverse edges of the polytope until
optimum vertex found.

Quadratic Programming

Objective: minimise f0(x) = xTPx + qTx + r (P: positive semi-definite matrix)1
2

Constraints: Gx ≤ h and Ax = b

143

All Notes 4.4. Matrix and Tensor Calculus

4.4. Matrix and Tensor Calculus
4.4.1. Indicial Tensor Notation

Einstein summation notation: repeated indices imply summation over indices.

● Component form: a = ai ei = ∑i ai ei

● Inner product: a・b = ai bi

● Outer product: if A = a ⊗ b then Aij = ai bj

● Kronecker delta: δij = 1 if i = j else δij = 0; for orthonormal e, then δij = ei・ej.

● Permutation symbol:
○ eijk = 1, when i, j, k are in cyclic order
○ eijk = -1, when i, j, k are in anti-cyclic order
○ eijk = 0, when any indices repeat

● Triple product contraction: eijkeipq = δjpδkq δjqδkp (epsilon-delta identity)−

● Gradient field: ∇ϕ = (∂ϕ / ∂xi) ei = ϕ,i ei

● Divergence field: ∇・v = vi,i

● Curl field: ∇ × v = eijk vk, j ei

● Gauss’ divergence theorem:

● Stokes’ curl theorem:

144

All Notes 4.4. Matrix and Tensor Calculus

4.4.2. Differentiation with Respect to Vectors and Matrices

Vector-valued function x(y) Multivariable function x(y) Vector field x(y)

Differential of matrix expressions (X, Y: matrix-valued functions)

Derivative of determinant:

Derivative of inverse:

Derivative of eigenvalues:

Derivatives of linear forms:

Derivatives of quadratic forms:

Gradient and Hessian: if f = xTAx + bTx then

Derivative of trace: if f (x) = then
𝑑𝐹(𝑥)

𝑑𝑥

145

All Notes 4.4. Matrix and Tensor Calculus

4.4.3. Quadratic Forms

A quadratic form is a scalar-valued function of the form

f (x) = xTAx + bTx, f : Rn → R, A = AT ∈ Rn×n, b∈ Rn.

If x = [x1 … xn] then the xTAx term expands to a weighted sum over all combinations of xi xj
and the bTx term expands to a weighted sum over all xi.

Iff A > 0 then f is a strictly convex function.

4.4.4. Block Matrices

A block matrix is a matrix in which the entries can be matrices, vectors or scalars.

Block matrix P is said to be (m × n) if it has m row partitions and n column partitions. Its
full dimensions are at least as large as m × n.

● Multiplication: if A is (m × n) and B is (p × n) then C = AB is (m × n): Cqr = AqiBir

All partitions must be conformable such that # columns in Aqi = # rows in Bir for all i.

146

All Notes 5.1. Axioms, Combinatorial Probability and Basic Statistics

M5. STATISTICS

5.1. Axioms, Combinatorial Probability and Basic Statistics
5.1.1. Axioms of Probability

Axioms: The probability P is a measure that verifies the following:

● Probability of an event: 𝑃(𝐴) ∈ 𝑅, 𝑃(𝐴) ≥ 0, ∀𝐴 ⊆ Ω
● Sample space is a certain event: 𝑃(Ω) = 1
● Additivity for disjoint sets: if Ø𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵), 𝐴 ∩ 𝐵 =

Immediate Consequences: these can be demonstrated easily from a Venn diagram.

● Monotonicity: if then .𝐴 ⊆ 𝐵 𝑃(𝐴) ≤ 𝑃(𝐵)
● Empty set: Ø .𝑃() = 0
● Complement: 𝑃(𝐴) = 1 − 𝑃(𝐴)
● Bound: , .0 ≤ 𝑃(𝐴) ≤ 1 ∀𝐴 ⊆ Ω

5.1.2. Rules of Probability

● Addition: .𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

● Sum rule: .𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)

● Conditional probability: if .𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵) 𝑃(𝐵) ≠ 0

● Law of total probability: .𝑃(𝐴) = 𝑃(𝐴 | 𝐵) 𝑃(𝐵) + 𝑃(𝐴 | 𝐵) 𝑃(𝐵)

● Bayes’ rule: .𝑃(𝐵 | 𝐴) =
𝑃(𝐵)
𝑃(𝐴) 𝑃(𝐴 | 𝐵) =

𝑃(𝐴 | 𝐵) 𝑃(𝐵)
𝑃(𝐴 | 𝐵) 𝑃(𝐵) + 𝑃(𝐴 | 𝐵) 𝑃(𝐵)

5.1.3. Combinatorial (Frequentist) Definition of Probability

Assuming that the event occurs with equal likelihood in all outcomes:

Probability of an event A = .
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

147

All Notes 5.1. Axioms, Combinatorial Probability and Basic Statistics

5.1.4. Definitions of Mean and Variance

For a single variable dataset {x1, x2, …, xn}, the sample mean and variance are

If n→ N is large and representative of the population, then the population mean and variance are

The quantities and are known as summary statistics.
𝑖=1

𝑛

∑ 𝑥
𝑖

𝑖=1

𝑛

∑ 𝑥
𝑖
2

Standard deviation: σ Coefficient of Variation: CoV =
σ
µ

5.1.5. Data Presentation

For categorical or discrete data:

● Pie chart: angle of the pie represents fraction of total frequency.
● Bar chart: bar height represents frequency. May have error bars, be grouped and/or stacked.
● Frequency table: lists the frequencies explicitly.
● Pictogram / tally chart: shows icons representing a given unit frequency.
● Choropleth map: colour-coded values or buckets. Often used for geographical data.

For numerical and continuous data:

● Histogram: shows frequency density = frequency (area) / bin size, of the intervals
● Line chart: shows values as✕ on the graph, connected. Can also be used for discrete.
● Stem and leaf plot: lists of numerical data grouped by the most significant digit.
● Box and whisker plot: shows the min, max, quartiles and mean.

Conventionally, outliers are identified as x > UQ + 1.5 × IQR or x < LQ - 1.5 × IQR.
(UQ: upper quartile, LQ: lower quartile, IQR = UQ - LQ: interquartile range)

For bivariate data:

● Scatter graph: shows values as✕ on the graph, not connected.

148

All Notes 5.1. Axioms, Combinatorial Probability and Basic Statistics

5.1.6. Common Numbers and Operators in Combinatorics

● Factorial: for positive integers n, and 0! = 1.𝑛! =
𝑘=1

𝑛

∏ 𝑘 = 𝑛(𝑛 − 1)(𝑛 − 2)... 2 × 1

● Double factorial:

if n even; if n odd.𝑛!! = 𝑛(𝑛 − 2)(𝑛 − 4)... 2 𝑛!! = 𝑛(𝑛 − 2)(𝑛 − 4)... 3

if n even; × if n odd.𝑛!! = 2𝑛/2 (𝑛
2)! 𝑛!! = 2

1 − 𝑛
2() 𝑛!

𝑛 − 1
2()!

● Asymptotic growth: as n→∞𝑛𝑘 << 𝑛!! << 𝑛! << 𝑛𝑛

● Stirling’s approximation: ln n! ~ n ln n n and n! ~ as n→∞− 2π𝑛 𝑛
𝑒()𝑛

● Double factorial ratio: as n→∞
(2𝑛)!!

(2𝑛 − 1)!! ~ π𝑛

● Rising factorial: 𝑥(𝑛) = 𝑥𝑛 =
𝑘=0

𝑛−1

∏ (𝑥 + 𝑘) = 𝑥(𝑥 + 1)(𝑥 + 2)... (𝑥 + 𝑛 − 1) = (𝑥 + 𝑛 − 1)!
(𝑥 − 1)!

● Falling factorial: (𝑥)
𝑛

=
𝑘=0

𝑛−1

∏ (𝑥 − 𝑘) = 𝑥(𝑥 − 1)(𝑥 − 2)... (𝑥 − 𝑛 + 1) = 𝑥!
(𝑥 − 𝑛)!

● Derangement (subfactorial): !n = , with !0 = 1𝑛! ×
𝑘=0

𝑛

∑ (−1)𝑘

𝑘! = 𝑟𝑜𝑢𝑛𝑑 𝑛!
𝑒()

● Combinations (binomial coefficient): = 𝑛𝐶
𝑟

=
𝑛!

𝑟! (𝑛 − 𝑟)!

● Permutations: 𝑛𝑃
𝑟

=
𝑛!

(𝑛 − 𝑟)! = 𝑟! × 𝑛𝐶
𝑟

● Bell numbers: 𝐵
𝑛+1

=
𝑘=0

𝑛

∑ 𝑛𝐶
𝑘

× 𝐵
𝑘

○ Explicit formula (Dobiński's formula): 𝐵
𝑛

= 1
𝑒

𝑘=0

∞

∑ 𝑘𝑛

𝑘!

○ First few Bell numbers: B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203…

○ Exponential generating function: 𝐸𝐺(𝐵
𝑛
; 𝑧) =

𝑛=0

∞

∑
𝐵

𝑛

𝑛! 𝑧𝑛 = 𝑒𝑒𝑧−1

● Harmonic numbers: Hn =
𝑟=1

𝑛

∑ 1
𝑟

● Stirling numbers of the 1st kind: coefficients s such that (𝑥)
𝑛

=
𝑘=0

𝑛

∑ 𝑠(𝑛, 𝑘) 𝑥𝑘

● Stirling numbers of the 2nd kind: S(n, k) =
𝑖=0

𝑘

∑ (−1)𝑘−𝑖 𝑖𝑛

(𝑘 − 𝑖)! 𝑖!

● Lah numbers: L(n, k) = 𝑛−1𝐶
𝑘−1

× 𝑛!
𝑘!

149

All Notes 5.1. Axioms, Combinatorial Probability and Basic Statistics

5.1.7. Counting Problems of Unordered Sets (Combinations and Partitions)

Consider a set S of n objects, all of which are unique, e.g. S = {🔴💛💚🔵💜}

A combination is an unordered non-empty subset of S of any length r, e.g. {🔴💚🔵}.

A partition is a superset of S containing any number k of non-overlapping (mutually disjoint)
combinations of S, e.g. {{🔴💜}, {💛💚}, {🔵}}.

A combination may (if specified) include the same element(s) of S multiple times. If this is the case,
we say it has “repeats” or “with replacement”.

● Number of r-length combinations without replacement = 𝑛𝐶
𝑟

=
𝑛!

𝑟! (𝑛 − 𝑟)!

● Number of r-length combinations with replacement = 𝑛+𝑟−1𝐶
𝑟

=
(𝑛 + 𝑟 − 1)!
𝑟! (𝑛 − 1)!

● Number of partitions = Bn (Bell numbers)

● Number of partitions into k combinations = S(n, k) (Stirling numbers of the second kind)

5.1.8. Counting Problems of Ordered Sets (Permutations and Derangements)

Consider a set S of n objects, all of which are unique, e.g. S = {🔴💛💚🔵💜}.

A permutation is a linearly ordered non-empty subset of S of any length r, e.g. (🔴,🔵,💛).

A cyclic permutation is a permutation where left/right shifting is considered an identical permutation.

A derangement is an n-length permutation without replacement of an ordered set S such that no
object remains in its original position, e.g. (🔴,💛,💚,🔵,💜) → (💛,🔵,🔴,💜,💚).

A permutation may (if specified) include the same element(s) of S multiple times. If this is the case,
we say it has “repeats” or “with replacement”.

● Number of r-length permutations without replacement = 𝑛𝑃
𝑟

=
𝑛!

(𝑛 − 𝑟)!

● Number of r-length permutations with replacement = 𝑛𝑟

● Number of derangements = !n (derangement)

● Number of partitions into k cyclic permutations = s(n, k) (Stirling numbers of the 1st kind)

● Number of partitions into k permutations = L(n, k) (Lah numbers / Stirling numbers of the 3rd kind)

If the set contains items considered to be identical e.g. S = {🔴🔴💛💚💚💚🔵🔵💜}, where each item
🔴,💛,💚… appears n1, n2, n3… times respectively (n1 + n2 + n3 + … = n):

● Number of n-length multiset permutations without replacement =
𝑛!

𝑛
1
! 𝑛

2
! 𝑛

3
! ...

150

All Notes 5.1. Axioms, Combinatorial Probability and Basic Statistics

5.1.9. Common Counting Problems

Coupon Collector Problem: each box contains one coupon. Each coupon can come in n
different kinds, uniformly distributed. Let T be the number of boxes opened once at least
one of each coupon kind has been found, where T ≥ n.

● Probability distribution: 𝑃(𝑇 = 𝑡) = 𝑛!

𝑛𝑡 𝑆(𝑡 − 1, 𝑛 − 1) = 𝑛1−𝑡
𝑟=0

𝑛−1

∑ 𝑛−1𝐶
𝑟
 (− 1)𝑛−𝑟−1 𝑟𝑡−1

● Cumulative distribution: 𝑃(𝑇 ≤ 𝑡) = 𝑛!

𝑛𝑡 𝑆(𝑡, 𝑛) =
𝑖=0

𝑛

∑ 𝑛𝐶
𝑖
 (− 1)𝑛−𝑖 𝑖

𝑛()𝑡

(S: Stirling numbers of the 2nd kind)
● Expected number of boxes required: (Hn: harmonic numbers)𝐸[𝑇] = 𝑛 𝐻

𝑛

● Variance in number of boxes required: 𝑉𝑎𝑟[𝑇] = 𝑛2
𝑟=1

𝑛

∑ 1

𝑟2() − 𝑛 𝐻
𝑛

● Expected remaining number of boxes required given m < n already found: 𝐸[𝑇
𝑚

] = 𝑛 𝐻
𝑛−𝑚

● Asymptotic limit for large n: E[T] ~ n ln n + γn + + O(n-1) (γ ≈ 0.5772…: Euler-Mascheroni constant)1
2

Hat Check Problem: a group of n men put their n unique hats into a box. Afterwards, the men
then randomly take back one hat each from the box without replacement. Let M be the
number of men who correctly retrieved their own hat, where 0 ≤ M ≤ n.

● Probability distribution: (!n: derangement)𝑃(𝑀 = 𝑚) =
 𝑛𝐶

𝑚
 × !(𝑛 − 𝑚)

𝑛!

● Probability all incorrect: , with .𝑃(𝑀 = 0) = !𝑛
𝑛!

𝑛 ∞
lim
→

𝑃(𝑀 = 0) = 1
𝑒

● Probability all correct: .𝑃(𝑀 = 𝑛) = 1
𝑛!

● Expected number of correct hats: 𝐸[𝑀] = 1
● Variance in number of correct hats: 𝑉𝑎𝑟[𝑀] = 1

Birthday Problem: in a room of n people, find the probability that any two share a birthday.

● P(at least two shared birthdays) .= 1 −
 365𝑃

𝑛

365𝑛

● For two groups (a men and b women, with a + b = n):

P(a man shares a birthday with a woman) = 1

365𝑛
𝑖=1

𝑎

∑
𝑗=1

𝑏

∑ 𝑆(𝑎, 𝑖) 𝑆(𝑏, 𝑗)
𝑘=0

𝑖+𝑗−1

∏ (365 − 𝑘)

Intersection of Random Sets: let SX = {1, 2, … M} and SY = {1, 2, … N}. Without replacement,
uniform randomly and independently, choose a elements from SX and b elements from SY, and
put them in sets X and Y respectively.

● The count of common elements has distribution .𝑃 |𝑋 ∩ 𝑌| = 𝑧() =
 𝑀𝐶

𝑧
 × 𝑀−𝑧𝐶

𝑏−𝑧
 × 𝑁−𝑏𝐶

𝑎−𝑧

 𝑀𝐶
𝑏
 × 𝑁𝐶

𝑎

151

All Notes 5.2. Probability Distributions and Random Variables

5.2. Probability Distributions and Random Variables
5.2.1. Discrete Probability Distributions

Distribution P(X = r)
PMF

E(X)
expectation

Var(X)
variance

GX(z)
PGF

H(X)
differential entropy

Bernoulli
r∈ {0, 1}
X ~ Ber(p)

𝑝𝑟𝑞1−𝑟

q = 1 - p
𝑝 𝑝𝑞 𝑞 + 𝑝𝑧 -q log q + p log p

Discrete Uniform
r∈ {a, …, b}
X ~ U(a, b)

1
𝑛

𝑛 = 𝑏 − 𝑎 + 1

𝑎 + 𝑏
2

𝑛2 − 1
12

𝑧𝑎 − 𝑧𝑏+1

𝑛(1 − 𝑧)
log n

Binomial
r∈ {0, 1, 2, …, n}

X ~ B(n, p)
 𝑛𝐶

𝑟
 𝑝𝑟 𝑞𝑛−𝑟 𝑛𝑝 𝑛𝑝𝑞 (𝑞 + 𝑝𝑧)𝑛 log 2π𝑒𝑛𝑝𝑞

+ O(n-1)

Negative Binomial
r∈ {0, 1, 2, …}
X ~ NB(n, p)

 𝑟+𝑛−1𝐶
𝑟
 𝑝𝑛 𝑞𝑟 𝑛𝑞

𝑝
𝑛𝑞

𝑝2
𝑝

1 − 𝑞𝑧()𝑛
-

Beta-Binomial
r∈ {0, 1, 2, …, n}
X ~ BetaBin(n, α, β)

 𝑛𝐶
𝑟
 𝐵(𝑟+α, 𝑛−𝑟+β)

𝐵(α, β)

𝑛α
α + β

𝑛αβ(α+β+𝑛)

(α+β)2(α+β+1)
- -

Geometric
r∈ {1, 2, 3, …}

X ~ Geo(p)
𝑞𝑟−1 𝑝 𝑝−1 𝑞𝑝−2 𝑝𝑧

1 − 𝑞𝑧
log q - log p−𝑞

𝑝

Hypergeometric
r∈ {max(0, n+K-N)

…, min(n, K)}
X ~ HG(N, K, n)

 𝐾𝐶
𝑟
 𝑁−𝐾𝐶

𝑛−𝑟

 𝑁𝐶
𝑛

𝑛𝐾
𝑁

𝑛𝐾(𝑁−𝐾)(𝑁−𝑛)

𝑁2(𝑁−1)

×
 𝑁−𝐾𝐶

𝑛

 𝑁𝐶
𝑛

2F1(-n, -K;
N-K-n+1; z)

-

Negative
Hypergeometric
r∈ {0,…, K}
X ~ NHG(N, K, n)

 𝑟+𝑛−1𝐶
𝑟
 𝑁−𝑛−𝑟𝐶

𝐾−𝑟

 𝑁𝐶
𝐾

𝑛𝐾
𝑁−𝐾+1

𝑛𝐾(𝑁+1) 𝑁−𝐾+1−𝑛()
𝑁−𝐾+2 - -

Poisson
r∈ {0, 1, 2, …}

X ~ Po(λ)

𝑒−λ λ𝑟

𝑟!
λ λ 𝑒λ(𝑧 − 1)

log + O()2π𝑒λ λ−1

152

All Notes 5.2. Probability Distributions and Random Variables

5.2.2. Continuous Probability Distributions

Distribution fX(x)
PDF

E(X)
expectation

Var(X)
variance

MX(s)
MGF

H(X)
differential entropy

Rectangular
x∈ [a, b]

X ~ Rect(a, b)

1
𝑎 − 𝑏

𝑎 + 𝑏
2

(𝑏 − 𝑎)2

12
𝑒𝑏𝑠 − 𝑒𝑎𝑠

𝑠(𝑏 − 𝑎)
log(b - a)

Normal

X ~ N(μ, σ 2)
1

σ 2π
𝑒

− 1
2

𝑥−µ
σ()2

µ σ2
𝑒

µ𝑠 + 1
2 σ2𝑠2

(1 + log(2πσ 2))
1
2

Student’s t

X ~ tν

Γ ν+1
2()

νπ Γ ν
2() 1 + 𝑥2

ν()− 1
2 (ν+1)

0
ν

ν − 2
(undefined for
tail ranges of t)

ν+1
2 ψ ν+1

2() − ψ ν
2()()

+ log(ν1/2 B)ν
2 , 1

2()

Exponential
x ≥ 0

X ~ Exp(λ)
λ𝑒−λ𝑥 1

λ
1

λ2
λ

λ − 𝑠 1 - log λ

Rayleigh
x ≥ 0

X ~ Rayleigh(σ)
𝑥

σ2 𝑒
− 𝑥2

2σ2 πσ2

2
σ 24 − π

2 - 1 + + log
γ
2

σ
2

Beta
x∈ [0, 1]

X ~ Beta(α, β)
xα-1 (1 - x)β-1

Γ(α+β)
Γ(α) Γ(β)

α
α + β

αβ

(α+β)2(α+β+1)

1 +

𝑘=1

∞

∑
𝑟=0

𝑘−1

∏ α+𝑟
α+β+𝑟() 𝑠𝑘

𝑘!

log B(α, β)
- (α - 1) ψ(α)
- (β - 1) ψ(β) +

(α + β - 2) ψ(α + β)

For the multivariate Normal distribution, see Section 5.4.1.

153

https://www.codecogs.com/eqnedit.php?latex=%20x%20%5Cin%20%5Cmathbb%7BR%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20x%20%5Cin%20%5Cmathbb%7BR%7D%20#0

All Notes 5.2. Probability Distributions and Random Variables

5.2.3. Typical Modelling Cases for Probability Distributions

Urn Model (With Replacements / Repeats): Consider an urn (container) of balls, of
which a proportion p are green (success) and the rest (1 - p) are red (failure). Suppose that
balls are sampled with replacement (each ball is returned before taking the next ball).

Binomial
A total of n balls are sampled.
The number of green balls sampled is distributed as X ~ B(n, p).

Geometric
Samples are drawn until the first green ball is sampled.
The total number of balls sampled (including the green) is distributed as
X ~ Geo(p). The number of red balls sampled is then X - 1.

Negative
Binomial

Samples are drawn until the first n green balls are sampled.
The number of red balls sampled is distributed as X ~ NB(n, p).

Beta
A fixed number of balls are drawn. It is observed that α - 1 are green
and that β - 1 are red. The prior for the number of green balls is uniform.
The (posterior) probability of drawing green is distributed as p ~ Beta(α, β).

Beta Binomial
A total of n balls are sampled. The probability p of drawing green is
unknown and is distributed as p ~ Beta(α, β).
The number of green balls sampled is distributed as X ~ BetaBin(n, α, β).

Urn Model (Without Replacement / Repeats): Consider an urn of N balls, of which K are
green and the rest (N - K) are red. Suppose that balls are sampled without replacement
(the combination of balls is taken at once, so the sample must contain unique balls).

Hypergeometric
A total of n balls are sampled.
The number of green balls sampled is distributed as X ~ HG(N, K, n).
If n << N→∞ then X ~ B(n, K / N) (K = pN).

Negative
Hypergeometric

Samples are drawn until the first n red balls are sampled.
The number of green balls sampled is distributed as X ~ NHG(N, K, n).

If n << N→∞ then X ~ BetaBin(K, n, N - K - n + 1) (and N -K).𝐾 = α
𝑝 = β

1 − 𝑝

Event Model: Consider a period over which point events can occur at an average rate λ events
per unit interval (often time, sometimes distance or number of transitions).

Poisson The number of events per unit interval is distributed as X ~ Po(λ).

Exponential The interval between two consecutive events is distributed as X ~ Exp(λ).

154

All Notes 5.2. Probability Distributions and Random Variables

5.2.4. Sampling From Normal Distributions

If X is Normally distributed as , then:𝑋 ~ 𝑁(µ, σ2)

● The standard score Z = is distributed as .
𝑋 − µ

σ 𝑍 ~ 𝑁(0, 1)

For a random sample of n observations Xn from X with sample standard deviation s:

● The sample mean is distributed as . (for any iid sample)𝑋 𝑋 ~ 𝑁(µ, σ2

𝑛) 𝑉𝑎𝑟(𝑋) =
σ

𝑋
2

𝑛

● The sample mean standard score = is distributed as .𝑍
𝑋 − µ

𝑠2 / 𝑛
𝑍 ~ 𝑡

𝑛−1

● If n is sufficiently large (n > 30) then s ≈ σ and .𝑍 ~ 𝑁(0, 1)

5.2.5. Central Limit Theorem

For a set of n independent random variables X1, X2, …, Xn, each having means and
variances (μ1, σ12), (μ2, σ22), .., (μn, σn2), the CLT states that

● The random variable is approximately Normally distributed (weak CLT),𝑆
𝑛

=
𝑖=1

𝑛

∑ 𝑋
𝑖

● i.e. the approximation is exact as n→∞.
𝑛 ∞
lim
→

𝑆
𝑛
 ~ 𝑁

𝑖=1

𝑛

∑ µ
𝑖
,

𝑖=1

𝑛

∑ σ2
𝑖()

If all Xi are i.i.d. with mean μ and variance σ2 then as n→∞.
𝑆

𝑛
 − 𝑛µ

σ 𝑛
 ~ 𝑁(0, 1)

These results hold regardless of the distribution of X.

The Berry-Esseen Theorem (improved by Shevtsova, 2010) bounds the error in the weak
CLT Normal approximation by the value of its CDF (z is the value of standardised Sn):

Therefore error ~ n-1/2. Practically, the CLT is ‘good’ when the sample size is n ≥ 30.

155

https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%7C%20%5Cunderbrace%7BP%5Cleft%20(%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20(X_i%20-%20%5Cmu_i)%7D%7B%5Csqrt%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Csigma_i%5E2%7D%7D%20%5Cleq%20z%20%5Cright%20)%7D_%7B%5Ctextup%7Bexact%20CDF%20at%20%7Dz%7D%20-%20%5Cunderbrace%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7Bz%7D%20e%5E%7B-x%5E2%2F2%7D%20%5C%20%5Ctextup%7Bd%7Dx%7D_%7B%5Ctextup%7Bapproximate%20CDF%20at%20%7Dz%7D%20%5Cright%20%7C%20%5Cleq%20%5Cunderbrace%7B0.56%20%5Ctimes%20%5Cfrac%7B%5Cunderset%7Bi%7D%7B%5Ctextup%7Bmax%7D%7D%20%5Cleft%20%5C%7B%20E(%7CX_i%7C%5E3)%20%5Cright%20%5C%7D%7D%7B%20%20%5Csqrt%7Bn%7D%20%5Ccdot%20%5Cunderset%7Bi%7D%7B%5Ctextup%7Bmax%7D%7D%20%5Cleft%20%5C%7B%20%5Csigma_i%5E3%20%5Cright%20%5C%7D%20%7D%7D_%7B%5Ctextup%7Bupper%20bound%20for%20error%7D%7D%20#0

All Notes 5.2. Probability Distributions and Random Variables

5.2.6. Expectation from Probability Density Function

Expectation (mean) of a random variable given PMF or PDF:

Discrete: Continuous:𝐸[𝑋] =
𝑥=−∞

∞

∑ 𝑥 𝑃(𝑋 = 𝑥) = µ 𝐸[𝑋] =
−∞

∞

∫ 𝑥 𝑓
𝑋

(𝑥) 𝑑𝑥 = µ

Tail formula for nonnegative random variables (X ≥ 0):

Discrete: Continuous:𝐸[𝑋] =
𝑥=0

∞

∑ 𝑃(𝑋 ≥ 𝑥) 𝐸[𝑋] =
0

∞

∫ 1 − 𝐹
𝑋

(𝑥)() 𝑑𝑥

Law of the Unconscious Statistician (LOTUS theorem): if Y = g(X) then

Discrete: Continuous:𝐸[𝑌] =
𝑥=−∞

∞

∑ 𝑔(𝑥) 𝑃(𝑋 = 𝑥) 𝐸[𝑌] =
−∞

∞

∫ 𝑔(𝑥) 𝑓
𝑋

(𝑥) 𝑑𝑥

Variance of a random variable given PMF or PDF and mean (2nd central moment):

Discrete: Continuous:𝑉𝑎𝑟[𝑋] =
𝑥=−∞

∞

∑ (𝑥 − µ)2 𝑃(𝑋 = 𝑥) 𝑉𝑎𝑟[𝑋] =
−∞

∞

∫ (𝑥 − µ)2 𝑓
𝑋

(𝑥) 𝑑𝑥

5.2.7. Moments of Distributions

Moments of a random variable X are defined as:

● nth raw moment: µ
𝑛
' = 𝐸[𝑋𝑛]

● nth central moment: µ
𝑛

= 𝐸[(𝑋 − µ)𝑛] =
𝑟=0

𝑛

∑ (− 1)𝑟 𝑛𝐶
𝑟
 µ𝑟 µ'

𝑛−𝑟

● nth central moment, standardised:
µ

𝑛

σ𝑛 =
𝐸[(𝑋 − µ)𝑛]

𝐸[(𝑋 − µ)2]𝑛/2

Some important moment-related measures are:

● Mean: (central tendency)µ = 𝐸[𝑋] = µ
1
'

● Variance: (spread about the mean)σ2 = 𝑉𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 = µ
2

● Skewness: (asymmetry)γ = 𝑆𝑘𝑒𝑤[𝑋] = µ
3
 / σ3

: smaller values more likelyγ > 0
: larger values more likelyγ < 0

● Kurtosis: (tailedness / outlier frequency)κ = 𝐾𝑢𝑟𝑡[𝑋] = µ
4
 / σ4

● Excess Kurtosis: mesokurtic: (Gaussian)κ = κ − 3 κ = 0
(Fisher kurtosis) leptokurtic: (tail-heavy)κ > 0

platykurtic: (tail-light)κ < 0
156

All Notes 5.2. Probability Distributions and Random Variables

5.2.8. Generating Functions

For a discrete random variable X:

● Probability generating function (PGF): 𝐺
𝑋

(𝑧) = 𝐸[𝑧𝑋] =
𝑘 = −∞

∞

∑ 𝑃(𝑋 = 𝑘) 𝑧𝑘

For any variable X, the PGF is a polynomial in z where the coefficients give the PMF.
The PGF is the Z-transform (discretised Mellin transform) of the PMF P(X = k).

For a continuous random variable X:

● Moment generating function (MGF): 𝑀
𝑋

(𝑠) = 𝐸[𝑒𝑠𝑋] =
−∞

∞

∫ 𝑓
𝑋

(𝑥) 𝑒𝑠𝑥 𝑑𝑥

The MGF is the bilateral Laplace transform of fX(x) (or ordinary LT if X has support X ≥ 0).
The PGF and MGF definitions are related by z = e s.

● Characteristic function (CF): φ
𝑋

(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] =
−∞

∞

∫ 𝑓
𝑋

(𝑥) 𝑒𝑖𝑥𝑡 𝑑𝑥

The CF is the Fourier transform of fX(x) (signs reversed; using t as the Fourier ‘frequency’).
The MGF and CF definitions are related by s = it so that .𝑀

𝑋
(𝑡) = φ

𝑋
(− 𝑖𝑡)

Identities with Generating Functions: manipulating random variables

● Shift and scale: 𝑌 = 𝑎𝑋 + 𝑏 ⇒ 𝑀
𝑌
(𝑠) = 𝑒𝑠𝑏 𝑀

𝑋
(𝑎𝑠)

● Sum of RVs: 𝑌 = 𝑋
1

+ 𝑋
2
 ⇒ 𝐺

𝑌
(𝑧) = 𝐺

𝑋
1

(𝑧) 𝐺
𝑋

2

(𝑧); 𝑀
𝑌
(𝑠) = 𝑀

𝑋
1

(𝑠) 𝑀
𝑋

2

(𝑠)

● Difference of RVs: 𝑌 = 𝑋
1

− 𝑋
2
 ⇒ 𝐺

𝑌
(𝑧) = 𝐺

𝑋
1

(𝑧) 𝐺
𝑋

2

(1
𝑧); 𝑀

𝑌
(𝑠) = 𝑀

𝑋
1

(𝑠) 𝑀
𝑋

2

(− 𝑠)

● Joint GF of X, Y: 𝐺
𝑋,𝑌

(𝑧, 𝑤) = 𝐸[𝑧𝑋𝑤𝑌]; 𝑀
𝑋,𝑌

(𝑠, 𝑡) = 𝐸[𝑒𝑠𝑋+𝑡𝑌]
● Marginal GF: 𝐺

𝑋
(𝑧) = 𝐺

𝑋,𝑌
(𝑧, 0); 𝑀

𝑋
(𝑠) = 𝑀

𝑋,𝑌
(𝑠, 0)

Important Quantities (Moments) from the PGF and MGF: see Section 5.2.7 for definitions
The coefficient of zk in the expansion of the PGF GX(z) is the PMF of X i.e. P(X = k).
The coefficient of sn in the expansion of the MGF MX(s) is proportional to the nth raw moment of X:

since𝑀
𝑋

(𝑠) =
𝑛=0

∞

∑
𝑠𝑛 µ

𝑛
'

𝑛! µ
𝑛
' = 𝑀

𝑋
(𝑛)(𝑠)

Expectation: E[X] = MX’(0) = GX’ (1) since E[X n] = MX
(n)(0) = GX

(n)(1)

Variance: Var[X] = E[X 2] E[X]2−
= MX’’ (0) MX’ (0)2−
= GX’’ (1) + GX’ (1) (GX’ (1))2−

157

All Notes 5.2. Probability Distributions and Random Variables

5.2.10. Inverse Transform Sampling

Let U be a uniformly distributed random variable on 0 ≤ U ≤ 1. If X is a random variable
with cdf or cmf FX(x), then X = FX-1(U). This can be used to generate samples with a given
pdf or cdf, given a system to generate uniformly distributed random numbers.

To generate RVs with a truncated distribution a ≤ X ≤ b, let F(a) ≤ U ≤ F(b) and X = FX-1(U).

5.2.11. Inequalities for the Expectation of Random Variables

● Markov’s Inequality: P(X ≥ a) ≤ for nonnegative X i.e. X ≥ 0
𝐸[𝑋]

𝑎

● Jensen’s Inequality: E[g(X)] ≥ g(E[X]) for convex functions g i.e. g”(x) ≥ 0

● Chebyshev’s Inequality: P(|X E[X]| > a) ≤ for a > 0−
𝑉𝑎𝑟[𝑋]

𝑎2

● Minkowski’s Inequality: (E[|X + Y |p])1/p ≤ (E[|X |p])1/p + (E[|Y |p])1/p for p ≥ 1

● Hölder’s Inequality: E[|XY|] ≤ (E[|X |p])1/p (E[|Y |q])1/q for p, q > 1 with + = 11
𝑝

1
𝑞

158

All Notes 5.2. Probability Distributions and Random Variables

5.2.12. Distributions of Functions of Random Variables

To find the PDF of Y, fY(y), write down FY(y) = P(Y ≤ y) and let Y = g (X). Solve the resulting

inequality for X to write FY(y) in terms of FX(y). Finally, use and .𝑓
𝑌
(𝑦) =

𝑑𝐹
𝑌

𝑑𝑦 𝐹
𝑋

(𝑥) =
−∞

𝑥

∫ 𝑓
𝑋

(𝑥) 𝑑𝑥

Common functions:

● If then where a > 0𝑌 = 𝑎𝑋 + 𝑏 𝑓
𝑌
(𝑦) =

1
𝑎 𝑓

𝑋
𝑦 − 𝑏

𝑎()
● If then𝑌 = 𝑋2 𝑓

𝑌
(𝑦) =

𝑓
𝑋

(𝑦) + 𝑓
𝑋

(− 𝑦)

2 𝑦

● If then𝑌 = 𝑋3 𝑓
𝑌
(𝑦) =

1
3 𝑦−2/3 𝑓

𝑋
(𝑦1/3)

● If then𝑌 = 𝑋 𝑓
𝑌
(𝑦) = 2𝑦 𝑓

𝑋
(𝑦2)

● If then if y ≤ a else 1 (contains a delta function)𝑌 = 𝑚𝑖𝑛(𝑋, 𝑎) 𝐹
𝑌
(𝑦) = 𝐹

𝑋
(𝑦) 𝑓

𝑦
(𝑦)

● If then if y ≥ a else 0 (contains a delta function)𝑌 = 𝑚𝑎𝑥(𝑋, 𝑎) 𝐹
𝑌
(𝑦) = 𝐹

𝑋
(𝑦) 𝑓

𝑦
(𝑦)

For a multivariable function e.g. two RVs, Y = g (X1, X2), use (for the CDF):

Common functions:

● If then (parallel system)𝑌 = 𝑚𝑎𝑥{𝑋
1
, 𝑋

2
, ..., 𝑋

𝑛
} 𝐹

𝑌
(𝑦) = 𝐹

𝑋
1

(𝑦) 𝐹
𝑋

2

(𝑦) ... 𝐹
𝑋

𝑛

(𝑦)

● If then𝑌 = 𝑚𝑖𝑛{𝑋
1
, 𝑋

2
, ..., 𝑋

𝑛
} 𝐹

𝑌
(𝑦) = 1 − 𝐹

𝑋
1

(𝑦)() 1 − 𝐹
𝑋

2

(𝑦)()... 1 − 𝐹
𝑋

𝑛

(𝑦)()
(series system: models ‘weakest link’ failure)

159

All Notes 5.2. Probability Distributions and Random Variables

5.2.13. Manipulating Independent Random Variables and their Distributions

Let X1 and X2 be independent random variables. Then:

Linear Transformations (green: also valid when X1 and X2 are not independent.)

Transform E[Y] Var[Y] fY(y) MY(s)

Scale
Y = aX

𝑎 𝐸[𝑋] 𝑎2 𝑉𝑎𝑟[𝑋] 1
𝑎 𝑓

𝑋
𝑦
𝑎() 𝑀

𝑋
(𝑎𝑠)

Scale and Shift
Y = aX + b

𝑎 𝐸[𝑋] + 𝑏 𝑎2 𝑉𝑎𝑟[𝑋] 1
𝑎 𝑓

𝑋
𝑦 − 𝑏

𝑎() 𝑒𝑠𝑏 𝑀
𝑋

(𝑎𝑠)

Sum
Y = X1 + X2

𝐸[𝑋
1
] + 𝐸[𝑋

2
] 𝑉𝑎𝑟[𝑋

1
] + 𝑉𝑎𝑟[𝑋

2
] (𝑓

𝑋
1

* 𝑓
𝑋

2

)(𝑦) 𝑀
𝑋1

(𝑠) 𝑀
𝑋

2

(𝑠)

Nonlinear Transformations (all the below require independence)

● Product: if Y = X1X2 then

𝐸[𝑌] = 𝐸[𝑋
1
] 𝐸[𝑋

2
]

𝑉𝑎𝑟[𝑌] = 𝑉𝑎𝑟[𝑋
1
] 𝑉𝑎𝑟[𝑋

2
] + 𝑉𝑎𝑟[𝑋

1
] 𝐸[𝑋

2
]2 + 𝑉𝑎𝑟[𝑋

2
] 𝐸[𝑋

1
]2

The new distribution is (product distribution)𝑓
𝑌
(𝑦) =

−∞

∞

∫ 𝑓
𝑋

1

(𝑥) 𝑓
𝑋

2

𝑦
𝑥() 1

|𝑥| 𝑑𝑥

● Ratio: if Y = X1 / X2 then

E[Y] can be found by LOTUS, and .𝑉𝑎𝑟[𝑌] = 𝐸[𝑋
1

2] 𝐸[1

𝑋
2

2] − 𝐸[𝑋
1
]2 𝐸[1

𝑋
2

]2

The new distribution is (ratio distribution)𝑓
𝑌
(𝑦) =

−∞

∞

∫ |𝑥| 𝑓
𝑋

1

(𝑥𝑦) 𝑓
𝑋

2

(𝑥) 𝑑𝑥

Combinations of Common Distributions: for independent random variables,

● If X1 ~ N(μ1, σ12) and X2 ~ N(μ2, σ22) then X1 + X2 ~ N(μ1 + μ2, σ12 + σ22).
● If X1 ~ Po(λ1) and X2 ~ Po(λ2) then X1 + X2 ~ Po(λ1 + λ2).
● If X1 ~ B(n1, p) and X2 ~ B(n2, p) then X1 + X2 ~ B(n1 + n2, p).
● If X ~ B(N, p) and N ~ Po(λ) then X ~ Po(pλ).

● If X1 ~ N(0, σ2) and X2 ~ N(0, σ2) then X1
2 + X2

2 ~ Exp().1

2σ2

● If Xi ~ N(0, 1) then ~ χ 2N (Chi-Square distribution with N degrees of freedom).
𝑖=1

𝑁

∑ 𝑋
𝑖
2

● If X1 ~ N(0, σ2) and X2 ~ N(0, σ2) then ~ Rayleigh(σ).𝑋
1

2 + 𝑋
2

2

Reciprocal Normal Distribution: if and then .𝑋 ~ 𝑁(µ, σ2) 𝑌 = 1/𝑋 𝑓
𝑌
(𝑦) = 1

2πσ𝑦2 𝑒𝑥𝑝 − (1 − µ𝑦)2

2σ2𝑦2()
160

All Notes 5.2. Probability Distributions and Random Variables

5.2.14. Multivariable Probability: Joint and Marginal Distributions

For jointly distributed random variables (X, Y), let p(x, y) = fXY(x, y) denote the joint pmf if (X, Y)
are discrete, or the joint pdf if (X, Y) are jointly continuous. p(x) = fX(x) is the marginal pmf/pdf
of X. p(x | y) = fX|Y(x | y) is the pmf/pdf of X, conditioned on some value of Y = y.

● Definition of joint density: P(a ≤ X ≤ b ∩ c ≤ Y ≤ d) =
𝑐

𝑑

∫
𝑎

𝑏

∫ 𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

● Definition from joint CDF: (also written fXY(x, y))𝑝(𝑥, 𝑦) = ∂2

∂𝑥 ∂𝑦 𝐹
𝑋𝑌

(𝑥, 𝑦)

● Conditional PMF / PDF: , (also written fX|Y(x | y))𝑝(𝑥 | 𝑦) = 𝑝(𝑥, 𝑦)
𝑝(𝑦) 𝑝(𝑦) ≠ 0

● Bayes’ rule: = (p(x): prior distribution)𝑝(𝑥 | 𝑦) =
𝑝(𝑦 | 𝑥) 𝑝(𝑥)

𝑝(𝑦)
𝑝(𝑦 | 𝑥) 𝑝(𝑥)

𝑥
∑ 𝑝(𝑥) 𝑝(𝑥 | 𝑦)

Independence between random variables X = {X1, X2, …}: (X is a random vector)

● Conditional independence: p(x1, x2 | y) = p(x1 | y) p(x2 | y), p(y) ≠ 0

● Pairwise independence: p(xi, xj) = p(xi) p(xj) for every pair i, j

● (Mutual) independence: p(union of all xi) = product of all p(xi) (stronger than pairwise)

● Conditional expectation: E[X | Y] = ∑ x x p(x | y) (= E[X] if independent)

● Linearity of conditionals: E[(aX + bY) | Z] = a E[X | Z] + b E[Y | Z]

Quantification of dependence and association:

● Covariance: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X] E[Y]

● Law of total probability: p(x) = ∑ y p(x, y)

● Law of total expectation: E[X] = E[E[X | Y]]

● Law of total variance: Var[X] = E[Var[Y | X]] + Var[E[Y | X]]

● Law of total covariance: Cov[X, Y] = E[Cov[X, Y | Z]] + Cov[E[X | Z], E[Y | Z]]

● Linearity of covariance: Cov[aX, Y] = Cov[X, aY] = a Cov[X, Y], and
Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]

● Pearson Correlation Coefficient: ρXY = Corr[X, Y] = (PMCC)
𝐶𝑜𝑣(𝑋, 𝑌)

𝑉𝑎𝑟(𝑋) 𝑉𝑎𝑟(𝑌)
= 𝐶𝑜𝑣(𝑋, 𝑌)

σ
𝑋

 σ
𝑌

● General variance of sums: Var[aX ± bY + c] = a2 Var[X] + b2 Var[Y] ± 2ab Cov[X, Y]

161

All Notes 5.2. Probability Distributions and Random Variables

5.2.15. Standard Normal Distribution: Critical Values (z table and its Inverse)

The table gives the values of P(Z ≤ z) for a given z, with Z ~ N(0, 1). These are left tail probabilities.

Inverse z Table: 𝑧 = Φ−1 𝑃(𝑍 ≤ 𝑧())

P(Z ≤ z) 0.001 0.005 0.01 0.05 0.1 0.5

z -3.090232 -2.575829 -2.326347 -1.644854 -1.281552 0

P(Z ≤ z) 0.9 0.9995 0.95 0.99 0.995 0.999

z 1.281552 3.290527 1.644854 2.326347 2.575829 3.090232

162

All Notes 5.2. Probability Distributions and Random Variables

5.2.16. Student’s t-Distribution: Critical Values (Inverse t table)

The table gives the values of x satisfying P(X ≤ x) = p, where X is a
random variable having the t distribution with ν degrees of freedom.

PDF of the t-distribution:

163

All Notes 5.2. Probability Distributions and Random Variables

5.2.17. Chi-Squared (χ2) Distribution: Critical Values (Inverse Chi square table)

The table gives the values of x satisfying P(X ≤ x) = p, where X is a
random variable having the χ2 distribution with ν degrees of freedom.

PDF of the Chi-Square distribution:
164

All Notes 5.2. Probability Distributions and Random Variables

5.3.18. F-Distribution: Critical Values (Inverse F table)

The table gives the values of x satisfying P(X ≥ x) = p,
where X is a random variable having the F distribution

formed by , where and are χ2-distributed𝑋 =
χ

1
 / ν

1

χ
2
 / ν

2
χ

1
χ

2

with ν1 and ν2 degrees of freedom respectively.

PDF of the F-distribution:
165

All Notes 5.2. Probability Distributions and Random Variables

5.2.19. Product Moment Correlation Coefficient (PMCC): Critical Values (Inverse rho table)

The table gives the critical values, for different significance levels, of the Pearson’s
product moment correlation coefficient (PMCC), ρ, for varying sample sizes, n.

166

All Notes 5.3. Hypothesis Testing

5.3. Hypothesis Testing
5.3.1. Decision and Estimation Theory

Definitions:

● For a set of i iid observations x = [x1, x2, …, xi] of a random variable X = [X1, X2, …, Xi],
the distribution of each Xi depends on x and some unknown parameter(s) θ.

● The estimate (decision) for θ is a function of the observations: .

● The estimator (decision rule) for a parameter θ is given by .

5.3.2. Bayesian Statistics

In Bayesian statistics, the unknown parameter θ is viewed as the value of a random
variable Θ. The distribution of the sample is then interpreted as the conditional
distribution fX | Θ(x | θ).

● Prior function: fΘ(θ) (prior to any measurements)
● Likelihood function: fX | Θ(x | θ).
● Posterior function: fΘ | X(θ | x) (after the measurements)

5.3.3. Estimator Metrics

Maximum likelihood estimator (ML):

Maximum a posteriori estimator (MAP):

Minimum mean squared error (MMSE):

which minimises the value of .

The posterior function is obtained from Bayes’ rule (see Section 5.2.9) as

Note that if fΘ(θ) = constant (i.e. Θ is uniformly distributed) then .

167

https://www.codecogs.com/eqnedit.php?latex=%20f_%7B%5CTheta%20%7C%20%5Cmathbf%7BX%7D%7D(%5Ctheta%20%7C%20%5Cmathbf%7Bx%7D)%20%3D%20%5Cfrac%7Bf_%7B%5Cmathbf%7BX%7D%20%7C%20%5CTheta%7D(%5Cmathbf%7Bx%7D%20%7C%20%5Ctheta%20)%20%5Ccdot%20f_%7B%5CTheta%7D(%5Ctheta)%7D%7Bf_%7B%5Cmathbf%7BX%7D%7D(%5Cmathbf%7Bx%7D)%7D.%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7B%5Ctheta%7D_%7B%5Ctextup%7BML%7D%7D%20%3D%20%5Chat%7B%5Ctheta%7D_%7B%5Ctextup%7BMAP%7D%7D%20#0

All Notes 5.3. Inference and Hypothesis Testing

5.3.4. Principles of Hypothesis Testing

Hypothesis testing involves assessing the probability of observing a given dataset, given
the assumption of a particular null hypothesis (H0).

Alternative hypothesis (H1): a potential alternative statement to explain a dataset,
attributed to an external effect influencing the data.

● p-value (p): the probability of obtaining a result at least as extreme as the given
data, under the assumption that H0 is true.

● p = P(data or further from H0 | H0). The p-value is not the probability of H0.

● Significance level (α): if p ≤ α, the result is unlikely to happen under H0 so we reject
H0 and the result is said to be statistically significant.

Analysis of a Hypothesis Test

If H1 is of the form θ ≠ a, the p-value must be found on the basis of a two-tailed test in
which the critical region is central to the distribution of θ under H0 i.e. use an effective
significance level of α / 2 in each tail.

The diagram illustrates the conditional distributions fΘ(θ | H0) and fΘ(θ | H1).

● Type I error: falsely rejecting H0 when in reality, H0 is true (α = P(reject H0 | H0))
● Type II error: falsely accepting H0 when in reality, H1 is true (β = P(accept H0 | H1))

● Critical (rejection) region under H0: θ ≥ θ* such that P(θ ≥ θ* | H0) ≤ α
● Power of a test = 1 - β

168

All Notes 5.3. Inference and Hypothesis Testing

5.3.5. Specified Distribution Hypothesis Tests

After sampling a random variable X, a test can be performed to investigate whether the sample is
expected under a particular null hypothesis distribution. Commonly used for Binomial, Normal…

Assumptions: all assumptions made by the underlying distribution being proposed.

The p-value is the probability of observing the sample or more extreme given the null hypothesis.

Example (Binomial): a coin is flipped 16 times and lands tails 11 times. Investigate at 5% significance
whether the coin is fair or biassed. Find the power of the test if the true probability of tails is 0.6.

● Assume that the number of tails X is binomially distributed as X ~ B(16, p) (independent
trials, binary outcomes, constant probability of success p).

● H0: p = 0.5 (the coin is unbiased / fair).
● H1: p ≠ 0.5 (the coin is biassed / unfair) (two-tailed test).
● Under H0, X ~ B(16, 0.5). The test statistic is X = 11.
● P(X ≥ 11 | H0) = 0.1051 (p-value).
● Since 0.1051 > 0.025 (half the significance level), we accept H0.
● There is insufficient evidence to suggest that the coin is biassed.
● Critical region: X ≥ 13 and X ≤ 3, Acceptance region: 4 ≤ X ≤ 12. Critical values: 3 and 13.
● P(Type I error) = 0.05 (significance level).
● P(Type II error | true p = 0.6) = P(accept H0 | p = 0.6) = P(4 ≤ X ≤ 12 | p = 0.6) = 0.9339.
● Power of the test = 1 - 0.9339 = 0.0661.

Example (Normal): a particular make and model of car is known to have an average fuel mileage of 25.0
miles per gallon (mpg) with variance 6.1 mpg2. When a new additive is added to the fuel of 35 cars, their
mean mileage rises to 25.9 mpg. Test at 5% significance whether the additive increased the mean
mileage, and construct a 99% confidence interval for the population mean mileage with the additive.

● Assume that the mileage X is Normally distributed as X ~ N(μ, 6.1).
● H0: μ = 25 (the mileage has not increased).
● H0: μ > 25 (the mileage has increased).
● Under H0, X ~ N(25, 6.1) and therefore the sample mean ~ N(25,) = N(25, 0.1743).𝑋 6.1

35

● p = P(> 25.9 | H0) = 0.0156 (or using z-statistic: z = = 2.1557→ p = 1 - Φ(z) = 0.0156)𝑋 25.9 − 25
0.1743

● Since 0.0156 < 0.05 (significance level), we reject H0.
● There is sufficient evidence to suggest the population mean mileage has increased.
● Critical region: z > Φ-1(0.95) → z > 1.6449→ > 25 + 1.6449 × → > 25.6867.𝑋 0. 1743 𝑋

Acceptance region: < 25.6867. Critical value: 25.6867.𝑋
● P(Type I error) = 0.05 (significance level).
● 99% confidence interval for new mean: z = Φ-1(0.995) = 2.5758

→ → μ∈ (24.8246, 26.9754).µ ∈ 25. 9 − 2. 5758 0. 1743, 25. 9 + 2. 5758 0. 1743()
This interval captures the true mean mileage with fuel additives with 99% confidence.

169

All Notes 5.3. Inference and Hypothesis Testing

5.3.6. Chi-Square Tests

Chi-Square Test for Goodness of Fit or Association

A Chi-Square (χ2) test can be performed to investigate whether a discrete categorical random
variable X obeys a particular distribution, or for association between two categorical variables X
and Y (a non-parametric test).

H0: there is no association between X and Y
H1: there is an association between X and Y

Degrees of freedom for an a × b observed contingency table O: ν = (𝑎 − 1)(𝑏 − 1)

Expected value under H0 (no association): 𝐸
𝑖𝑗

=
(𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙)

𝑖
 × (𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)

𝑗

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙

Test statistic: χ2 =
𝑖, 𝑗
∑

(𝑂
𝑖𝑗

 − 𝐸
𝑖𝑗

)2

𝐸
𝑖𝑗

Critical value, χ2c, found from the table in Section 5.2.12.
If χ2 < χ2c then we accept H0 (evidence to suggest independence)
If χ2 > χ2c then we reject H0 (evidence to suggest association)

Modifications to the test methodology include:

● Pooling: if observed frequencies are less than 5, rows / columns should be combined.

● Yates’ continuity correction: if the contingency table is 2 × 2 (1 degree of freedom) and at least
one frequency is less than 5 (and so cannot be pooled), the test statistic is

.χ2
𝑌𝑎𝑡𝑒𝑠

=
𝑖, 𝑗
∑

(|𝑂
𝑖𝑗

 − 𝐸
𝑖𝑗

| − 0.5)2

𝐸
𝑖𝑗

Yates’ correction is not universally accepted. Applying it decreases the test
statistic, increases the p-value and increases the probability of a type II error.

Software implementations:

Python: scipy.stats.chisquare(f_obs, f_exp=None)
R: chisq.test(data) # `correct=False` to disable Yates
Excel: =CHITEST(obs_range, exp_range)

Chi-Square Test for Variance

After sampling a random variable X, a Chi-Square (χ2) test can be performed to investigate
whether X has a given population variance.

H0: σ2X = a2
H1: σ2X ≠ a2 (two tailed test) or σ2X < a2 or σ2X > a2 (one tailed test).

Test statistic: (s2: sample variance)χ2 =
(𝑁 − 1) 𝑠2

𝑎2

Critical value, χ2c, found from the table in Section 5.2.12.
If χ2 < χ2c then we accept H0; If χ2 > χ2c then we reject H0

170

All Notes 5.3. Inference and Hypothesis Testing

5.3.7. Inferential Parametric Tests: t-Tests and Analysis of Variance (ANOVA)

One-Sample t-Test for the Mean of a Normal Distribution
One sample, Normal distribution, unknown variance. H0: μ = a; H1: μ ≠ a (if two-tail).
Test statistic: (: sample mean, S: sample std.dev, n: sample size)𝑡 = 𝑥 − 𝑎

𝑆/ 𝑛
𝑥

The test statistic has a t-distribution with degrees of freedom.ν = 𝑛 − 1
Critical values in table in Section 5.2.16.

Student’s Two-Sample t-Test for Independent Means of Homoscedastic Normal Distributions
Two samples A and B, Normal distributions, equal variance. H0: μA = μB; H1: μA ≠ μB (if two-tail)

Test statistic: (: sample mean of A, S2 = : pooled sample variance)𝑡 =
𝑥

𝐴
 − 𝑥

𝐵

𝑆2

𝑛
1

 + 𝑆2

𝑛
2

𝑥
𝐴

= 𝑖
∑ 𝑥

𝑖

𝑛
𝐴

𝑖
∑(𝑥

𝑖
 − 𝑥

𝐴
)2 +

𝑗
∑(𝑥

𝑗
 − 𝑥

𝐵
)2

𝑛
𝐴

 + 𝑛
𝐵

 − 2

The test statistic has a t-distribution with degrees of freedom.ν = 𝑛
𝐴

+ 𝑛
𝐵

− 2
Critical values in table in Section 5.2.16.

Welch’s Two-Sample t-Test for Independent Means of Heteroscedastic Normal Distributions
Two samples A and B, Normal distributions, unequal variance. H0: μA = μB; H1: μA ≠ μB (if two-tail)

Test statistic: . The test statistic has a t-distribution with dof.𝑡 =
𝑥

𝐴
 − 𝑥

𝐵

𝑆
𝐴

2

𝑛
𝐴

 +
𝑆

𝐵
2

𝑛
𝐵

ν =

𝑆
𝐴

2

𝑛
𝐴

+
𝑆

𝐵
2

𝑛
𝐵()2

𝑆
𝐴

4

𝑛
𝐴

2(𝑛
𝐵

 − 1)
 +

𝑆
𝐵

4

𝑛
𝐵

2(𝑛
𝐴

 − 1)

Critical values in table in Section 5.2.16.

Fisher’s ANOVA Test for Independent Means of Homoscedastic Normal Distributions
N variables{Xj}i (ith observation of Xj, 1 ≤ j ≤ N), Normal distributions, equal variance. H0: all μi equal;
H1: not all μi equal.

Test statistic: (,)𝐹 =
𝑆2

𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑆2
𝑤𝑖𝑡ℎ𝑖𝑛

𝑆2
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

= 𝑗
∑ (𝑋

𝑗
 − 𝑋)2

𝑗
∑ 𝑛

𝑗() − 𝑁
𝑆2

𝑤𝑖𝑡ℎ𝑖𝑛
= 𝑗

∑
𝑖

∑ (𝑋
𝑗𝑖

 − 𝑋
𝑗
)2

𝑁 − 1

The test statistic has an F-distribution with and degrees of freedom.ν
1

=
𝑗

∑ 𝑛
𝑗() − 𝑁 ν

2
= 𝑁 − 1

Critical values in table in Section 5.2.18. Post-hoc analysis: Tukey’s range test.

Welch’s ANOVA Test for Independent Means of Heteroscedastic Normal Distributions
N variables{Xj}i (ith observation of Xj, 1 ≤ j ≤ N), Normal distributions, unequal variance. H0: all μi equal;
H1: not all μi equal.

Test statistic: (, , T =)𝐹 =
𝑆2

𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑆2
𝑤𝑖𝑡ℎ𝑖𝑛

𝑆2
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

=
𝑗

∑
𝑛

𝑗

𝑆
𝑗
2 𝑋

𝑗
 −

𝑗
∑

𝑛𝑗

𝑆𝑗
2 𝑋

𝑗

𝑗
∑

𝑛𝑗

𝑆𝑗
2

⎛

⎝

⎞

⎠

2

𝑁 − 1 𝑆2
𝑤𝑖𝑡ℎ𝑖𝑛

= 1 + 2(𝑁 − 2)

𝑁2 − 1
𝑇

𝑗
∑ 1

𝑛
𝑗
 − 1 1 −

𝑛
𝑗

𝑠
𝑗
2

𝑗
∑

𝑛
𝑗

𝑠
𝑗
2

⎛

⎝

⎞

⎠

2

The test statistic has an F-distribution with and degrees of freedom.ν
1

= 𝑁 − 1 ν
2

= 𝑁2 − 1
3𝑇

Critical values in table in Section 5.2.18. Post-hoc analysis: Games-Howell test.

171

All Notes 5.3. Inference and Hypothesis Testing

5.3.8. Other Inferential Hypothesis Tests

Mann-Whitney U-Test (Wilcoxon Rank Sum Test)
Two samples A and B, unknown distributions. H0: A and B from same distributions; H1: A and B
from different distributions.

Kruskal-Wallis H-Test (Non-Parametric One-Way ANOVA)
N variables{Xj}i (ith observation of Xj, 1 ≤ j ≤ N), unknown distributions. H0: all distributions equal; H1:
not all distributions equal. Post-hoc analysis: Dunn’s test or Conover-Iman test.

Shapiro-Wilk Test for Normality
One sample X, unknown distribution. H0: X has a Normal distribution, H1: X does not have a Normal
distribution.

Pearson’s Test for Linear Correlation
Paired (bivariate) dataset X = {X, Y}, Normal joint distribution. H0: X and Y are uncorrelated, H1: X and Y
are correlated.
Test statistic: Pearson’s PMCC: , |rxy| ≤ 1.
Critical values in table in Section 5.2.19.

Spearman’s Rank-Order Test for Monotonic Correlation
Paired (bivariate) dataset X = {X, Y}, unknown distributions. H0: X and Y are uncorrelated, H1: X and Y
are correlated.
Test statistic: Spearman’s rho, (di: rank difference of observation i)
Similar alternative: Kendall’s Tau Test. rank is the index in the ordered list.

Levene’s Test for Homoscedasticity (Equal Variances)
N variables{Xj}i (ith observation of Xj, 1 ≤ j ≤ N), unknown distributions. H0: all distributions equal; H1:
not all distributions equal. Post-hoc analysis: Dunn’s test or Conover-Iman test.
Similar alternative: Brown-Forsythe test.

Cohen’s d Statistic for Mean Effect Size

The d metric is related to the t-statistic in testing for independent means by .𝑑 = 1
𝑁

1
+ 1

𝑁
2

× 𝑡

It is typically used in the context of quantifying the effect size of a test group against a control group.

Egger’s Regression Test for Intervention Effects
For a collection of univariate datasets, a funnel plot is made of standard error σX / √N against a
measure of effect size: depending on context, this may be a raw mean value, a correlation
coefficient, odds ratio, or Cohen’s d metric. One point is made per dataset. H0: funnel plot
regression line is vertical (implies no bias), H1: funnel plot regression line is sloped (implies bias).
Egger’s test is commonly used in meta-analyses to test for publication bias.

172

All Notes 5.3. Inference and Hypothesis Testing

5.3.9. Common Fallacies in Statistical Inference, Interpretation and Discourse

Interpretation of Statistical Tests: issues arising when concluding and communicating.

● Texas Sharpshooter: the cherry-picking of a cluster of data to fit a conclusion, or asserting that a
pattern has an underlying cause other than randomness. A related concept in data misuse is
‘p-hacking’, in which the same (or slightly modified) tests are conducted on the same dataset until
statistical significance is found (the multiple comparisons problem).

● False Cause: asserting that correlation implies causation, rather than randomness or a common cause.
● Gambler’s Fallacy: assuming that the outcome of an event occuring after a series of the event has

already been observed is lower than observing the event in general, when in fact they are independent.
● Prosecutor’s Fallacy: assuming that the probability of observing an outcome given some evidence is

the same as the probability of observing the evidence given the outcome.
● Composition Fallacy: assuming that the properties of the parts of a system completely determine

those of the whole system, when they may be different (e.g. interaction effects, ‘emergent properties’.)
● Slippery Slope: asserting that if one event happens, then a subsequent chain of events will also

happen, without clearly establishing the validity of these links.
● Begging the Question: presenting a circular argument; presupposing the conclusion within the premise.
● Ambiguity: using language with multiple meanings, from which readers from different target audiences

may interpret in different ways. Can occur when using terms of art.
● Confirmation Bias: favouring arguments and evidence which align with a person’s existing beliefs while

downplaying opposing evidence, regardless of its merit.
● Post-hoc Rationalisation: constructing (often improvised) arguments to justify behaviour or beliefs that

are otherwise incompatible with one’s beliefs. Often used when one is experiencing ‘cognitive
dissonance’, in which a person simultaneously supports two logically irreconcilable beliefs, sometimes
without being consciously aware of it. Also used to justify hypocrisy.

Methodology of Experiments and Studies: issues arising when conducting a study.

● Loaded Question: posing a question with a strong built-in bias towards a known outcome, which can
hamper the validity of the testing methodology.

● Survivorship Bias: the sample under study may be self-selecting, making the results unrepresentative.
● Observer Effect: subjects under study may alter their behaviour if they know they are under study, in

captivity, or respond differently depending on who is studying them.
● Placebo Effect: common in medicine. If subjects are told they can expect to see an effect from taking a

treatment, they may genuinely experience the effect, even if the treatment itself does nothing.
● Replication Crisis: the observation that many studies, particularly in the social sciences which

study complex population-level interactions, can often not be reproduced precisely. However, this
does not imply the results are always invalid, rather, if different studies can investigate hypotheses
from different perspectives and come to similar conclusions (triangulation), it implies that there is
a deeper effect at play. Neglecting this nuance and extrapolating it to where it does not apply can
lead to undue public distrust in the scientific method and the body of science as a whole.

● Confounding variables: factors which may influence a study but were not controlled for, either
because they were not considered when the study was conducted or the control measures taken
were inadequate to suppress their influence.

173

All Notes 5.3. Inference and Hypothesis Testing

Argumentation and Discourse: logical fallacies and rhetorical techniques.

● Strawman: misrepresenting a statement in order to make it easier to argue against.
● Anecdotes: personal experiences or isolated incidents are statistically meaningless (typically n ~ 1

sample size) but are often far more compelling due to their tangibility or use of emotive language.
● Appeal to Authority: claims made by a perceived authority should not be considered valid based solely

on their status of authority, but rather the rigorousness of their investigative methodology and access to
empirical evidence e.g. peer-reviewed scientific literature.

● Bandwagon: the validity of a claim is not inherently dependent on how popular the claim is.
● False Dichotomy: asserting that there are only two possible outcomes (binary decision), when there

may be more than two. The reverse of this is assuming a middle ground in a true dichotomy.
● Non Sequitur: any statement that can be demonstrated to be formally illogical or self-contradictory.
● Slander / Libel: public defamation by making false statements aimed at damaging one’s reputation.
● Burden of Proof: the burden of proof lies with the individual making the claim against the current

consensus i.e. what is presented without evidence can be dismissed without evidence. This is
sometimes referred to as ‘(dis)proof beyond reasonable doubt’. If there is no current consensus, then all
sides have a burden of proof.

● Argumentum Ad Hominem: attempting to discredit an opposing view by attacking irrelevant qualities
of the person (whether true or false) who holds that view, without attacking the view itself.

● Gish Gallop: presenting a large number of claims in a short amount of time, making it seem as if one
has an endless list of strong arguments, without allowing time to respond, and without explaining
anything that could reveal that the arguments are not independent and/or strong.

● Tu Quoque (Whataboutism): claiming that one’s opponent is a hypocrite because they committed the
same act that one is being accused of, without actually defending oneself against the accusation.
Whataboutism is the general propagandistic tactic of diverting attention to another scenario, without
elaborating on whether such a comparison is valid to make.

● Motte and Bailey Fallacy: presenting a more outlandish (less well-supported) claim before falling back
to a more well-established claim once it is criticised, and implying they use the same reasoning.

● Socratic Method: the use of open-ended questions and well-defined terminology to promote a
non-confrontational discussion where opinionated people can reflect on their own perspectives. It can
challenge presuppositions and expose unrealised self-contradictions.

● Hegel’s Dialectics: presenting an initial idea (thesis), a contradictory idea (antithesis) and a higher-level
resolution that integrates ideas discussed in each (synthesis).

174

All Notes 5.3. Inference and Hypothesis Testing

5.3.10. The Scientific Method

The scientific method is the empirical process of reliably acquiring new knowledge about
the natural world.

1. Question: identify something in the natural world, and ask a question about it.

2. Fact-Finding: consult existing scientific literature to research the topic at hand. Gather
preliminary information that will be useful in studying the topic.

3. Hypothesis: formulate a potential explanation or answer to the question based on initial
knowledge gained.

4. Predictions: before investigations begin, make testable, falsifiable predictions as to what
the expected outcome would be if the hypothesis put forward is correct.

5. Test: design an experiment to investigate the question. Conduct the experiment in a safe,
ethical and reproducible manner to investigate the question and record all observations.

6. Analysis: process the results to obtain useful data. If appropriate, perform statistical tests
to quantify the likelihood of these results under a null and alternative hypothesis.

7. Interpretations: draw conclusions from the data analysis. These conclusions may serve
as the starting point for new investigations.

Writing Scientific Literature:

For experimental work, the paper should outline the ‘story’ of how the topic is introduced:
1) abstract (succinct statement of the problem, approach and results), 2) introduction,
3) materials and methods, 4) results and discussion, 5) conclusions, 6) references (from
existing primary scientific literature, cited in a standard style). Sections are field-dependent.

Submit the work conducted in the form of a paper to a peer-reviewed journal. Designate a
‘corresponding author’ who can be contacted to answer questions about the work. When
in proceedings, respond to suggestions and criticism from peer-reviewers and be open to
assisting others in replicating your work.

Reading Scientific Literature:

An often useful approach when researching a topic comprehensively is to find a ‘review’
paper of the topic via Google Scholar. For papers, read: 1) abstract, 2) look at the figures,
3) conclusions, 4) the rest of the paper, 5) search for author’s discussions of their work in
other sources. If seeking to examine methodology, check for any supplementary materials.

175

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4. Stochastic Processes, Signals and Information Theory

5.4.1. Identities for Random Vectors X = {X1 X2 …}

These identities hold when Xi are scalar RVs. If Xi are n-vectors, then variances should be
divided by for population quantities and by for sample quantities (as in Section 5.4.1).1

𝑛
1

𝑛 − 1

● Covariance matrix (autocovariance): ΣXX = Var[X] = Cov[X, X] = E[XXT] - E[X] E[X]T; Σij = Cov[Xi, Xj]
● Cross-Covariance (joint variance): ΣXY = Cov[X, Y] = E[XYT] - E[X] E[Y]T; Σij = Cov[Xi, Yj]
● Autocorrelation and cross-correlation: RXX = E[XXT]; RXY = E[XYT]; (RXY)i,j = Corr[Xi, Yj]
● Covariance of a sum: if Z = X + Y then ΣZZ = ΣXX + ΣXY + ΣYX + ΣYY (note that ΣXY = ΣYX

T)
● Covariance of a transformation: if Y = AX + b (A, b: constants) then ΣYY = AΣXXAT

5.4.2. Convolution, Cross-Correlation and Autocorrelation on LTI Systems

For discrete signals fn and gn, and continuous signals f (t) and g(t)
(where t = nT and T is the sampling period), and random variables X and Y:

Convolution
𝑓 * 𝑔

Cross-Correlation
𝑓 ⋆ 𝑔

Autocorrelation
𝑓 ⋆ 𝑓

Discrete
𝑚 = −∞

∞

∑ 𝑓
𝑚

 𝑔
𝑛−𝑚

𝑚 = −∞

∞

∑ 𝑓
𝑚

 𝑔
𝑛+𝑚

𝑚 = −∞

∞

∑ 𝑓
𝑚

 𝑓
𝑛+𝑚

Continuous
−∞

∞

∫ 𝑓(τ) 𝑔(𝑡 − τ) 𝑑τ
−∞

∞

∫ 𝑓(τ) 𝑔(𝑡 + τ) 𝑑τ
−∞

∞

∫ 𝑓(τ) 𝑓(𝑡 + τ) 𝑑τ

Stochastic 𝐸[𝑋
𝑡
𝑌

𝑡−τ
*] 𝐸[𝑋

𝑡
𝑌

𝑡+τ
*] 𝐸[𝑋

𝑡
𝑋

𝑡+τ
*]

For the convolution theorem as it applies to discrete signals via the Z-transform and to
continuous signals via the Fourier transform and Laplace transform, see Section 3.4.

5.4.3. Discrete Multidimensional Convolution

Let X be an M × Nmatrix (x (i, j) = Xij) and H be a K × Lmatrix (h(u, v) = Huv).
The convolution Y = H * X (y = x * h) is a (M - K + 1) × (N - L + 1)matrix, where

, for 1 ≤ i ≤ M - K + 1, 1 ≤ j ≤ N - L + 1.𝑦(𝑖, 𝑗) =
𝑘=0

𝐾−1

∑
𝑙=0

𝐿−1

∑ ℎ(𝑘, 𝑙) 𝑥(𝑖 − 𝑘, 𝑗 − 𝑙)

Typical application: X is a general input, H is the impulse response of a filter, Y is the output.

176

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.3. Correlation Theorems

Let X(ω) and Y(ω) be the Fourier transforms of the time-domain signals x(t) and y(t).

Cross-Correlation Theorem: the cross-spectral density SXY(ω) = of two|𝑋(ω) 𝑌(ω)|
signals x(t) and y(t), and the cross-correlation of x(t) and y(t), form a Fourier inverse pair:

−∞

∞

∫ (𝑥 ⋆ 𝑦)(𝑡) 𝑒−𝑗ω𝑡 𝑑𝑡 = 𝑆
𝑋𝑌

(ω)
−∞

∞

∫ 𝑆
𝑋𝑌

(ω) 𝑒𝑗ω𝑡 𝑑ω = (𝑥 ⋆ 𝑦)(𝑡)

forward transform inverse transform

Wiener-Khinchin Theorem: the power spectral density SXX(ω) = of a signal x(t)𝑋(ω)| |2

and the autocorrelation of x(t) form a Fourier-inverse pair:

−∞

∞

∫ (𝑥 ⋆ 𝑥)(𝑡) 𝑒−𝑗ω𝑡 𝑑𝑡 = 𝑆
𝑋𝑋

(ω)
−∞

∞

∫ 𝑆
𝑋𝑋

(ω) 𝑒𝑗ω𝑡 𝑑ω = (𝑥 ⋆ 𝑥)(𝑡)

forward transform inverse transform

The Wiener-Khinchin theorem is a special case of the cross-correlation theorem with x = y.

177

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.4. FIR and IIR Filters

The pulse function is defined as δk = {1 if k = 0 else 0} = {1, 0, 0, 0, …}
(Kronecker Delta; discrete version of Dirac Delta function).

A discrete-time system has a transfer function given by the Z-transform of its pulse response.
(Analogous to continuous-time transfer functions as the Laplace transform of the impulse response).

For a discrete-time system (digital filter) with transfer function G(z), input uk and output yk:

● G(z) is the Z-transform of gk (the pulse response when uk = δk).
● For a general input, the output is given by yk = (gk * uk) (discrete convolution theorem).
● Causal system: if gk = 0 for all k < 0. All physically realisable systems are causal, in which

k represents a discretisation of real time.
● Finite impulse response (FIR): if gk = 0 for all k > n for some smallest finite n. Otherwise, it

is an Infinite impulse response (IIR) filter.
● Stability: a system is BIBO stable if, for any bounded {uk}, the output {uk} is bounded.

(A signal {uk} is bounded such that |uk| < M for some positive M for all k.)
● Step response: if uk = 1 for all k then yk → G(1) as k→∞ (final value theorem).

● Frequency response: if uk = cos kθ then at steady state, yss(k) = |G(e jθ)| cos(kθ +∠G(e jθ)).

● Causal system transfer function: (For IIR, all poles are at z = 0.)𝐺(𝑧) =
𝑘=0

∞

∑ 𝑔
𝑘
𝑧−𝑘

Stability criterion: a rational TF must have m ≤ n.𝐺(𝑧) = 𝑛(𝑧)
𝑑(𝑧) = 𝑘=0

𝑚

∑ 𝑏
𝑘
𝑧𝑚−𝑘

𝑘=0

𝑛

∑ 𝑎
𝑘
𝑧𝑛−𝑘

=
𝑏

0
𝑧𝑚 + 𝑏

1
𝑧𝑚−1 + ... + 𝑏

𝑚

𝑧𝑛 + 𝑎
1
𝑧𝑛−1 + ... + 𝑎

𝑛

For such a system, G(z) is stable, all of the roots pi of d(z) satisfy |pi| < 1 and is finite.
𝑘=0

∞

∑ |𝑔
𝑘
|

A stable filter has a decaying transient response, so that its steady state is independent of
the initial conditions. Any linear filter can be written as A(z) Y(z) = B(z) U(z) + C(z, yi), where
C accounts for the initial conditions.

178

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.6. Discrete-Time Markov Chains (DTMCs)

A Markov process is a stochastic process in which the distribution of the next state is a
function of only the current state, and not the previous states: p(Xn+1 | X1, X2, …, Xn) = p(Xn+1 | Xn),
where p(X) is a row vector of probabilities of the random variable X being in each state.

Definitions

● State space: the enumeration of the different states i.e. the domain of Xn ∈ S
● Absorbing state: if pii = 1 (on the leading diagonal ofM) then state i is an absorbing state.
● Recurrent set / Equivalence class: a set of states within which any state can reach any other state
● Irreducible chain: if all states are recurrent (i.e. no absorbing states; one equivalence class)
● Periodicity: for a chain of period δ, the nonzero eigenvalues ofM are the δth roots of unity.
● Regular ergodic: an irreducible and aperiodic chain, which has limiting (stationary) distribution.

Probability Relationships

● Transition matrix: (M)ij = pij = P(Xn+1 = j | Xn = i)
● Columns ofM sum to 1: ∑ j pij = 1. (right stochastic matrix)
● Joint distribution: p(X0 = i0, X1 = i1, …, Xn = in) = P(X0 = i0) × 𝑝

𝑖
0
𝑖

1

 𝑝
𝑖

1
𝑖

2

 ... 𝑝
𝑖

𝑛−1
𝑖

𝑛

● State transition probabilities: p(Xn+1) = p(Xn)M and p(Xn+k) = p(Xn)Mk

● Higher order transition probability: pij(m+n) = (Mm+n)ij = ∑k pik(m) pkj(n) (Chapman-Kolmogorov equation)
● Stationary (ergodic) state: if p(Xn) = π then πM = π (π is an eigenvector ofM with eigenvalue 1)
● Unconditional probability: P(Xn = j) = ∑i pij(n) P(X0 = i) =mean value of column j inMn

First Step Transition Analysis / Waiting Time Problems

● Transitions between neighbouring states i→ i + 1 occur with time T = Geo(pi(i+1)), so E[T] = 1 / pi(i+1).
● Expected steps required for a transition from i to j: μij = E[min(n ≥ 1: Xn = j) | X0 = i] = 1 + ∑ k ≠ j pik μkj.

179

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.7. Continuous-Time Markov Chains (CTMCs, Discrete State Space)

The Markov matrix Q for a continuous-time process is infinite dimensional: x’ = x Q

● xn(t) = Pn(t) = P(X(t) = n), x = [x1(t), x2(t), …] (row vector) and (Q)ij = . Entries of x sum to 1.
∂(𝑥

𝑗
')

∂𝑥
𝑖

● Rows of Q sum to zero: ∑ j (Q)ij = 0 (probability mass conserved).
● Discrete state space: X(t) takes discrete values; X∈ {0, 1, 2, …, n, …} (to infinity, in general)
● Continuous state space: X(t) takes continuous values (a range); X∈ S.

Note that in solving xQ = 0 for the stationary state, one equation obtained from the columns
of Q is degenerate, and should be replaced with ∑ j xj = 1 to give a determinate system.

The Birth-Death Process: the state X(t) represents the number n of some entity at time t

● Birth: transition from state n to state n + 1, occuring at a rate λn per unit time (Tn → n+1 ~ Exp(λn)).

● Death: transition from state n to state n - 1, occuring at a rate μn per unit time (Tn → n-1 ~ Exp(μn)).

● Transitioning to the same state is also possible in general, with rate 1 - λn - μn (allowable if λn + μn ≠ 1).

● Equation: for n > 1.𝑥
𝑛
(𝑡 + ∆𝑡) = 𝑥

𝑛
(𝑡) 1 − λ

𝑛
∆𝑡 − µ

𝑛
∆𝑡() + 𝑥

𝑛−1
(𝑡) λ

𝑛−1
∆𝑡() + 𝑥

𝑛+1
(𝑡) µ

𝑛+1
∆𝑡()

● Differential Equation: for n > 1, and .
𝑑𝑥

𝑛

𝑑𝑡 = λ
𝑛−1

𝑥
𝑛−1

+ µ
𝑛+1

𝑥
𝑛+1

− (λ
𝑛

+ µ
𝑛
)𝑥

𝑛

𝑑𝑥
0

𝑑𝑡 = µ
1
𝑥

1
− λ

0
𝑥

0

Pure birth process (Yule-Furry process): μn = 0 (no deaths) and λn = nλ (proportional growth rate).

Solution: if i.e. given initial state is X(0) = n0.𝑥
𝑛
(𝑡) = 𝑛−1𝐶

𝑛−𝑛
0

 𝑒
−λ𝑛

0
𝑡

1 − 𝑒−λ𝑡()
𝑛−𝑛

0 𝑥
𝑛

0

(0) = 1

Poisson process: μn = 0, λn = λ (constant birth rate) and X(0) = 0. Solution: .𝑥
𝑛
(𝑡) = (λ𝑡)𝑛

𝑛! 𝑒−λ𝑡

For results of other CTMCs which can be interpreted as FIFO queues, see Section 5.4.8.

180

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

The Renewal Process: how many observations of an RV in series before a given time t

Let , where S is a random variable with known distribution𝑋
𝑡

= 𝑚𝑎𝑥 𝑛:
𝑖=1

𝑛

∑ 𝑆
𝑖() ≤ 𝑡

⎰
⎱

⎱
⎰

(with support S > 0 representing interval times), and Si is the ith i.i.d. observation of S.

● Xt is a renewal process, a type of generalised Poisson process, representing the number of
observations of S that can be made by time t. The values of t where Xt changes by 1 are the
‘jumping times’, Ji.

● Renewal function equation: 𝐸[𝑋
𝑡
] = 𝐹

𝑆
(𝑡) +

0

𝑡

∫ 𝐸[𝑋
𝑡−τ

] 𝑓
𝑆
(τ) 𝑑τ

where FS(t) is the CDF of S and fS(t) is the PDF of S.

● Strong law of large numbers for limiting observations per unit time:
𝑡 ∞
lim
→

𝑋
𝑡

𝑡 = 1
𝐸[𝑆]

● Central limit theorem: for large t, Xt is asymptotically Gaussian: 𝑋
𝑡
 ~ 𝑁 𝑡

𝐸[𝑆] , 𝑡 × 𝑉𝑎𝑟[𝑆]

𝐸[𝑆]3()
● Renewal-reward process: at each observation time Ji, a ‘reward variable’ Wi is observed, and

the accumulated reward up to time t is Yt = . The strong law of large numbers for the
𝑖=1

𝑋
𝑡

∑ 𝑊
𝑖

limiting reward accumulation rate is (S and W need not be independent).
𝑡 ∞
lim
→

𝐸[𝑌
𝑡
]

𝑡 = 𝐸[𝑊]
𝐸[𝑆]

● Wald equation: 𝐸[𝐽
𝑋

𝑡

] =

181

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.8. Queueing Theory

Kendall notation: a queue model is named A/B/c/N/K where:

A: inter-arrival time distribution (M: Markovian (exponential), D: deterministic (constant), G: general)
B: service time distribution (M: Markovian (exponential), D: deterministic (constant), G: general)
c: number of parallel servers (each serves 1 at a time)
N: system size (maximum queue length + c) (assumed ∞ if omitted)
K: population size (absolute maximum system size) (assumed ∞ if omitted)

(L: number of customers in the system, T: time of a customer in the system,
LQ: number of customers in the queue, TQ: time of a customer in the queue,

ρ = : server utilisation (load factor) - the queue is ergodic (a stationary state exists) if ρ < 1.)
λ

𝑒𝑓𝑓

𝑐µ

Little’s law: , always.𝑚𝑒𝑎𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑚𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚
𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 ⇔ λ

𝑒𝑓𝑓
= 𝐸[𝐿]

𝐸[𝑇] =
𝐸[𝐿

𝑄
]

𝐸[𝑇
𝑄

]

Coefficient of variation: for a specified random variable X. If X ~ Exp, cv = 1.(𝑐𝑣)2 = 𝑉𝑎𝑟[𝑋] / (𝐸[𝑋])2

M/M/c/N/N Queue: those who leave the service node immediately rejoin the population (closed queue)

, if 0 ≤ n < c, else ,π
0

=
𝑛=0

𝑐−1

∑ 𝑁𝐶
𝑛
 (𝑐ρ)𝑛 +

𝑛=𝑐

𝑁

∑ 𝑁! (𝑐ρ)𝑛

(𝑁 − 𝑛)! 𝑐! 𝑐𝑛−𝑐

⎡⎢⎢⎣

⎤⎥⎥⎦

−1

π
𝑛

= {π
0
 𝑁𝐶

𝑛
 (𝑐ρ)𝑛 𝑁! (𝑐ρ)𝑛

(𝑁 − 𝑛)! 𝑐! 𝑐𝑛−𝑐 }

, .𝐸[𝐿] =
𝑛=0

𝑁

∑ 𝑛 π
𝑛

λ
𝑒𝑓𝑓

=
𝑛=0

𝑁

∑ (𝑁 − 𝑛)λ π
𝑛

M/M/c/N Queue: capped system size. Functionally identical to an M/M/c/∞/N queue.

, if 0 ≤ n < c, else , ,π
0

= 1 +
𝑛=1

𝑐

∑ (𝑐ρ)𝑛

𝑛! + (𝑐ρ)𝑐

𝑐!
𝑛=𝑐+1

𝑁

∑ ρ𝑛−𝑐⎡⎢⎢⎣

⎤⎥⎥⎦

−1

π
𝑛

= {π
0

(𝑐ρ)𝑛

𝑛! π
0

(𝑐ρ)𝑛 𝑐𝑐−𝑛

𝑐! } π
𝑁

= (𝑐ρ)𝑁

𝑐! 𝑐𝑁−𝑐 π
0

E[LQ] = (1 - ρN-c - (N - c)(1 - ρ)ρN-c), λeff = λ(1 - πN) = , E[T] = E[TQ] + μ-1
π

0
 (𝑐ρ)𝑐ρ

𝑐! (1 − ρ)2

𝐸[𝐿
𝑄

]

𝐸[𝑇
𝑄

] = 𝐸[𝐿]
𝐸[𝑇]

M/M/c Queue (Erlang-C Model): birth-death process with λn = λ and μn = min{c, n} μ.

, , ,π
0

=
𝑛=0

𝑐−1

∑ (𝑐ρ)𝑛

𝑛!() + (𝑐ρ)𝑐

𝑐! (1 − ρ)
⎡⎢⎢⎣

⎤⎥⎥⎦

−1

𝑃(𝐿 ≥ 𝑐) =
𝑛=𝑐

∞

∑ π
𝑛

= (𝑐ρ)𝑐

𝑐! (1 − ρ) π
0

𝐸[𝐿] = 𝑐ρ + ρ
1 − ρ 𝑃(𝐿 ≥ 𝑐)

, , if 0 ≤ n < c, else , .𝐸[𝐿
𝑄

] = ρ
1 − ρ 𝑃(𝐿 ≥ 𝑐) 𝐸[𝐿 − 𝐿

𝑄
] = 𝑐ρ π

𝑛
= {π

0
(𝑐ρ)𝑛

𝑛! π
0

(𝑐ρ)𝑛 𝑐𝑐−𝑛

𝑐! } λ
𝑒𝑓𝑓

= λ

M/M/1 Queue: birth-death process with λn = λ and μn = μ.

, , , , , , .π
0

= 1 − ρ π
𝑛

= π
0
 ρ𝑛 𝐸[𝐿] = ρ

1 − ρ 𝐸[𝑇] = 1
µ − λ 𝐸[𝐿

𝑄
] = ρ2

1 − ρ 𝐸[𝑇
𝑄

] = ρ
µ(1 − ρ) λ

𝑒𝑓𝑓
= λ

M/G/1 Queue: service times are randomly distributed with mean time μ-1 and variance σ 2.

, , , , , .ρ = λ
µ π

0
= 1 − ρ 𝐸[𝐿

𝑄
] = ρ2(1 + σ2µ2)

2(1 − ρ) 𝐸[𝑇
𝑄

] = λ(µ−2 + σ2)
2(1 − ρ) 𝐸[𝐿] = ρ + 𝐸[𝐿

𝑄
] 𝐸[𝑇] = µ−1 + 𝐸[𝑇

𝑄
]

182

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.9. Priority Queues and Networks

Service Disciplines

● First-in, first-out (FIFO) / first-come, first-served (FCFS): longest waiting served first.
● Last-in, first out (LIFO) / stack: shortest waiting served first.
● Processor sharing: service capacity is shared equally among customers.
● Priority queue: customers are assigned a priority and can jump to the front of the queue on arrival or

even displace a customer being served (preemptive).

Customer Waiting Behaviour

● Baulking: customers decide not to join the queue if it is too long, as if an M/M/c/N queue.
● Jockeying: when there are multiple queues, customers move to the shortest at any time.
● Reneging: customers will leave the queue if they have waited too long.

Queuing Networks

● A network of queues is represented as m nodes (queue +
service) each with population xi and black-box parameters
i.e. M/M/ci, λi(eff), μi.

● Transition probability for leaving node i to
enter node j: pij (can also leave system with pi)

● Overall arrival rate into queue j: (aj: arrival rate from outside the system)λ
𝑗

= 𝑎
𝑗

+
𝑖

∑ λ
𝑖
 𝑝

𝑖𝑗

● Matrix / vector form: λ = (I PT)-1a−
● Utilisation of queue j: ρ

𝑗
= λ

𝑗
 / (𝑐

𝑗
µ

𝑗
)

● The flow of customers through a network at steady-state can often (not always) be thought of
as a fluid flowing through ‘pipes’ (the fluid limit).

● Jackson network: an open network of m M/M/ci queues.

Joint steady-state distribution product form: π(x) = (independence)
𝑖=1

𝑚

∏ π(𝑥
𝑖
)

Discrete event simulation (DES) can be used to investigate complex queuing systems, such as the
simpy module in Python, the SimEvents MATLAB add-on or enterprise software.

Simulations of queueing are subject to initialisation bias, in which the initial state can influence the
averaged statistics even after a long time has elapsed. To mitigate this, data collection can be delayed
until a given ‘warm-up period’ has passed. Determining the ideal length of this period may be
challenging, with several methods proposed (e.g. Welch plot). Alternatively, a known/theoretical
average steady state can be set at the start (although this may affect measures of variability).

183

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.9. Continuous-Time, Continuous State Space Markov Chains

The Wiener Process: continuous random walk (Brownian motion).

Discrete Brownian motion: Let where ζk ∈ {-δ, δ} with P(ζk = -δ) = P(ζk = δ) = 1 / 2.𝑋
𝑛

=
𝑘=1

𝑛

∑ ζ
𝑘

The limiting distribution of as where time t = nδ as δ→ 0 (so t is finite) is p(x, t) ~ Nx(0, t).𝑋
𝑛

𝑛 → ∞

In general, the Fokker-Planck equation is (diffusion equation).
∂𝑝
∂𝑡 = ∂2

∂𝑥2 (α𝑝)

If p(x, 0) = δ(x - a) then p(x, t) ~ Nx(a, 2αt). The standard deviation is unbounded: σ = .2α𝑡

The Ornstein-Uhlenbeck Process: continuous analogue of the AR(1) process.

The stochastic differential equation is (W: Wiener process)𝑑𝑥 = − β 𝑥 𝑑𝑡 + 2α 𝑑𝑊

(α: diffusion term, β: drift term)

The Fokker-Planck equation is .
∂𝑝
∂𝑡 = ∂

∂𝑥 (β𝑥𝑝) + ∂2

∂𝑥2 (α𝑝)

If p(x, 0) = δ(x - a) then p(x, t) ~ Nx(a e -βt, (1 - e -2βt)). At steady state,α
β

𝑡 ∞
lim
→

𝑝(𝑥, 𝑡) ~ 𝑁(0, α
β).

184

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.10. Sampling from Unnormalised Distributions

Consider a distribution where f (x) is a known function but C is an unknown𝑝(𝑥) = 𝑓(𝑥)
𝐶

normalising constant. To approximate the drawing of samples from p(x), we can use:

Rejection Sampling: Define a proposal distribution q(x) and a constant k such that f (x) ≤ k q(x) for all x.
Draw a candidate sample Q ~ q(x), then draw another sample U ~ Uniform(0, k q(Q)). If U ≤ f (Q) then we
accept the sample Q; otherwise we reject. The accepted samples approach the distribution of p (x).

Markov Chain Monte Carlo (MCMC): Construct a discrete-time Markov chain in which the states are
the support (non-zero domain) of f (x) and the ‘time’ is the sample number (index). The goal is to find
the transition probabilitiesM such that the stationary distribution is p(x).

Detailed balance of equilibrium: equivalently .𝑝(𝑥) 𝑝(𝑦 | 𝑥) = 𝑝(𝑦) 𝑝(𝑥 | 𝑦) 𝑝𝑀 = 𝑝

Metropolis-Hastings Algorithm: Define a proposal distribution q(xn+1 | xn).
Generate samples of xn+1 ~ q(xn) and accept them with probability A(xn+1 | xn). (Note that f = A q)

Detailed balance: . Then A(xn+1 | xn) = min .
𝐴(𝑥

𝑛+1
 | 𝑥

𝑛
)

𝐴(𝑥
𝑛
 | 𝑥

𝑛+1
) =

𝑓(𝑥
𝑛+1

)

𝑓(𝑥
𝑛
) ×

𝑞(𝑥
𝑛
 | 𝑥

𝑛+1
)

𝑞(𝑥
𝑛+1

 | 𝑥
𝑛
) 1,

𝑓(𝑥
𝑛+1

)

𝑓(𝑥
𝑛
) ×

𝑞(𝑥
𝑛
 | 𝑥

𝑛+1
)

𝑞(𝑥
𝑛+1

 | 𝑥
𝑛
)

⎰
⎱

⎱
⎰

Gibbs Sampling: when f = f (x) is a multivariable distribution and sampling from the joint pdf is difficult
but from the conditional pdfs is easier. Choose an initial x0. For each variable x(i), sample
x(i)n+1 ~ p(x(i)n+1 | x*n) where x*n is either xn or its partly/fully updated entries depending on implementation.

185

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.13. Wiener Deconvolution Filter

Given (h: impulse response, n: noise), the goal is to find the𝑦(𝑡) = (ℎ * 𝑥)(𝑡) + 𝑛(𝑡)
MMSE estimate .𝑥(𝑡) = (𝑔 * 𝑦)(𝑡)

Signal-to-Noise ratio: (SXX(ω): power spectrum of x)𝑆𝑁𝑅(ω) =
𝑆

𝑋𝑋
(ω)

𝑁(ω)

Frequency spectrum of g: =𝐺(ω) =
𝐻*(ω) 𝑆

𝑋𝑋
(ω)

|𝐻(ω)|2 𝑆
𝑋𝑋

(ω) + 𝑁(ω)

𝐻*(ω) 𝑆𝑁𝑅(ω)

1 + |𝐻(ω)|2 𝑆𝑁𝑅(ω)

Therefore .𝑋(ω) = 𝐺(ω) 𝑌(ω) ⇒ 𝑥(𝑡) = 1
2π

−∞

∞

∫ 𝐺(ω) 𝑌(ω) 𝑒𝑖ω𝑡 𝑑ω

5.4.14. Stationary Time Series Analysis: AR, RA and ARMA Models

Gaussian noise: Let Wn be a sequence of random variables such that E(Wn) = 0 for all n
and E(WiWj) = σ2 if i = j else 0.

Wide sense stationary (WSS): fixed mean, fixed correlation (independent of n).

The augmented Dickey-Fuller test (ADF test) can be used to test against the null hypothesis
of a unit root (non-stationarity). Python: statsmodels.tsa.stattools.adfuller(x)

AR Model (Autoregressive Model)

AR(p) (order p) process: 𝑋
𝑛

=
𝑖=1

𝑝

∑ 𝑎
𝑖
𝑋

𝑛−𝑖
 + 𝑊

𝑛

Correlation of AR(1): 𝑅
𝑋𝑋

(𝑘) = 𝐸[𝑋
𝑛
 𝑋

𝑛+𝑘
] = 𝑎𝑘 σ

𝑋
2

MA Model (Moving Average Model)

MA(p) (order p) process: where μ = E[X].𝑋
𝑛

= µ +
𝑖=1

𝑝

∑ 𝑎
𝑖
𝑊

𝑖

ARMA Model (Autoregressive Moving Average Model)

ARMA(p, q) process: 𝑋
𝑛

= µ + 𝑊
𝑛

+
𝑖=1

𝑝

∑ 𝑎
𝑖
𝑋

𝑛−𝑖
+

𝑗=1

𝑞

∑ 𝑏
𝑗
𝑊

𝑗

Autocorrelation: ; Partial autocorrelation:𝑅
𝑋𝑋

(𝑘) = 𝐸[𝑋
𝑛
𝑋

𝑛+𝑘
] ϕ(𝑘) = 𝐸[(𝑋

𝑛
− 𝑋

𝑛
)(𝑋

𝑛+𝑘
− 𝑋

𝑛+𝑘
)]

The ARMA process the white noise response of an IIR filter.

Model Fitting: estimating the hyperparameters of an ARMA process to fit observed data.

● The value of p is optimal at the elbow or peak of (PACF).|ϕ(𝑘)|
● The value of q is optimal at the elbow or peak of |RXX(k)| (ACF, correlogram).

186

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.15. ARIMA Model (Autoregressive Integrated Moving Average Model)

ARIMA(p, d, q) process: (Lk Xn = Xn-k: lag operator)𝑌
𝑛

= (1 − 𝐿)𝑑 𝑋
𝑛

=
𝑘=0

𝑑

∑ 𝑑𝐶
𝑘
 (− 1)𝑘 𝑋

𝑛−𝑘

where Xn is an ARMA(p, q) process.

The ARIMA process Yn is non-stationary, while the ARMA process Xn is stationary.

For time series analysis, the Wn (noise) terms are evaluated as the model error, which is
assumed to be Gaussian. A time series can be made stationary by repeatedly
differentiating (differencing) until sufficiently stationary. This is equivalent to removing
polynomial terms from the Taylor series of a smoothed version of the series.

Akaike Information Criterion: (can be applied to any model)𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛 𝑚𝑎𝑥{𝐿}()
(k: number of estimated parameters, L: likelihood function)

Further enhancements include the SARIMAX model (seasonal components and
exogeneous (externally supplied) variables). These are available in Python via the
statsmodels module, with a similar interface to tensorflow.keras models.

5.4.16. Noise Response of an LTI System

Let where H: linear time invariant (LTI) system, y: system state, x: system input.𝐻 𝑦 = 𝑥

If H has impulse response h, the system response is given by .𝑦 = ℎ * 𝑥

If where X is a WSS stochastic process, then the response y is also WSS.𝑥 = 𝑋(𝑡)

● Power spectral density (PSD) of y: (H: FT of h(t)).𝑆
𝑌𝑌

(ω) = |𝐻(ω)|2 𝑆
𝑋𝑋

(ω)

● Cross-spectral density (CSD): 𝑆
𝑋𝑌

(ω) = 𝑆
𝑋𝑋

(ω) 𝐻(ω)

187

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.17. Multivariate Gaussian Distribution

A D-dimensional Gaussian random vector x with mean vector µ and covariance matrix Σ
has a joint pdf given by

where µ is a D-dimensional vector, Σ is a D × D positive definite symmetric matrix, and |Σ|
its determinant.

● Distribution notation: writing p(x) = N(x; μ, Σ) is equivalent to x ~ N(μ, Σ).

● If x and y are jointly Gaussian random vectors with marginal pdfs p(x) = N(x; a, A)
and p(y) = N(y; b, B), with cross-covariance matrix C = Cov[x, y], then the joint pdf is

and the conditional pdf is p(x | y) = N(x; a + CB−1(y − b), A − CB−1CT).

● Linear projection: if p(x) = N(x; μ, Σ) and y = Ax + b then p(y) = N(y; Aμ + b, AΣAT).

● The product of Gaussian densities is an unnormalised Gaussian:

N(x; a, A) N(x; b, B) = Z -1 N(x; c, C)

where C = (A-1 + B-1)-1, c = C(A-1a + B-1b) and the normalising constant is Gaussian
in both a and b: Z -1 = (2π) D / 2 |A + B| 1/2 exp((a b)T (A + B)-1 (a b) / 2).− − − − −

● The (differential) entropy of a D-dimensional Gaussian random vector X with with
pdf p(x) = N(x; µ, Σ) is

● KL (Kullback-Leibler) divergence between Gaussians:

If p(x) = N(x; µ1, Σ1) and q(x) = N(x; µ2, Σ2) then

188

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.18. Gaussian Process

Formally, if X : T × Ω → R is a Gaussian process with mean function m and covariance
function K, then for every t1, …, tk ∈ T, the random vector [X(t1), …, X(tk)] has a
multivariate normal distribution with mean vector μk = m(tk) and covariance matrix Σij = K(ti,
tj).

(T: set of indices for Gaussian process, Ω: sample space of X)

Informally, X can be considered a ‘function’ that returns a distribution N(x; m(t), K(t, t)) for
any given t, i.e. X(t) has a univariate Normal distribution (with a specified covariance
between any two different t). Function X(t) has domain T and sample space Ω, returning a
real-valued probability.

X (t) ~ GP(m(t), K(t, t’)) where m(x) is the mean function, K(t, t’) is the covariance function
with another given input x’.

It is useful to note that a Gaussian process can also be considered as an infinite-variable
Gaussian distribution, with an infinite-length mean vector and infinity-by-infinity
covariance matrix, since:

● An infinite-dimensional vector can be considered a scalar function of a single variable.
● An infinity-by-infinity matrix can be considered a scalar function of two variables:

Regression: let y = X(t) + εσy where X(t) is a Gaussian process (the model), ε ~ N(0, 1)𝑦
and σy is the constant standard deviation of the model errors.

Assume a zero-mean Gaussian process prior distribution f (x) | θ ~ GP(0, K(x, x’)) (θ: model
hyperparameters used to define function K). Then y | θ ~ GP(0, K(x, x’) + Iσy).

A common choice of K is , where length-scale σ is a hyperparameter.

Prediction: let some given data be y2 ~ N(b, B) (finite dimensional) and data to predict
y1 ~ N(a, A) (infinite dimensional). The joint distribution of y1 and y2 (Section 5.4.17) is a
Gaussian process: p(y1, y2) = N([y1; y2]; [a; b], [[A, C]; [CT, B]]).

Consider p(y1 | y2) = = N(y1; a + CB−1(y2 − b), A − CB−1CT).
𝑝(𝑦

1
, 𝑦

2
)

𝑝(𝑦
2
)

189

The predictive mean is E[y1 | y2] = a + CB−1(y2 − b) = CB−1y2 (a = b = 0 for zero mean prior),
which is linear in the given data y2. The predictive covariance is Cov[y1 | y2] = A − CB−1CT i.e.
the uncertainty has been reduced from A (prior uncertainty) by CB−1CT.

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.19. Information Entropy

For a discrete random variable X with a probability mass function PX(x):

● Shannon information content (‘surprise’) of an outcome: IX(x) = -log PX(x)

● The entropy of an r.v. X with pmf P is the expected information, E[IX(x)]:

The entropy is measured in ‘bits’ if using log base 2, and ‘nats’ if using log base e.

● The joint entropy of random variables X1, ..., Xn with joint pmf is𝑃
𝑋

1
...𝑋

𝑛

● The conditional entropy of Y given X is

Note that a similar formula holds if we condition on a collection of random
variables (X1, ..., Xn) instead of a single random variable X.

● Chain rule for entropy: The joint entropy of X1, ..., Xn can be written as

● The relative entropy or KL divergence between two PMFs P and Q (defined on
the same alphabet) is the information loss by using Q to represent P, given by

● The differential entropy of a continuous random variable X with pdf p is

190

Joint differential entropy, conditional differential entropy, relative entropy/KL
divergence, mutual information, chain rules for continuous random variables are all
defined similarly to the discrete case with integrals replacing sums.

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.20. Mutual Information

The mutual information between random variables X and Y represents the average
reduction in uncertainty about X by knowing Y. For a joint pmf PXY, mutual information is

Chain rule for mutual information:

For maximum coding efficiency (optimal encoding), the mutual information / KL divergence
I(X; Y) = DKL(PXY || PXPY) between an ‘output’ X and an ‘input’ Y must be maximised.

5.4.21. Decoding with Information Loss due to Noise

Data Processing Inequality: If X, Y, Z form a Markov chain, then

I(X; Y) ≥ I(X; Z).

Discrete random variables X, Y, Z are said to form a Markov chain if their joint pmf can be
written as PXYZ = PXPY|XPZ|Y.

This is analogous to the second law of thermodynamics for statistical entropy (mutual
information never increases with deterministic processing (conditioning)).

Fano’s Inequality: Let X be a random variable taking values in a set χ with cardinality
denoted by |χ|. Let Y be a random variable jointly distributed with X, and = f (Y) be any𝑋
estimator of X from Y. Then the probability of error Pe = P(≠ X) satisfies𝑋

191

1 + Pe log |χ| ≥ H(X | Y).

All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.22. Maximum Entropy Distributions

The entropy, representing the ‘surprise’ we get when making an observation. A random
variable with a maximum entropy distribution (subject to given constraints) represents the
most efficient coding of the information in the variable.

Constraint type Constraint definition(s)
Maximum entropy
distribution, fX(x)

Distribution name

Limited range 𝑎 ≤ 𝑋 ≤ 𝑏 1
𝑏 − 𝑎 Uniform

Nonnegative
integers, limited
range, fixed mean

𝑋 ∈ {0, 1, ..., 𝑛},
𝐸[𝑋] = µ

𝑥
 𝑛𝐶

𝑥

µ
𝑥

𝑛()𝑥

1 −
µ

𝑥

𝑛()𝑛−𝑥
Binomial

Positive integers,
fixed mean

𝑋 ∈ {1, 2, 3, ...},
𝐸[𝑋] = µ

𝑥

1
µ

𝑥
 1 − 1

µ
𝑥

()𝑥−1
Geometric

Nonnegative
integers, fixed mean

𝑋 ∈ {0, 1, 2, ...},
𝐸[𝑋] = µ

𝑥

µ
𝑥

𝑥 𝑒
−µ

𝑥

𝑥!
Poisson

Nonnegative,
fixed mean

𝑋 ≥ 0, 𝐸[𝑋] = µ
𝑥 exp

1
µ

𝑥

−𝑥
µ

𝑥
Exponential

Fixed mean,
fixed variance

𝐸[𝑋] = µ
𝑥
, 𝑉𝑎𝑟[𝑋] = σ

𝑥
2 exp1

2πσ
𝑥

2

−(𝑥 − µ
𝑥
)2

2σ
𝑥

2 Normal

192

193

All Notes 5.5. Machine Learning and Computational Statistics

5.5. Machine Learning and Computational Statistics

5.5.1. Data Matrix and Notation for Datasets

The p ‘independent variables’ (features) are {x1, x2, …, xp}. The single dependent variable is
y. In a complete dataset, there are n recorded observations of each variable. A data matrix
X ∈ Rn×p and label column vector y∈ Rn is constructed:

Observation Feature 1 (x1) Feature 2 (x2) … Feature p (xp) Label (y∈
Rn) Xij is the ith

observation of
variable xj.

The goal of an ML
model is to find a
mapping f : X→ y.

1 X11 X12 … X1p y1

2 X21 X22 … X2p y2

… … … … … …

n Xn1 Xn2 … Xnp yn

● Each row of X can be considered a random vector.
● Each column of X can be considered a set of observations from a random variable Xj.
● A ‘centred dataset’ contains features whose observations have zero mean: xj’ = xj .− 𝑋

𝑗
● A ‘standardised dataset’ contains features whose observations have zero mean and unit

standard deviation: xj’ = (xj) / . The standardised Xj is comparable to (but not− 𝑋
𝑗

𝑠
𝑋

𝑗

necessarily has) a standard normal (Gaussian) distribution.

194

All Notes 5.5. Machine Learning

5.5.2. Principal Component Analysis (PCA)

PCA is a method of constructing new features {x1’, x2’, …, xp’} that retain the information required to
reconstruct y. Mathematically, it is a rotation of the coordinate axes used to specify the data into axes
along which variance is maximised and covariance is minimised.

For a standardised (μi = 0, σi = 1) dataset represented with data matrix X ∈ Rn×p (n ≥ 2):

● Singular value decomposition (SVD, Section 4.3.7): X = UΣVT

(U∈ Rn×n, orthonormal; Σ ∈ Rn×p, non-square diagonal; V∈ Rp×p, orthonormal, V-1 = VT)

● Covariance matrix: C = Cov[X, X] = XTX such that Cij = Cov[Xi, Xj] (C∈ Rp×p, symmetric)
1

𝑛 − 1

● Eigendecomposition (Section 4.3.6): C = VΣ2VT or XTX = VΣ2VT,
1

𝑛 − 1
with eigenvalues in Σ2 / (n - 1) or singular values in Σ are ordered descending.

● Data matrix in PC space: X’ = XV = UΣ. Each column of X’ is a principal component.
● The Vij are the ‘loadings’ of Xi (coefficient in the expression for computing PC X’j).
● The columns of V are orthonormal vectors. This means that the PCs are independent

i.e. uncorrelated: the new covariance matrix C’ = Cov[X’, X’] = VTCV is diagonal.

● Eigenvalues of C are , representing the variances of data in each PC.λ
𝑖

= σ
𝑖
2/(𝑛 − 1)

PCA can be used for model dimensionality reduction by truncating Σ to retain only the k ≤ p largest
singular values (projection: Rp → Rk). The corresponding eigenvectors (rows of VT) are the dominant
components. Then, Σ becomes a n × k matrix and V becomes a p × k matrix. k can be chosen by
plotting the eigenvalues in descending order and selecting the ones significantly larger than the rest
(the ‘elbow’ of a ‘scree plot’). For visualisation, k = 2 is often chosen (obtain PC1 and PC2).

For a multivariate distribution of zero-mean Normal variables, the principal components are along the
axes of the p-dimensional hyper-ellipsoid formed by contours of the joint PDF. If the data has
categorical labels, they can be colour-coded, around which 95% confidence ellipses can be drawn.
This can sometimes help separate clusters before a clustering algorithm is applied (Section 5.5.6). A
‘loading plot’ shows the weights of the features (loadings) to a PC. A ‘biplot’ shows each loading as a
vector to the point (PC1, PC2) in PC space, with a circle of radius 1 surrounding them, and the dataset
in PC space optionally superimposed. Example (gene expression):

195

All Notes 5.5. Machine Learning

5.5.3. Scaling and Encoding (Pre-Processing)

Data can be normalised to remove potential variation due to physical units or magnitudes.

● Standard scaling: (sklearn.preprocessing.StandardScaler)𝑥' =
𝑥 − µ

σ

● Min-max scaling: (sklearn.preprocessing.MinMaxScaler)𝑥' =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

Non-numerical (categorical) data can be encoded into numerical data.

● Ordinal encoding: (sklearn.preprocessing.OrdinalEncoder)𝑥' ∈ {0, 1, 2, ...}
● One-hot encoding: (sklearn.preprocessing.OneHotEncoder)𝑥'

𝑖
∈ {0, 1}

where i is the number of distinct categories. Each one-hot feature is essentially a boolean
for “is X equal to i?”, where feature X takes values i.

5.5.4. Metrics for Evaluating Model Performance

Metrics for Evaluating Regression Models:

Mean Squared Error (MSE) Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE)

Coefficient of Determination (R2)

(SSE (sum of squared errors) = RSS (residual sum of squares); SSE with () = TSS𝑦 = 𝑦
(total sum of squares))
If the errors can be assumed to have zero mean (symmetric), then the MSE is equivalent

to the variance of , and the RMSE = = std. dev.𝑦 𝑀𝑆𝐸

196

All Notes 5.5. Machine Learning

Metrics for Evaluating Classification Models:

Confusion matrix: a contingency table showing frequency of classifications.

Predicted Positive Predicted Negative Total

True Positive 𝑇𝑃
True Positive

𝐹𝑁
False Negative (Type II Error)

𝑃

True Negative 𝐹𝑃
False Positive (Type I Error)

𝑇𝑁
True Negative

𝑁

Total 𝑃𝑃 𝑃𝑁 𝑃 + 𝑁 = 𝑃𝑃 + 𝑃𝑁

Accuracy = ; Precision = ; Sensitivity = ; Specificity = ; F1 Score =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
𝑇𝑃
𝑃𝑃

𝑇𝑃
𝑃

𝑇𝑁
𝑁

2 𝑇𝑃
𝑃𝑃 + 𝑃

Precision is also known as Positive Predictive Value (PPV).
Sensitivity is also known as True Positive Rate (TPR), Recall, Hit Rate, or Power.
Specificity is also known as True Negative Rate (TNR) or Selectivity.

Metrics for Evaluating Clustering Models:

● Silhouette Score: , compute for each point; measures separation.𝑠
𝑖

=
𝑏

𝑖
 − 𝑎

𝑖

𝑚𝑎𝑥{𝑎
𝑖
, 𝑏

𝑖
}

(ai: average distance between i and other points in same cluster; bi: distance
between i and centroid of nearest other cluster)

● Adjusted Rand Index: fraction of pairs of points in the correct same cluster,
adjusted for randomness.

● Adjusted Mutual Information: measured between two given clusters; adjusted for
the entropies of each cluster, see Section 5.5.3.

● Calinski-Harabasz Index (variance criterion): ratio of within-cluster dispersion to
inter-cluster dispersion.

Many of these metrics are available in scikit-learn.

197

All Notes 5.5. Machine Learning

5.5.5. Traditional (Non Neural Network Based) Supervised Classification Algorithms

Naive Bayes Classifier

A Bayes classifier assumes conditional independence between each x given y. Classification
labels ŷj are chosen to maximise the MAP, given by p(y) ∏i p(xi | y) where p(y) = 1 / (# labels) is the
prior relative frequency of y and p(y | xi) is calculated from a given distribution e.g. Gaussian.

Python (scikit-learn): from sklearn.naive_bayes import GaussianNB

Random Forest Classifier

A supervised classification method in which binary decision trees are created and
optimised on their decision rule to minimise a loss function (often Gini impurity).

Python (scikit-learn): from sklearn.ensemble import RandomForestClassifier

XGBoost (extreme gradient boosting) is a powerful tree-based model implemented in C++.

Support Vector Classifier

For maximum margin classification, use a hinge loss:

Python (scikit-learn): from sklearn.svm import SVC

K Nearest Neighbours

A simple classification algorithm in which data points are classified according to the most
common label among that of the K nearest training data points (majority voting).

KD tree algorithm: constructs a binary tree in which each node represents a decision on
the point coordinates (typically “above/below the median feature value?”), and the leaves
of the tree are all the points within a class under these decision rules.

Python (scikit-learn): from sklearn.neighbors import KNeighborsClassifier

198

All Notes 5.5. Machine Learning

5.5.6. Clustering Algorithms (Unsupervised)

K Means Clustering

For a dataset of n observations x = {x1, x2, … xn}, centroidal points ŷj (0 ≤ j < K) are chosen
such that ∑ i dist(xi , ŷclosest(i))2 is minimised, where closest(i) returns the centroidal point
index which is closest to xi. This is a nonlinear and non-smooth optimisation problem. The
clusters are then given by Sj = {xi: closest(i) = ŷj}.

Main limitation: cannot produce cluster boundaries whose centroids are necessarily far
from any of their points (e.g. concentric rings).

Python (scikit-learn): from sklearn.cluster import KMeans

DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) groups points of
similar densities, without reference to any centroids. Can produce more complex cluster
boundary topologies, including shapes with holes (annuli).

A modification is HDBSCAN (hierarchical DBSCAN) which has easier hyperparameter tuning.

Python (scikit-learn): from sklearn.cluster import DBSCAN

199

All Notes 5.5. Machine Learning

5.5.7. Generalised Linear Regression (Regression, Supervised)

Linear regression model: (x) = wTx + w0 = w1x1 + w2x2 + … + wpxp + w0. (linear combination of features)𝑦

The values of w and b are chosen to minimise a particular cost function: w*, w0* = argmin C(w, w0).

● Ordinary least squares (OLS): C(w) = (SSE: sum of squared errors)
𝑖 = 1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖()2

● LASSO regression: C(w) = (l 1 norm regularisation)
𝑖 = 1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖()2

+ λ
𝑗 = 1

𝑝

∑ |𝑤
𝑗
|

● Ridge regression: C(w) = (l 2 norm regularisation)
𝑖 = 1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖()2

+ λ
𝑗 = 1

𝑝

∑ 𝑤
𝑗
2

● Support vector regression (SVR): C(w, b) = (hinge loss)λ
𝑖 = 1

𝑛

∑ 𝑚𝑎𝑥 0, 𝑦
𝑖

− 𝑦
𝑖

|||
||| − ε{ } + 1

2
𝑗 = 1

𝑝

∑ 𝑤
𝑗
2

(n: number of observations, p: number of features; X ∈ Rn×p; and λ, ε are hyperparameters.)

Regularisation terms penalise large components in w, ensuring weight decay to prevent overfitting.

For polynomial regression up to order k, extend X with new features given by

for all 0 ≤ αi ≤ k such that , then apply linear regression as𝑥
1

α
1 𝑥

2
α

2 𝑥
3

α
3... 𝑥

𝑛
α

𝑛 2 ≤
𝑖=1

𝑛

∑ α
𝑖

≤ 𝑘

usual. E.g. for k = 2 and n = 3 (original features: X = {x, y, z}), extend with {xy, yz, xz, x2, y2, z2}.

Python (scikit-learn):

from sklearn.linear_model import LinearRegression # also: Ridge / Lasso / sklearn.svm.SVM

from sklearn.preprocessing import PolynomialFeatures

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_absolute_percentage_error

poly_features = PolynomialFeatures(degree=3, include_bias=False).fit_transform(X_data)

X_train, X_test, y_train, y_test = train_test_split(poly_features, y_data,

test_size=0.2)

poly_model = LinearRegression(fit_intercept=True).fit(X_train, y_train)

y_pred = poly_model.predict(X_test) # use the model to estimate y(X_test)

mpe = mean_absolute_percentage_error(y_test, y_pred) # quantify accuracy

200

All Notes 5.5. Machine Learning

5.5.8. Gaussian Process Regression (Uncertainty Regression, Supervised)

Gaussian process regression allows quantification of the uncertainty associated with a regression
model about a mean predicted value. GPR is a useful form of nonlinear regression in which the
computational complexity is independent of the form of the data: input x may be a scalar, a vector, a
string, a graph, etc. It is suited when only a small training dataset is available.

● For a given training dataset {(xi, yi)}i=1n such that all yi are centralised (zero mean), the aim of the
model is to produce predictive distributions on test points {(xi*, yi*)}i=1m.

● Assume noisy observations of a Gaussian process (Section 5.4.18) f , i.e. yi = f (xi) + εi, where εi ~ N(0, σε2).
● Notation: X = training data matrix, X* = testing data matrix, y = training labels, f = f(X), f* = f(X*).
● Kernel function (autocovariance): KXX where element (i, j) is a function K : {Rp × Rp} → R evaluated as

K(xi, xj). A common choice of kernel for numeric x is the radial basis function (RBF),
K(x, x’ | τ) = λ exp[-|x - x’| / 2σ] where τ = {λ: output correlation scale, σ: input correlation scale} are
hyperparameters. Kernel functions can be combined additively (and approximately, not formally,
multiplicatively) to produce better fits to observed data. KXX*, KX*X and KX*X* are defined similarly. Note
that KX*X = KXX*

T by the property in Section 5.4.17.
● Assume that y and f* together form a joint (n + m)-dimensional normal distribution:

where (block matrices).

The training dataset provides a marginalisation (conditioning) of one observation from this distribution,
from which the distribution of the testing set can be inferred.

● The posterior distribution is then f* | X*, X, y ~ N(μ, Σ) where

● Individual posterior output distributions for y have 1D normal distributions with mean given by an entry
in μf* and variance given by the corresponding diagonal entry in Σf*.

● Hyperparameter selection: choose θ = {σε2, τ} such that θ* = argmax log p(y | X, θ) (maximum
log-likelihood prior). By algebra,

This is a differentiable function, allowing gradient-based optimisation techniques.

201

All Notes 5.5. Machine Learning

Python: (scikit-learn)

Gaussian process regression with one feature using the RBF
kernel, showing the function f (x) (mean) and ±2σ range (95%
confidence CI).

import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF

X = np.linspace(start=0, stop=10, num=1_000).reshape(-1, 1)
y = np.squeeze(X * np.sin(X))

training_indices = np.random.choice(np.arange(y.size),
size=10, replace=False)

X_train, y_train = X[training_indices], y[training_indices]
NOISE_STD = 0.75 # measurement noise ε
y_train_noisy = y_train + np.random.normal(loc=0.0,

scale=noise_std, size=y_train.shape)
kernel = 1 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2)) # kernel function K
gaussian_process = GaussianProcessRegressor(kernel=kernel, alpha=NOISE_STD**2,

n_restarts_optimizer=9)
gaussian_process.fit(X_train, y_train) # fit to observed data
print(gaussian_process.kernel_) # K multiplied by optimal λ
mean_prediction, std_prediction = gaussian_process.predict(X, return_std=True)

plt.plot(X, y, label=r"$f(x) = x \sin(x)$", linestyle="dotted")
plt.errorbar(X_train, y_train_noisy, NOISE_STD, linestyle="None", color="tab:blue",

marker=".", markersize=10, label="Observations")
plt.plot(X, mean_prediction, label="Mean prediction")
plt.fill_between(X.ravel(), mean_prediction - 1.96 * std_prediction,

mean_prediction + 1.96 * std_prediction, color="tab:orange",
alpha=0.5, label=r"95% confidence interval")

plt.legend(); plt.xlabel("x"); plt.ylabel("$f(x)$")
plt.title("Gaussian process regression on a noisy dataset")

202

All Notes 5.5. Machine Learning

5.5.9. Logistic Regression (Classification, Supervised)

Schematic of a single neuron Sigmoid: nonlinear Output for a binary
activation function classification task (D = 2)

Activity (weighted sum): 𝑢 = 𝑤
1
𝑥

1
+ 𝑤

2
𝑥

2
+ ... + 𝑤

𝐷
𝑥

𝐷
+ 𝑏

Output: (sigmoid: logistic curve)𝑧 = σ(𝑢) = 1
1 + 𝑒𝑥𝑝(−𝑢)

The output of the network can be written as y = f (x; w). This can be interpreted as a (posterior)
probability between 0 and 1 i.e. y = p(z = 1 | x, w) for a known label z.
The goodness-of-fit is measured by the log-likelihood objective function evaluated over N data
points in a batch:

G(w) = z(i) log y(i) + (1 - z(i)) log (1 - y(i)) (binary cross-entropy)−
𝑖=1

𝑁

∑

For multi-class classification i.e. y = p(z = 1 | x, w), the softmax activation is applied before
computing the loss (the categorical cross-entropy). (Note that if errors are Normally distributed i.e.
in a regression / estimation problem, the ideal objective function is the mean-squared error (MSE):
G(w) = (z(i) - y(i))2)1

𝑁 Σ

The aim of training is to find w such that G(w) is minimised i.e. w* = argmin G(w). This is done by
gradient descent i.e. w← w - η∇G i.e. wi ← wi - η (η: learning rate)∂𝐺

∂𝑤
𝑖

Common improvements to the gradient descent method are:
● Stochastic gradient descent (SGD): compute∇G over a smaller sample (mini-batch).
● Adaptive step: allow η to vary e.g. AdaGrad, RMSProp, Adam)
● Regularisation: add α E(w) = ½ α wTw to objective function, penalises extreme weights,

preventing overfitting. α controls trade-off.

Single layer perceptrons generate linear decision regions, and can only be generalised by 1) manual
‘feature engineering’ or 2) adding more layers (MLPs, Section 5.5.10) to learn the feature transforms.
The hidden layer activations represent the new features in latent space.

Python (scikit-learn):

from sklearn.linear_model import LogisticRegression
ans = LogisticRegression(penalty='l2', C=1.0).fit(X_train) # C = 1/alpha
y_pred = ans.predict(X_test)

203

All Notes 5.5. Machine Learning

5.5.10. Multilayer Perceptron (Feedforward / Fully Connected Neural Networks)

An MLP is a neural network which uses multiple neurons to allow multiple output dimensions.
There are often ‘hidden layers’ of neurons which help in hierarchical pattern matching in the data.

● aj(L): activation of neuron j in layer L of the network.
● wj,i(L) (iL-1 → jL): weight from neuron i in layer L - 1 to neuron

j in layer L.
● bj(L) indicates the bias of neuron j in layer L.

These are typically compressed into vectors
a(L), b(L) and matricesW(L) for each layer.

● Weighted sum: z(L) =W(L) a(L-1) + b(L) (in batch normalisation, a is standard scaled)
● Feedforward activation: a(L) = f (z(L)) (f : nonlinear function e.g. sigmoid, ReLU, tanh)
● Output cost: C(ŷ, y) = ½ ∑ i (ŷi - yi)2

Nonlinear Functions: f (x) f ’(x) or Jacobian element
● Sigmoid: σ(x) = (1 + e-x)-1, σ’(x) = e-x (1 + e-x)-2

● ReLU (rectified linear unit): ReLU(x) = max{0, x}, ReLU’(x) = I{x > 0} (x ≠ 0)

● Softmax: (p(x))i = / ∑ j I{i = j} - pj)𝑒
𝑥

𝑖 𝑒
𝑥

𝑗 ∂𝑝
∂𝑥

𝑗
()

𝑖
= 𝑝

𝑖
(

Backpropagation: derivatives on computational graphs use the chain rule (...→ hL-2 → iL-1 → jL)
To compute the gradient of C with respect to a weight in the final layer wj,i(L):

To compute the gradient of C with respect to a weight in a further layer wi,h(L-1),
sum over all final layer contributions when computing ∂C / ∂ai(L-1):

Gradient Descent: update weights by (C averaged over whole training set.)

Python Typical Implementation (TensorFlow with the Keras API):

from tensorflow.keras import Input, layers, models
model = models.Sequential(); model.add(Input(num_inputs, ...))
model.add(layers.Dense(num_neurons, ...)) # add as many hidden layers as desired
model.compile(optimizer=..., loss=..., metrics=...)
model.fit(X, y, epochs=..., batch_size=...) # training
model.evaluate(...); # check loss; model.predict(...) # testing

204

https://www.codecogs.com/eqnedit.php?latex=%20%5Cunderbrace%7B%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20w_%7Bj%2Ci%7D%5E%7B(L)%7D%7D%7D_%7B%5Csubstack%7B%5Ctextup%7Bcomponent%7D%20%5C%5C%20%5Ctextup%7Bof%20%7D%5Cnabla%20C%7D%7D%20%3D%20%5Cunderbrace%7B%5Cfrac%7B%5Cpartial%20C%7D%7B%5Cpartial%20a_j%5E%7B(L)%7D%7D%7D_%7B(a_j%5E%7B(L)%7D%20-%20y_j)%7D%20%5Ctimes%20%5Cunderbrace%7B%5Cfrac%7B%5Cpartial%20a_j%5E%7B(L)%7D%7D%7B%5Cpartial%20z_j%5E%7B(L)%7D%7D%7D_%7Bf'(z_j%5E%7B(L)%7D)%7D%20%5Ctimes%20%5Cunderbrace%7B%5Cfrac%7B%5Cpartial%20z_j%5E%7B(L)%7D%7D%7B%5Cpartial%20w_%7Bj%2Ci%7D%5E%7B(L)%7D%7D%7D_%7Ba_i%5E%7B(L-1)%7D%7D%20#0

All Notes 5.5. Machine Learning

5.5.11. Techniques for Training Deep Neural Networks

Optimisations of the gradient descent algorithm:

● Stochastic gradient descent (SGD): compute∇C per training example, rather than averaging
over the whole training set (i.e. use batch size = 1). Decrease η over time to allow convergence.

● Adam (adaptive moment estimation): combines AdaGrad and RMSProp by keeping track of an
exponentially decaying average (EMA) of past gradients and their squares.

Problems faced by deep neural networks and their solutions:

● Unstable gradient problem (vanishing gradient / exploding gradient): layers further from the
output are harder to train in backpropagation. Resolved by using non-saturating activation
functions (gradients do not fall to zero as x→ ±∞, e.g. leaky ReLU), using batch normalisation (a(L-1)

is standard scaled over a batch of values before evaluating the sum), and layer normalisation (or
batch) can also be used in which a(L-1) is standard scaled over the neurons in the layer.

● Overfitting: a model may perform well on training data but bad in unseen test data. Resolved by
using a regularisation term in the loss function to prevent large weights from forming; using a
recurrent dilution / dropout to randomly temporarily shrink / exclude neurons in training to force the
network to generalise to wider patterns; and using pruning to drop unimportant weights, all of
which reduce model complexity.

● Internal covariate shift: the erratic change in the distribution of neuron activations due to
fluctuating data inputs and hence sharp changes to the weights. Mitigated by batch normalisation
(a(L-1) is standard scaled over a mini-batch of values before evaluating the sum).

Metric evaluation:

● K-fold cross-validation: Shuffle the data. Allocate a fixed proportion as the test data. Split the
remaining data into K equal groups (folds). For each fold i in the folds, allocate fold i as the
validation set and the remaining data as the training set, and train the data, and find performance
on the validation set. Python: from sklearn.model_selection import KFold

● Leave-one-out cross-validation (LOOCV): K-fold CV but with K = number of data points in
training set i.e. use every data point once as the validation ‘set’.

Hyperparameter optimisation: in Python, can use the keras-tuner library for TensorFlow models.

● Grid search: train models with all combinations of hyperparameters within a search space.
● Random search: train models with randomly chosen hyperparameters and locate good clusters.
● Gradient-based optimisation (hypernetworks): use gradient descent to find the optimal

hyperparameters in the same way as a regular neural network finds its optimal weights.
● Bayesian optimisation: a probabilistic approach to estimate the optimal hyperparameters.
● Evolutionary algorithm: use a fitness function (e.g. CV) to rank performance, then select the best for

crossover and mutation of (encoded) hyperparameters, run until desired performance is observed.

205

All Notes 5.5. Machine Learning

5.5.12. Convolutional Neural Networks (CNNs, ConvNets)

A CNN uses hidden layers consisting of convolution cells. CNNs are often used for computer
vision, with each weight kernel representing a filter to identify a particular feature e.g. edges /
blobs in early layers, more complex features in later layers. Each kernel is convolved against the
input (Section 5.4.3) then adds an array-wide bias to produce a set of N activation maps, which
are stacked into a 3 dimensional array and then subject to a pointwise nonlinear function.

The hyperparameters for a convolutional layer are the number of filters N (number of neurons),
the dimension of the filters K × K (kernel size), the stride S (step size) and the padding P (extend
with zeros).

A convolutional layer takes an input array of dimension W1 × H1 × D1 and produces an output of

W2 × H2 × D2, where , and An optional𝑊
2

=
𝑊

1
 − 𝐾 + 2𝑃

𝑆 + 1 𝐻
2

=
𝐻

1
 − 𝐾 + 2𝑃

𝑆 + 1 𝐷
2

= 𝑁.

pooling layer (using an operation such as max pooling or average pooling) reduces the output
size by subdividing the output into square arrays (per layer) and choosing the maximum or
mean value. The stride for a pooling layer is usually equal to the pool size, so that there is no
overlap between subarrays. With parameter sharing, it introduces a total of (K 2D1 + 1)N
parameters (weights + biases) per layer.

CNNs can be represented visually as transforming an array into different dimensions as blocks:

206

All Notes 5.5. Machine Learning

Another common notation is to label each layer symbolically:

(Cn[a×b@s]: convolutional layer #n using a×b kernel and stride s, Pn[a×b@s]: pooling layer #n
(max / average) using a×b subsampling and stride s, Fn[N]: fully connected layer #n with N
neurons, _/: ReLU activation, dashed border: applies dropout. The number of neurons is
inferred from the last dimension D = K. Zero padding is assumed unless otherwise specified.)

The last layer of a convolutional neural network for classification is typically a fully connected
(FC, dense) layer, with softmax activation, which takes in the flattened output array and
produces a vector representing the classification probabilities.

1D convolutions can be used for short-term time series forecasting, for which they are
faster to train than LSTMs, but are less capable of detecting longer term patterns. Hybrid
CNN-LSTMs can be used to combine the strengths of both, and are useful for e.g.
anomaly detection.

Data augmentation (image manipulation e.g. cropping, reflecting) can be used to
artificially enlarge an image dataset to generate more images. This can also be used in
the testing stage, where the testing set is augmented and predictions are based on the
modification with the maximum output.

Python (Keras, TensorFlow): convolutional layers are added separately to pooling layers, e.g.

for 32x32 pixel input RGB (3 dimensions) images

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

207

All Notes 5.5. Machine Learning

5.5.13. Recurrent Neural Networks

RNNs make predictions based on a sequence of inputs (typically in time) rather than a
single input. Each input sequence can be represented by a data matrix X (d variables ×
n observations; transpose of convention used in Section 5.5.6). A batch of inputs can be
represented as a rank 3 tensor (data matrices stacked along a third dimension:
d variables × n observations × b sequences):

Each recurrent cell takes both an input observation
x(j) as well as the output of the previous cell (as its
‘hidden state’) h(j-1) = y(j-1) to produce an output y(j),
giving the network an ability to recall previous
values: y(j) = σ(Wx x(j) +Wh y(j-1) + b) = σ(WX(j))
(Wx: weight matrix for input,Wh: weight matrix for
hidden input, b: bias vector, all identical over j)

Backpropagation Through Time (BPTT): unroll the network through time (as shown
above), then use regular NN backpropagation. The cost function is based on the T most
recent outputs (where T is a hyperparameter in truncated BPTT).

Layer Normalisation: standardise inputs to (or outputs from) σ(.) by learning an offset
(mean) and scale (std.dev) for each observation.

Long Short Term Memory (LSTM): memory cells can recall further back.

Layer outputs are: f, g, i, o = σ(Wxx +Whh + b)
for different weights in each FC.
Then c(n) = c(n-1) ⊗ f(n) + g(n) ⊗ i(n) and y(n) = o(n) ⊗ tanh c(n).

(FC: fully-connected (dense) layer, f: forget gate controller,
g, i: input gate controllers, o: output gate controllers,
c: cell state, h = y: hidden state (output),
⊗: Hadamard (simple elementwise) matrix product)

Gated Recurrent Unit (GRU): a simplified LSTM which maintains similar performance.

208

All Notes 5.5. Machine Learning

5.5.14. Transformer Networks

Embeddings

Each token i is assigned an embedding vector ei based on a lookup table. The token position is
encoded by adding an orthogonal set of sinusoids.

Single Head Self Attention Mechanism: updates embeddings

● Compute the queries Q =WQE, keys K =WkE and values V =WVE.
● Compute the attention pattern, A = softmax(QKT / dk).

(input may be ‘masked’ setting all entries below the leading diagonal to -∞, Q: matrix of
qi, K: matrix of ki, dk: dimension of query/key space, softmax is computed columnwise.)

● Compute the attention output ∆E = AV. The new embedding is then E’ = E + ∆E.

The value weightsWV is a low rank transformation matrix, implemented in non-square
factorised form asWV =WV

(↑)WV
(↓).

The attention pattern matrix size is O(N 2) where N is the context size, making this a
bottleneck in transformer architectures. Recent modifications have allowed for more
scalable models (e.g. sparse attention mechanisms, blockwise attention, ring attention…).

Cross Attention: the key and query matrices act on embeddings of two different token sets.

Multi Head Attention (MHA): run parallel single-head attentions, each with different parameters.
Each head produces a change ∆E(h) which contributes to the overall change in E. The
computation ∆E = AV is performed using onlyWV

(↓) in each head, then concatenating all
WV

(↑) (output matrix) to compute the summed ∆E.

Transformer Architecture:

● The encoder block is an unmasked MHA followed by an MLP layer.
● The decoder block is a masked MHA, then an unmasked MHA also

accepting inputs from the encoder block output, and an MLP layer.
● The transformer as a whole consists of a series of encoder-decoder

blocks in series.

If the encoder is fed inputs, the decoder is fed outputs, and the
decoder unmasked MHA takes the concatenation of the output MHA
and encoder output (shown right), the transformer will be trained to
predict the next token in the input (trained on shifted examples).

209

All Notes 5.6. Computer Vision and Computer Graphics

5.6.15. Modern Machine Learning Techniques

Large Datasets: used for Training in Machine Learning in Computer Vision

● MNIST: 70,000 28×28 grayscale images of 10 handwritten numerical digits (0-9).
● CIFAR-10: 60,000 32×32 RGB images of 10 object classes. (Also: CIFAR-100, 100 classes)
● ImageNet: 14 million images of 20,000 classes. (Also: ILSVRC 2012 subset for classification).
● COCO: 330,000 images of scenes segmented to 91 classes.
● Labelled faces in the wild (LFW): 13,000 images of labelled faces, for face recognition.

Successful Architectures in Computer Vision

● VGG-16: CNN, small kernels, frequent max pooling to reduce the number of parameters.
● AlexNet: 8-layer CNN, trained on ILSVRC 2012 on GPU.
● ResNet: deep CNN, residual blocks (identity layer/skip connections), trained on ILSVRC 2012.
● Fully convolutional network (FCN): replaces FC layers with 1×1 convolutional layers.

Used for semantic segmentation (using interpolation, each pixel gets a prediction).
● YOLO: uses ResNet for instance segmentation (object detection). Can be run fast enough

for real-time segmentation from live video on mid-range mobile GPUs.
● Siamese network: same weights applied to image pairs, trained with triplet/contrastive loss.
● U-net: downsampling (pooling) and upsampling (transposed convolution), extendable with

e.g. spatial attention, skip connections in between. Used in biomedical image segmentation.
● FaceNet: face recognition, trained on LFW, generates embeddings per face, triplet loss.
● Variational autoencoder: input to encoder, output of decoder (with transposed

convolution to scale up image). Uses ‘evidence lower bound’ (ELBO) loss function.
● ViT (vision transformer). Uses a transformer network with patches as tokens.

Some of these models are available pretrained in tensorflow.keras, others are open source
elsewhere, trained on a particular dataset.

Successful Models in Natural Language Processing (NLP, LLMs) and Generative AI:

● BERT: first modern transformer used for various NLP purposes. Relatively hard to fine-tune.
● GPT: decoder-only transformer for text prediction. GPT-3 is single mode (text→ text), while

GPT-4 is multimodal (text/image→ text). Has found commercial success (ChatGPT).
● Gemini: encoder-decoder transformer for (text→ text), considered to outperform GPT-4.
● DALL-E / Stable Diffusion / Midjourney: generative AI using prompts (text→ image).

These models are typically called from an API client side (MaaS: model as a service) rather than
being embedded locally, as they contain billions to trillions of parameters (large file sizes).

210

All Notes 5.6. Computer Vision and Computer Graphics

Other notable leaps in AI technology have occurred in protein folding prediction (AlphaFold 3)
and computational fluid dynamics. Generative models for (text→ audio) and (text→ video,
e.g. Sora) have also emerged, with some debate as to their safety and practical usefulness,
especially regarding the risks of distributing misleading or false content (e.g. deepfakes,
misinformation, LLM hallucinations).

Adversarial Attacks: exploiting backpropagation (fast gradient sign method) to find the
smallest possible change to an input image that would result in misclassification due to
crossing decision boundaries in latent space. This is a serious concern for high dimensional
networks (‘the curse of dimensionality’).

Transfer Learning: using a pretrained high-performing model as part of the architecture for
another neural network with a different task, by freezing its weights and only training the
additional layers. The base model acts as a feature extractor from which the additional layers
complete the task. Fine tuning is achieved by unfreezing the base model weights.

Few-Shot Learning: learning with only a very small training dataset (few / one / zero per class).

Self-Supervised Learning (SSL): a method of training that can be applied to transformers
(e.g. ViT). Models learn useful representations from unlabeled data by predicting parts of the
data from other parts (e.g. predicting image patches or masked tokens in NLP).

Reinforcement Learning from Human Feedback (RLHF): the model learns a reward policy
based on ranking feedback from human annotators, as a way to improve AI safety or content
moderation.

211

All Notes 5.5. Machine Learning

5.5.16. Reinforcement Learning (RL, Unsupervised Learning)

An agent makes decisions (actions) A based on the state of the environment S, using a
decision rule (policy) π : S ↦ A (the function pπ(an | sn)). Each action results in a transition to
a new state with probability p(sn+1 | sn, an), and a reward signal rn(sn, an).

● Discounted return: where 0 < γ < 1 is the discount rate.𝐺
𝑛

=
𝑟=𝑛

∞

∑ γ𝑟−𝑛𝑅
𝑟+1

● State-value function: 𝑉
π
(𝑠

𝑛
) = 𝐸[𝐺

𝑛
 | 𝑆

𝑛
= 𝑠

𝑛
]

● Action-value function: 𝑄
π
(𝑠

𝑛
, 𝑎

𝑛
) = 𝐸[𝐺

𝑛
 | 𝑆

𝑛
= 𝑠

𝑛
, 𝐴

𝑛
= 𝑎

𝑛
]

● TD(0) update rule at time n + 1: 𝑉(𝑠
𝑛
) ← 𝑉(𝑠

𝑛
) + α 𝑟

𝑛+1
+ γ 𝑉(𝑠

𝑛+1
) − 𝑉(𝑠

𝑛
)()

● ε-greedy policy: choose optimal (greedy) an = argmax Q(sn, an) with probability ε and
choose a random (exploratory) an ∈ A with probability 1 - ε.

● Q-learning (off-policy TD): find π∈ Π such that is maximised (optimal policy π*)𝑄
π
(𝑠

0
, 𝑎

0
)

𝑄(𝑠
𝑛
, 𝑎

𝑛
) ← 𝑄(𝑠

𝑛
, 𝑎

𝑛
) + α 𝑟

𝑛+1
+ γ 𝑚𝑎𝑥

𝑎
𝑛+1

{𝑄(𝑠
𝑛+1

, 𝑎
𝑛+1

)} − 𝑄(𝑠
𝑛
, 𝑎

𝑛
)()

Deep Reinforcement Learning / Deep Q Networks (DQN): parameterise V(sn; θ)
and/or Q(sn, an; θ) where θ are the weights and biases of a neural network used to
estimate the value functions given the state and action, instead of calculating explicitly,
which is infeasible for large search spaces.

● Experience replay: store the agent’s observations of (sn = s, an, rn, sn+1 = s’) in a
replay buffer until a given batch size. Train a copy of the network by sampling from
the buffer using the original action-values as the truth.

● Gradient of loss function with respect to parameter θi :

212

All Notes 5.5. Machine Learning

5.5.17. Evolutionary (Genetic) Algorithms for Optimisation

Evolutionary algorithms (EAs) mimic the biological concept of ‘natural selection’ in order
to optimise an objective function of the state x. They are useful when this objective is a
‘black box’ function of a high-dimensional x.

● Individual: a particular candidate solution x to the optimisation problem
● Population: a set of individuals
● Genes: encodes the state x of an individual

Topology Optimisation

Evolutionary algorithms have been applied to topology optimisation in engineering design
of load-efficient structures, using e.g. the solid isotropic material with penalisation (SIMP).

213

All Notes 5.5. Machine Learning

5.5.18. Python Examples of Various Machine Learning Tasks

For exploratory data analysis (EDA), Jupyter Notebooks (.ipynb files) can be used to
execute one cell block of code at a time, view results step by step, and annotate code.

Loading and Cleaning a Dataset: in this example, from an Excel workbook (.xlsx file)

import pandas as pd

X = pd.read_excel('path/to/dataset.xlsx', sheet_name='InputData')

y = pd.read_excel('path/to/dataset.xlsx', sheet_name='OutputData')

null_indices = y[y.isnull().any(axis=1)].index # get rows with null values

X.drop(null_indices, inplace=True) # X: pd.DataFrame

y.drop(null_indices, inplace=True) # y: pd.DataFrame

Exploratory Data Analysis: display a report showing various useful metrics.

from ydata_profiling import ProfileReport

ProfileReport(df)

Standard Scaling and Exploratory Principal Component Analysis: show a scree plot.

from matplotlib import pyplot as plt

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

X_std = StandardScaler().fit_transform(X)

pca = PCA(n_components=None)

df_pca = pd.DataFrame(pca.fit_transform(X_std))

explained_variance = pca.explained_variance_ratio_

plt.plot(range(1, len(explained_variance) + 1), explained_variance,

label='Explained Variance')

plt.plot(range(1, len(explained_variance) + 1),

np.cumsum(explained_variance), label='Cumulative Explained Variance')

plt.xlabel('Number of Components \n (nth largest eigenvalue, descending)')

plt.ylabel('Explained Variance \n (proportion of total variance)')

plt.legend()

plt.title('Principal Component Analysis: Scree plot')

plt.show()

214

All Notes 5.5. Machine Learning

Pipelines for Regression Algorithms: train models for 1) linear regression and 2) support
vector regression including PCA and polynomial regression with regularisation (lasso).
K-fold cross-validation is used and grid search is used for hyperparameter optimisation.
The models are evaluated on various error metrics and then saved/loaded to/from the disk.

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.decomposition import PCA
from sklearn.linear_model import Lasso
from sklearn.pipeline import Pipeline
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.svm import SVR
from sklearn.multioutput import MultiOutputRegressor
import joblib

pipeline_lasso = Pipeline([('scaler', StandardScaler()),
('pca', PCA(n_components=5)), ('poly', PolynomialFeatures(degree=2)),
('lasso', Lasso())])

pipeline_svr = Pipeline([('scaler', StandardScaler()),
('svr', MultiOutputRegressor(SVR()))])

param_grid_lasso = {'lasso__alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]}
param_grid_svr = {'svr__estimator__C': [0.001, 0.01, 0.1],

'svr__estimator__epsilon': [0.001, 0.01, 0.1]}

def train_model(X: np.ndarray, y: np.ndarray, pipeline: Pipeline,
param_grid: dict[str: list], model_name: str = '',
test_size: float = 0.2, cv: int = 10,
scoring: str = 'neg_mean_squared_error') -> Pipeline:

mae = lambda y_test, y_pred: mean_absolute_error(y_test, y_pred)
rmse = lambda y_test, y_pred: mean_squared_error(y_test, y_pred, squared=False)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
search = GridSearchCV(estimator=pipeline, param_grid=param_grid, cv=cv,

scoring=scoring)
search.fit(X_train, y_train)
best_model = search.best_estimator_
y_pred = best_model.predict(X_test)
print(f'{model_name} - Best hyperparameters: {search.best_params_}')
print(f'MAE: {mae(y_test, y_pred)}, RMSE: {rmse(y_test, y_pred)}')
return best_model

lasso_model = train_model(X, y, pipeline_lasso, param_grid_lasso, model_name='Lasso')
svr_model = train_model(X, y, pipeline_svr, param_grid_svr, model_name='SVR')
joblib.dump(lasso_model, 'path/to/output/lasso_model.joblib')
lasso_model = joblib.load('path/to/output/lasso_model.joblib')

215

All Notes 5.5. Machine Learning

Pipelines for Neural Networks: train a CNN for multi-class image classification with one-hot encoding
with pooling, dropout and batch normalisation layers, a validation set, and hyperparameter optimisation.
Training neural networks can be computationally intensive, so it can help to use cloud computing (e.g.
Google Colab/Cloud Platform, AWS) with access to hardware accelerators (GPUs and TPUs).

from matplotlib import pyplot as plt
import numpy as np; import pandas as pd; import cv2; import os
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Input, MaxPooling2D, \

Reshape, Flatten, Dense, Dropout, Conv2D, BatchNormalization
from tensorflow.keras.callbacks import TensorBoard
from keras_tuner.tuners import BayesianOptimization
from keras_tuner.engine.hyperparameters import HyperParameters

tensorboard_callback = TensorBoard(log_dir='model_logs/fit', histogram_freq=1,
write_graph=True, update_freq='epoch')

df_X = pd.DataFrame(columns=['img', 'gender'], index=None)
folder_names = ['imgs/men', 'imgs/women']
for folder_name in folder_names:

for file in os.listdir(folder_name):
img_arr = cv2.imread(os.path.join(folder_name, file), cv2.IMREAD_GRAYSCALE)
img_arr = cv2.resize(img_arr, (96, 96))
row = pd.DataFrame({'img': [img_arr], 'gender': [folder_name.split('/')[-1]]})
df_X = pd.concat([df_X, row], ignore_index=True)

df_y = pd.get_dummies(df_X['gender'])
df_X.drop('gender', axis=1, inplace=True)
X, y = np.array(df_X['img'].tolist()), df_y.values.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/10)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=1/9)

def build_convnet_model(hp: HyperParameters) -> Sequential:
model_cnn = Sequential()
model_cnn.add(Input(shape=(96, 96)))
model_cnn.add(Reshape((96, 96, 1)))
model_cnn.add(Conv2D(hp.Int('filters_1', min_value=64, max_value=256, step=32),

kernel_size=hp.Int('size_1', min_value=2, max_value=4, step=1), activation='relu'))
model_cnn.add(BatchNormalization())
model_cnn.add(MaxPooling2D(pool_size=(2, 2)))
model_cnn.add(Dropout(0.25))
model_cnn.add(Conv2D(hp.Int('filters_2', min_value=8, max_value=32, step=8),

kernel_size=hp.Int('size_2', min_value=4, max_value=8, step=2), activation='relu'))
model_cnn.add(BatchNormalization())
model_cnn.add(MaxPooling2D(pool_size=(2, 2)))
model_cnn.add(Dropout(0.25))
model_cnn.add(Flatten())
model_cnn.add(Dense(hp.Int('nodes_fc', min_value=32, max_value=96, step=32), activation='relu'))
model_cnn.add(Dense(2, activation='softmax'))
model_cnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model_cnn

tuner = BayesianOptimization(build_convnet_model, objective='val_loss', max_trials=10,
directory='tuner_dir', project_name='model_tuner')

tuner.search(X_train, y_train, epochs=100, validation_data=(X_val, y_val))
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_hist = best_model.fit(X_train, y_train, epochs=200, batch_size=128,

validation_data=(X_val, y_val), callbacks=[tensorboard_callback])
plt.plot(best_hist.history['loss'], label='Training Loss')
plt.plot(best_hist.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.yscale('log'); plt.legend(loc='upper right'); plt.show()
best_loss = best_model.evaluate(X_test, y_test)
print(f'{best_hyperparameters.values}, loss: {best_loss}')
best_model.save('path/to/output/image_classifier.keras')
best_model = load_model('path/to/output/image_classifier.keras')

216

All Notes 5.5. Machine Learning

Pipelines for Neural Networks: train a hybrid CNN-LSTM for one-step-ahead multivariate time series
forecasting, with pooling/dropout layers, a validation set, and hyperparameter optimisation.

import numpy as np; from matplotlib import pyplot as plt

from sklearn.preprocessing import StandardScaler; from sklearn.model_selection import train_test_split

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, MaxPooling1D, TimeDistributed,

Reshape, Flatten, Dense, Dropout, LSTM, Conv1D

from tensorflow.keras.callbacks import TensorBoard

from keras_tuner.tuners import BayesianOptimization; from keras_tuner.engine.hyperparameters import HyperParameters

tensorboard_callback = TensorBoard(log_dir='model_logs/fit', histogram_freq=1,

write_graph=True, update_freq='epoch')

df = pd.read_excel('time_series_data.xlsx', sheet_name='Daily')

LOOKBACK, FEATURES = 30, 2 # predict the 31st value of a given subsequence with 2 features

scaler = StandardScaler() # df: pd.DataFrame with features in columns

df_scaled = scaler.fit_transform(df[['adj_close_returns', 'volume_change']].values.reshape(-1, FEATURES))

generate sliding window arrays (subsequences) from time series data

X = np.lib.stride_tricks.sliding_window_view(df_scaled, (LOOKBACK, FEATURES))

X = X.reshape((X.shape[0], X.shape[2], FEATURES)); y = X[1:, -1, :]; X = X[:-1, :, :]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/10) # train:val:test = 80:10:10

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=1/9)

def build_model(hp: HyperParameters) -> Sequential:

model = Sequential()

model.add(Input(shape=(LOOKBACK, FEATURES)))

model.add(Reshape((-1, LOOKBACK, FEATURES)))

model.add(TimeDistributed(Conv1D(filters=hp.Int('filters_1', min_value=64, max_value=256, step=32),

kernel_size=hp.Choice('kernel_1', values=[3, 5]), activation='relu')))

model.add(TimeDistributed(Conv1D(filters=hp.Int('filters_2', min_value=32, max_value=128, step=32),

kernel_size=hp.Choice('kernel_2', values=[3, 5]), activation='relu')))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(units=hp.Int('units_1', min_value=32, max_value=128, step=32), activation='relu',

return_sequences=True))

model.add(Dropout(rate=hp.Float('dropout_1', min_value=0.1, max_value=0.5, step=0.1)))

model.add(LSTM(units=hp.Int('units_2', min_value=16, max_value=64, step=16), activation='relu'))

model.add(Dropout(rate=hp.Float('dropout_2', min_value=0.1, max_value=0.5, step=0.1)))

model.add(Dense(units=FEATURES, activation='linear'))

model.compile(optimizer='adam', loss='mse')

return model

tuner = BayesianOptimization(build_model, objective='val_loss', max_trials=10,

directory='tuner_dir', project_name='model_tuner')

tuner.search(X_train, y_train, epochs=100, validation_data=(X_val, y_val))

best_model = tuner.get_best_models(num_models=1)[0]

best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]

best_hist = best_model.fit(X_train, y_train, epochs=200, batch_size=128, validation_data=(X_val, y_val),

callbacks=[tensorboard_callback])

plt.plot(best_history.history['loss'], label='Training Loss')

plt.plot(best_history.history['val_loss'], label='Validation Loss')

plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.yscale('log'); plt.legend(loc='upper right'); plt.show()

best_loss = best_model.evaluate(X_test, y_test)

print(f'{best_hyperparameters.values}, MSE: {best_loss}')

best_model.save('path/to/output/time_series_forecasting.keras')

best_model = load_model('path/to/output/time_series_forecasting.keras')

217

All Notes 5.6. Computer Vision and Computer Graphics

5.6. Computer Vision and Computer Graphics
5.6.1. Representation and Processing of Digital Images

An image can be represented as a array (w: width in pixels, h: height in pixels,𝑤 × ℎ × 𝑐
c: number of colour channels e.g. 3 for RGB, 1 for grayscale or monochrome). Each entry in the
array is a binary number representing the intensity of the indicated pixel colour. The number of bits
used per component channel is the ‘bit depth’.

Common standard image dimensions are 640×480 (VGA), 1280×720 (HD), 4096×2160 (4K).

Common colour spaces are RGB(A) (red, green, blue, (alpha)), HSV (hue, saturation, value), CMYK
(cyan, yellow, magenta, key/black), L*a*b* (lightness, green-red, blue-yellow), YUV / YCbCr.

Gamma correction: adjusts displayed intensities to account for the perceived nonlinearity of the
different colour channels over the range of displayable colours (the gamut).

Image size [MB] = (+ storage of metadata, no coding/compression)
𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ [𝑏]

8 × 𝑐 × ℎ × 𝑤 × 10−6

Conversion of the 3D World to a 2D Image: information is inevitably lost.

The intensity of a pixel I(x, y) is dependent on the position/orientation of the camera, the geometry of
the scene, the nature and distribution of light sources, the reflectance spectra of the surfaces (specular
or diffuse/Lambertian), and the properties of the lens and CCD. Occlusion may obscure features of
specific objects in a scene. In most practical situations, these factors do not affect the desired
outcome, so data processing is required to prepare images with features independent of this ‘noise’.

Image Processing in the Fourier Domain: useful for analysing filtering operations

Operations can be represented as convolution with a kernel, or multiplication in the Fourier domain.

1D Gaussian kernel: (unnormalised Gaussian with std.dev)𝑔
σ
(𝑥) = 1

σ 2π
 𝑒

− 𝑥2

2σ2

 ⇒ 𝐺
σ
(𝑘) = 𝑒

− 𝑘2σ2

2 1
σ

2D Gaussian kernel: , discretised: (-n, -n) ≤ (x, y) ≤ (n, n)𝑔
σ
(𝑥, 𝑦) = 1

2π σ2 𝑒
− 𝑥2 + 𝑦2

2σ2

 ⇒ 𝐺
σ
(𝑘

𝑥
, 𝑘

𝑦
) = 𝑒

−
(𝑘

𝑥
2 + 𝑘

𝑦
2) σ2

2

2D discrete convolution: (W: (2n + 1) × (2n + 1) kernel array)(𝑤 * 𝐼)(𝑥, 𝑦) =
𝑖=−𝑛

𝑛

∑
𝑗=−𝑛

𝑛

∑ 𝑤(𝑖, 𝑗) 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗)

O(n2) 2D convolution as repeated O(n) 1D convolution: (𝑤 * 𝐼)(𝑥, 𝑦) = 𝑤(𝑥) * (𝑤(𝑦) * 𝐼(𝑥, 𝑦))

Differentiation as a convolution: ∂𝑆
∂𝑥 = 𝑆(𝑥 + 1, 𝑦) − 𝑆(𝑥 − 𝑦)

2 = 𝑆(𝑥, 𝑦) * [1
2 , 0, −1

2]
Directional derivative: S・n = Dn S(x) = Sn(x) ≈ S(x + n) S(x).∇ −
Gradient of a convolution: ∇𝑛𝑠

σ
(𝑥, 𝑦) = ∇𝑛𝐺

σ
(𝑥, 𝑦) * 𝐼(𝑥, 𝑦)

Laplacian is approximately a Difference of Gaussians (DoG): 𝑔
𝑘σ

(𝑥, 𝑦) − 𝑔
σ
(𝑥, 𝑦) ≈ (𝑘 − 1)σ2 × ∇2𝑔

σ
(𝑥, 𝑦)

Smoothing (low pass filter): 𝑆(𝑥, 𝑦) = (𝑔
σ

* 𝐼)(𝑥, 𝑦) =
𝑖=−𝑛

𝑛

∑
𝑗=−𝑛

𝑛

∑ 𝑔
σ
(𝑖, 𝑗) 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗)

218

All Notes 5.6. Computer Vision and Computer Graphics

5.6.2. Feature Detection

Edge Detection: edges represent regions of sharp change in intensity (max gradient).

Canny edge detection algorithm: 1) smooth: sσ = gσ * I, 2) gradient:∇sσ, 3) non-maximal
suppression: place ‘edgels’ where |∇sσ| exceeds neighbours in directions ±∇sσ, 4) threshold by
|∇sσ|.

Marr-Hildreth detection algorithm: 1) Laplacian:∇2gσ * I by DoG approximation, 2) find zeroes.

The motion of an edge cannot be inferred by looking at edges along (the aperture problem).

Corner Detection: corners have discontinuity in two separate directions (cross correlation)

Smoothed directional derivative where 〈 S〉= sσ = gσ * I (λ1, λ2): eigenvalues of A
of I(x, y) in the direction of n and Sx = ∂S / ∂x, etc.

Harris-Stephens corner detection algorithm: 1) cross-correlation: A(x, y), 2) find λ1λ2 = det A
and λ1 + λ2 = tr A, 3) threshold by λ1λ2 κ(λ1 + λ2)2 for some small parameter κ.−

If the eigenvalues are both large and distinct, then a corner is likely present.

Blob Detection: round regions enclosed by edges, indicative of keypoints

|σ2 ∇2sσ(x, y)| acts as a normalised ‘blob detector’
for features at length scale σ (it is a band pass filter).
The circular blob diameter with maximum response
is .𝑑 = 2 2σ

SIFT Feature Detection: 1) create copies at sizes
ni+1 = ni / 2 by subsampling (i: octave number), 2)
apply sequential blurs in each octave, σj+1 = 21/s σj
(j: index within octave), 3) find sj+1 sj in each−
octave (represents∝ ∇2sj due to DoG approx), 4)
threshold to identify keypoints, 5) sample
Gaussian-weighted 16×16 patch at correct scale
around keypoint, 6) histogram of oriented
gradients (HoG) in 4x4 subcells, 7) concat to a
vector, 8) normalise, truncate outliers (>0.2→ 0.2),
renormalise. The output is a 128-vector per patch.

The SIFT descriptors for a given keypoint feature can be compared (for recognition tasks) by k nearest
neighbours on a k-D tree (Section 5.5.16) or passed to a neural network for classification.

219

Image texture can be characterised by a repeated feature patch (textons).

All Notes 5.6. Computer Vision and Computer Graphics

5.6.3. Planar Perspective Projection

A planar perspective projection of a 3D object in the world is the enlargement about an optical
centre point onto an image plane. Assumptions: pinhole camera, no nonlinear distortion.

Xc = (Xc, Yc, Zc), x = (x, y) at z = f Images are projected through Oc: = Xc
𝑓
𝑍

𝑐

Homogeneous Coordinates: point X = (X, Y, Z) represented as = [sX, sY, sZ, s]T. (WLOG s = 1).
If = [X1, X2, X3, X4]T then X = (X1 / X4, X2 / X4, X3 / X4).
If X4 = 0 then X is the point at infinity in direction [X1, X2, X3]T.

1. Rotation in Homogeneous Coordinates:

where = [X, Y, Z, 1]T and c = [Xc, Yc, Zc, 1]T.
(R: 3 × 3 rotation matrix, T: 3 × 1 translation vector;
in Cartesian, Xc = RX + T.)

2. Projection in Homogeneous Coordinates:
for perspective projection, 3D→ 2D.
(f: focal length for perspective projection)

3. CCD Imaging in Homogeneous Coordinates:
where = [u, v, 1]T and = [x, y, 1]T

((ku, kv): pixel length scales, (u0, v0): optical centre offset)

Overall, = PcPpPr . Intrinsic camera calibration matrix is K = PcPp. Matrix Pr = [R|T] is extrinsic.
Then, = K[R|T] = Pps where Pps is the camera projection matrix (3 × 4, 10 dof).

220

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bx%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bx%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0

A general ‘projective camera model’ refers to any 3 × 4 matrix Pps, which can have 11 dof
(constrain by either enforcing ||P|| = 1 or setting P34 = 1.)

All Notes 5.6. Computer Vision and Computer Graphics

Geometry in Homogeneous Coordinates

● Point in image: w = [u, v]T → = [u, v, 1]T, with reconstructed ray in camera coordinates
Xc = 0 + λ → r = λ[u, v, 1]T (from the optical centre through the point in image plane)

● Line in image: lT = 0→ l1u + l2v + l3 = 0.

● Intersection of two image lines l1T = 0 and l2T = 0 occurs at = l1 × l2.

● Vanishing point (VP) of a line: X = a + λ[a, b, c]T projects to = Pps[a, b, c, 0]T.
λ ∞
lim
→

● Horizon of a plane X = a + λ[a, b, c]T + μ[d, e, f]T projects to the line connecting the
vanishing points 1 = Pps[a, b, c, 0]T and 2 = Pps[d, e, f, 0]T, equivalently l = 1 × 2.

● Parallel world lines have the same vanishing point.
● Parallel world planes have the same horizon.

Camera Calibration: find 3 × 4 projective camera matrix w = PpsX (11 dof) from a known set {w, X}i

Points wi = [sui, svi, s]T and Xi = [Xi, Yi, Zi, 1]T are given. The equations to solve are

and𝑢
𝑖

=
𝑠𝑢

𝑖

𝑠 =
𝑝

11
𝑋

𝑖
 + 𝑝

12
𝑌

𝑖
 + 𝑝

13
𝑍

𝑖
 + 𝑝

14

𝑝
31

𝑋
𝑖
 + 𝑝

32
𝑌

𝑖
 + 𝑝

33
𝑍

𝑖
 + 𝑝

34
𝑣

𝑖
=

𝑠𝑣
𝑖

𝑠 =
𝑝

21
𝑋

𝑖
 + 𝑝

22
𝑌

𝑖
 + 𝑝

23
𝑍

𝑖
 + 𝑝

24

𝑝
31

𝑋
𝑖
 + 𝑝

32
𝑌

𝑖
 + 𝑝

33
𝑍

𝑖
 + 𝑝

34

← n points yields the linear system
of equations Ap = 0. Solve by
orthogonal least squares (p =
eigenvector of ATA corresponding to
smallest eigenvalue, found via SVD:
last column of V in A = UΣVT)

If using the constraint P34 = 1, can
write in the form Ap = b and solve
by (psuedo)inverse (i.e. ordinary
least squares) p = (ATA)-1ATb.

Refine p to optimise the reprojection errors: Pps = argmin{ (ui)2 + (vi)2} where [s , s , s]T = PpsXi.
𝑖=1

𝑁

∑ − 𝑢
𝑖

− 𝑣
𝑖

𝑢
𝑖

𝑣
𝑖

The ‘RQ’ decomposition of top-left 3 × 3 submatrix of Pps yields KR, and T = K-1 [P14, P24, P34]T.

221

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0

Image Mosaicing: any two images of a general scene with the same camera centre are related by a planar
projective transformation (homography) given by ’ = KRK-1 (K: camera calibration matrix, R: rotation
between views).

Given key points in an image (e.g. by SIFT), the RANSAC (random sample consensus) algorithm robustly
fits keypoints to compute the homography.
All Notes 5.6. Computer Vision and Computer Graphics

5.6.4. Affine Projection

Weak Perspective Projection: when the whole scene has a similar Zc, orthographic projection
is a good approximation of perspective projection.

The weak perspective projection is where Zav is the average scene Zc.

The overall image is then = PcPpplPr = Paff , where is the
affine camera projection matrix (8 dof).

Planar Weak Perspective Projection: if Zc is exactly constant across the scene, then the
projection matrix can be simplified further. The third column can be removed, giving 6 dof.

Cross-Ratio (Section 2.2.10): for four ordered collinear points {A, B, C, D}→ {a, b, c, d},

The cross ratio of {A, B, C, D} is conserved under any perspective projection: = .
|𝐴𝐷||𝐵𝐶|
|𝐵𝐷||𝐴𝐶|

|𝑎𝑑||𝑏𝑐|
|𝑏𝑑||𝑎𝑐|

For five coplanar points {A, B, C, D, E} → {a, b, c, d, e}, two conserved cross-ratios exist using
specially constructed points: if F = AB ∩ CD, G = BC ∩ AD, E1 = EF ∩ AG, E2 = AF ∩ EG, then
the cross-ratios of {A, E2, B, F} and {A, E1, D, G} are conserved under any perspective
projection. (Notation: AB ∩ CD is the intersection of lines AB and CD.)

Another way to form projective invariant quantities is by ‘canonical views’, by
constructing a canonical frame curve given two views of an object in perspective
projection. A calibration operation aims to map four key points onto the corners of a
unit square, giving an ‘invariant signature’.

222

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0

All Notes 5.6. Computer Vision and Computer Graphics

5.6.5. Stereoscopic Vision (Stereo Vision)

Epipolar Geometry: relation between projections onto different image planes

Viewing a point X from two angles in perspective projection allows for triangulation of the
point in 3D, by the intersection of the corresponding rays. Epipolar lines constrain the
positions of a projected point in each image.

X from two views→ x and x’ Epipolar plane Π contains As X moves, the epipoles are
Coords relate by Xc’ = RXc + T X and the optical centres. invariant and Π rotates about OO’.

Xc’ is p1, Xc is p2

For two correspondences (1 and 2) of one world point X (as a projected ray in camera coordinates
p = = [x, y, f]T) related by a homography (linear transformation R, translation T),

● Epipolar constraint (ray coordinates): p1TEp2 = 0
(E = T×R: essential matrix, T×: cross product matrix of T, Section 4.1.6)
The epipoles lie in the nullspace of E (Ee = 0 and ETe’ = 0; and of FT).

In the limit of parallel cameras, the epipoles approach infinity, allowing depth perception:
if T = [-d, 0, 0]T and R = I then Zc = df / (x - x’).

● Epipolar constraint (pixel coordinates): 1
TF 2 = 0

(F = (K1
-1)TEK2

-1: fundamental matrix, = Kp: imaged ray, K: camera intrinsics.
The equation of the epipolar line in the right image is where .

Other constraints to identify correspondences are uniqueness and ordering (for opaque surfaces).
The metric structure information (R, T) up to a scale can be computed from the SVD of E.

223

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bx%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bl%7D%7D'%5E%5Ctop%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D'%20%3D%200%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bl%7D%7D'%20%3D%20%5Cmathbf%7BF%7D%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0

All Notes 5.6. Computer Vision and Computer Graphics

Summary

Camera Calibration: robust method using RANSAC and nonlinear optimisation

1. Randomly sample 6 out of N image points and world points to form a set of { i, i} (1 ≤ i ≤ 6)
2. Using = P , write a system of 12 equations: Ap = 0 (A: 12 × 12, p: 12 × 1)
3. Calculate the SVD decomposition and take p = [last row of VT] where A = UΣVT

4. Calculate |Ap| for the full set of N points and count the ‘inliers’ (sufficiently close to zero)
5. Iterate from step 1 until the count of inliers is maximised. Use this P as a seed for Step 6.

6. Minimise the reprojection errors: P = argmin{ (ui)2 + (vi)2} where [s , s , s]T = PXi.
𝑖=1

𝑁

∑ − 𝑢
𝑖

− 𝑣
𝑖

𝑢
𝑖

𝑣
𝑖

7. The ‘RQ’ decomposition of top-left 3 × 3 submatrix of P yields KR.

8. Calculate T = K-1 [p14 p24 p34]T → P = K[R|T].

Stereoscopic Correspondences: recover 3D structure from two calibrated cameras

1. Given two images related by an unknown homography, identify keypoints.
2. Use SIFT to register invariant features xi ∈ R128 and x’j ∈ R128 in a k-D tree.
3. Find nearest neighbour correspondence estimates {xi, xi’} from the images.
4. Refine the correspondence estimates using the RANSAC algorithm:

a. Randomly sample 8 pairs of correspondences { i, i’}.
b. Using ’TF = 0, write a system of 8 equations: Af = 0 (A: 8 × 9, f: 9 × 1), solve

with SVD as before to find 3 × 3 fundamental matrix F with F33 = f9 = 1.
c. Find ’TF using this estimate for F on the whole dataset. Count the number of

correspondences for which this value is sufficiently close to zero.
d. Iterate, finding new F’s until the count of inliers is maximised. Take this as F.

5. Enforce rank 2 constraint in F by setting its smallest singular value to zero.
6. Compute E = K’TFK.
7. Calculate the SVD decomposition E = UΣVT. Then R = UYVT and T = [last column of U],

where Y = [[0, -1, 0]; [1, 0, 0]; [0, 0, 1]] = {rotation about Vz by 90o anticlockwise}
8. There are 4 possible solutions for using ±T and {R, RT}: resolve ambiguity by ensuring all

visible points lie in front of both cameras. Then P’ = K’ [R | T] and P = K [I | 0].
9. To compute , solve ’ = P’ and = P (4 equations in 3 unknowns: least squares).

224

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7BX%7D%7D%20#0

All Notes 5.6. Computer Vision, Image Processing and Computer Graphics

5.6.6. Hough Transform and Radon Transform

Hough Transform: detects lines in 2D images.

Straight lines in images can be parameterised by (r, θ), the polar coordinates of the closest point
on the line to the origin of the image coordinate system. The equation of the line is then

r = x cos θ + y sin θ (Hough transform in (r, θ) space: Hesse normal form).

A given (x, y) point corresponds to a sinusoid in (r, θ) space. Sinusoids are superposed for each
pixel to build the transformed image in Hough (r, θ) space. The intersections of these sinusoids
(represented as maxima in total amplitude) occur at values of (r, θ) where a line with these
parameters exists in the original image.

The intersections are thresholded and returned as detected lines in the image.

Radon Transform:

An image f (x, y) can be mapped to (r, θ) directly using the Radon transform:

𝑅𝑓(𝑟, θ) =
−∞

∞

∫
−∞

∞

∫ 𝑓(𝑥, 𝑦) δ(𝑟 − 𝑥 𝑐𝑜𝑠 θ − 𝑦 𝑠𝑖𝑛 θ) 𝑑𝑥 𝑑𝑦

This is mathematically equivalent to the Hough transform in the continuous infinite size limit.

The inverse Radon transform is useful in tomography (reconstructing solid 3D objects from a
stack of 2D image slices through), widely used in biomedical imaging (e.g. CT scans) to
reconstruct from X-ray transmission intensity data. It is computed using the filtered
backprojection formula.

225

All Notes 5.7. Accounting, Finance and Business

5.7. Accounting, Finance and Business
5.7.1. Basics of Accounting for Businesses

Types of Entities

● Non-Business Organisation: exists to meet a societal need where making profit is not the goal.
● Business Organisation: exists to sell goods and/or services where making profit is a goal.

○ Sole Trader / Proprietorship: owned by one person, the same legal entity.
○ Limited Company (LTD): owned by one person, a different legal entity.
○ Partnership: owned by two or more associated people.
○ Corporation: owned by one or more shareholders.

■ Publicly Accountable Enterprise: sells shares on the stock exchange (after IPO).
■ Private Enterprise: shares owned by a group of associated people.

● Limited Liability (LLC): shareholders are not personally responsible for debts.

Types of Accounting:

● Financial Accounting: reports the breakdown of financial decisions of a company, aimed at
informing external stakeholders. Standardised according to GAAP / IFRS, enforced depending
on locality (US: FASB, elsewhere: IASB).

● Managerial Accounting: reports the internal performance of the company, aimed at informing
managers about decisions on projects and employees.

● Tax Accounting: reports the overall profits made by a company to facilitate collection of tax
revenue by the government (US: IRS, UK: HMRC)

Incentives: actors may be incentivised to bias a report e.g. managers aim to minimise reported profits
for a tax return (to pay less tax), but maximise profits when presenting to investors. This also applies for
external bodies e.g. consultants, auditors and credit rating agencies which are paid by the company for
evaluation, though these entities are typically more reputable as third parties.

Key Actors in Accounting

● Financial Accountants: hired by the firm to prepare their financial reports. Supervised by the Chief
Financial Officer (CFO).

● Auditors: external agents hired by the firm to assess and verify the financial reporting quality of the firm.
Typically works for an accounting firm (the ‘Big 4’: Deloitte, KPMG, EY, PwC). Auditors use statistical
methods to determine the risk of a significant deviation from accounting standards.

● Forensic Accountants: investigates fraud and financial irregularities, and advises on financial disputes.
● Investors: sources of finance for developing companies, especially at the entrepreneurial stage.

Seed funding may be received from angel investors, venture capitalists and banks (investment
bankers) can provide sources of funding as well as advice on decision making, though VCs typically
require a position on the company board (equity stake) for their services.

● Standards Setters: the entities making and enforcing the rules on accounting.
226

All Notes 5.7. Accounting, Finance and Business

5.7.2. Financial Statements (Books)

Stakeholders may make major investment decisions based on financial reports:

● Income Statement: shows the breakdown of revenue and expenses, as summed flows over time.
● Balance Sheet: shows the total assets, liabilities and equity, at a point in time.
● Cash Flow Statement: shows the total sum of transactions of the company.
● Environmental, Social and Governance (ESG Data): currently being formalised, but is not yet

universally mandatory as audit quality varies. Used to inform policymakers.

The ‘aggregation exercise’ is performed in each accounting cycle: ongoing accruals are recorded in a
journal, noting the date, account debited and credited. To prepare the accounts, T-accounts are drawn
up, grouping transactions by account. The balance for each account is found by summing and the
necessary financial books are written.

Double Entry Bookkeeping: any one transaction affects two variables in the accounting equation,
Assets = Liabilities + Equity. Financial statements are structured using ‘T-accounts’ to reflect this:

Ledger General Ledger Temporary Ledger

Account Type Assets
Debits | Credits

Liabilities
Debits | Credits

Equity (Shares)
Debits | Credits

Revenue
Debits | Credits

Expense
Debits | Credits

Increase or
Decrease

Debits (Dr) increase the assets. For the temp ledger, credits (Cr) increase the equity (which decreases the
assets). The temporary ledger balance (revenue - expense) is realised as ‘retained earnings’ in Equity.

227

All Notes 5.7. Accounting, Finance and Business

5.7.3. Simple Metrics in Financial Accounting

Metrics of profitability:

● Gross Profit Ratio = Gross Profit / Sales Revenue
● Profit Margin Ratio = Net Income / Sales Revenue
● Return on Assets = Net Income / Total Assets

Metrics of liquidity:

● Working Capital = Current Assets - Current Liabilities
● Current Ratio = Current Assets / Current Liabilities.

Negative numbers on books are recorded in parentheses e.g. (100) is $ -100.

Quantitative easing: a monetary policy in which a central bank buys government bonds,
increasing the assets of commercial banks, stimulating economic activity. First used to mitigate
the 2008 financial crisis.

5.7.4. Revenue Recognition and Bad Debt

● Revenue is earned when a product or service has been delivered and accepted by the customer.

● When money is received before a service is delivered, record the revenue as ‘deferred revenue’ (a
liability) until the service is delivered, since the company owes a refund until this time.

● When a service is delivered before money is received, record the value as ‘accounts receivable’
(A/R, an asset) until the bill/invoice is fully paid. In B2B, many companies offer credit to customers
when they make sales.

● If the customer seems unable to pay off their debt, the reported A/R value is now inaccurate, and
an estimate of the loss is recorded in ‘allowances for bad debt’ (AFDA), a contra-asset valuation
account). If the firm gives up on recovering this bad debt, it is written off, balancing the AFDA and
crediting from the A/R account.

● To compute the bad debt expense, statistical methods based on an ageing schedule (arrears) are
used. The longer the account remains overdue, the higher the probability it will default. Established
firms have long histories of data to estimate probability of defaulting by lateness of the payment.
Increment to ending AFDA = A/R amount due × Probability of default (summed over arrears buckets).

228

All Notes 5.7. Accounting, Finance and Business

5.7.5. Statement of Cash Flows and Fraud in Accounting

The balance sheet and income statement are not sufficient to assess a company’s
financial health. Without cash, a company cannot operate and goes bankrupt (even if it
owns assets). To predict this, financial analysts look at the cash inflows and outflows over
a period, described in the cash flow statement.

The cash flow statement’s net change in cash in year t gives the increase in balance sheet
cash between years t - 1 and t.

Cash Flow Statement: divided into three sections

● Cash flow from operations: from income statement/balance sheet changes, also paying off
interest on debts (as of US-GAAP ASC 230).

● Cash flow from investing: from investments and long-term assets.
● Cash flow from financing: obtaining long-term debt (borrowing), paying off principal of debt,

issuing equity, paying dividends.

Operating cash flow is usually computed indirectly, subtracting non-cash operations
from ‘net income’ on the income statement.

Gains and Losses are increases and decreases in equity (net assets), except those that
result from revenues or investments by owners.

Fraud in Accounting: exploiting grey areas of accounting to misrepresent cash flow data.

● Channel stuffing: selling more products to distributors than they are capable of selling to the
end customers in order to inflate sales.

● Underestimating default probabilities for a bad debt expense account to inflate net A/R income.

229

All Notes 5.7. Accounting, Finance and Business

5.7.6. Financial Interest and the Time Value of Money

Interest: accrual of money per unit time

● Simple interest: (interest = A P = Prt)𝐴 = 𝑃(1 + 𝑟𝑡) −

● Compound interest: 𝐴 = 𝑃(1 + 𝑟
𝑛)𝑛𝑡

● Continuous compound interest: 𝐴 = 𝑃 𝑒𝑟𝑡

● Annual percentage rate (APR): (effective interest rate)𝐴𝑃𝑅 = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 [$] + 𝑓𝑒𝑒𝑠 [$]
𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 [$] × 365 [𝑑𝑎𝑦𝑠]

𝑙𝑜𝑎𝑛 𝑡𝑒𝑟𝑚 [𝑑𝑎𝑦𝑠]

● Return on investment (RoI) =% increase in P = (× 100%)𝐴 − 𝑃
𝑃 = 𝑝𝑟𝑜𝑓𝑖𝑡𝑠

𝑃

(A: accrued amount; future value FV, P: premium (present value PV), r: interest rate (as) per year,𝑟 [%]
100

t: time (years), n: number of compounding periods per year e.g. weekly→ n = 52, monthly→ n = 12.
When working with r as an inflation rate, A in the future has the same purchasing power as P now.)

Time Value of Money: a unit of money is generally ‘more valuable’ now than in the future.

Cash amounts are only comparable when referring to the same point in time.

● Future Value (FV) = Present Value (PV) (where r > 0 → FV > PV)× (1 + 𝑟)𝑛

● Present Value (PV) =
𝐹𝑢𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 (𝐹𝑉)

(1 + 𝑟)𝑛

If the net present value (NPV) of an investment is negative, it is likely not worthwhile, as the
discounting exceeds the interest.

Perpetuities and Annuities: cash flows vary between times due to interest and inflation

● Perpetuity: stream of constant cash flows. 𝑃𝑉 =
𝑛=1

∞

∑ 𝐶

(1 + 𝑟)𝑛 =
𝐶

1

𝑟

● Growing perpetuity: stream of rising cash flows. (C1 = C0(1 + rg))𝑃𝑉 =
𝑛=1

∞

∑
𝐶

1
(1 + 𝑟

𝑔
)𝑛−1

(1 + 𝑟)𝑛 =
𝐶

1

𝑟 − 𝑟
𝑔

● Annuity: stream of N cash flows. 𝑃𝑉 =
𝑛=1

𝑁

∑ 𝐶

(1 + 𝑟)𝑛 = 𝐶
𝑟 1 − 1

(1 + 𝑟)𝑁()
● Growing annuity: stream of N rising cash flows. 𝑃𝑉 =

𝑛=1

𝑁

∑
𝐶

1
(1 + 𝑟

𝑔
)𝑛−1

(1 + 𝑟)𝑛 =
𝐶

1

𝑟 − 𝑟
𝑔

1 −
1 + 𝑟

𝑔

1 + 𝑟()𝑁()
(r: discount rate / hurdle rate / (opportunity) cost of capital, rg: long-term growth rate)

230

All Notes 5.7. Accounting, Finance and Business

5.7.7. Valuation of Stocks and Shares

Types of shares:

● Growth shares: investors expect to benefit from capital gains (future growth of earnings)
● Income shares: investors seek cash dividends

Metrics of share valuation:

● Book equity per share (BVPS) = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑒𝑞𝑢𝑖𝑡𝑦 𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠ℎ𝑒𝑒𝑡
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔

● Earnings per share (EPS) = 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑡𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑠ℎ𝑎𝑟𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔

● Return on equity (RoE) = 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒
𝑠ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠' 𝑒𝑞𝑢𝑖𝑡𝑦 = 𝐸𝑃𝑆

𝐵𝑉𝑃𝑆 = 𝑛𝑒𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑡𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑠ℎ𝑎𝑟𝑒𝑠
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑒𝑞𝑢𝑖𝑡𝑦 𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑠ℎ𝑒𝑒𝑡

● Payout ratio = 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠
𝐸𝑃𝑆

● Plowback / Retention ratio, b = 1 - Payout ratio

● Price per earning (P/E ratio) = 𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒 (𝑠ℎ𝑎𝑟𝑒 𝑝𝑟𝑖𝑐𝑒)
𝐸𝑃𝑆

Valuation of Shares: common shares can be paid out as either dividends or capital gains.

(D: dividends, P: share price, discount rate: , growth rate: rg = b (plowback) × RoE.)𝑟 =
𝐷

1

𝑃
0

+ 𝑟
𝑔

DCF share price is the sum of discounted future dividends (PV): P0 = .
𝑃

1
 + 𝐷

1

1 + 𝑟 =
𝑛=1

∞

∑
𝐷

𝑛

(1 + 𝑟)𝑛

Gordon-Shapiro growth model: Dn = D0(1 + rg)n then P0 = = and so .
𝑛=1

∞

∑
𝐷

1
(1 + 𝑟

𝑔
)𝑛−1

(1 + 𝑟)𝑛

𝐷
1

𝑟 − 𝑟
𝑔

𝑃
𝑛

=
𝐷

𝑛+1

𝑟 − 𝑟
𝑔

For nonlinear growth then linear, use (where PN = DN(1 + rg) / (r - rg)).𝑃
0

=
𝑃

𝑁

(1 + 𝑟)𝑁 +
𝑛=1

𝑁

∑
𝐷

𝑛

1 + 𝑟

Valuation of Straight Bonds: investor (lender) buys the bond to receive fixed returns (like a loan)

● Maturity date: bond expiry date, issuer returns the face value amount to the lender
● Face value F / Par value: the amount promised to pay the investor on the maturity date
● Coupon C: periodic interest paid while the bond is held (before maturity):

Coupon, C [$] = Face Value, F [$] × Coupon rate, rC [%]

● Yield to maturity rYTM (YTM): annual expected return for the investor.
● Current yield: annual coupon divided by price

Fair value of bond is the sum of discounted debt cash flows: .𝑃
0

= 𝐹

(1 + 𝑟
𝑌𝑇𝑀

)𝑁
+

𝑛=1

𝑁

∑ 𝐶

(1 + 𝑟
𝑌𝑇𝑀

)𝑛

Investors are at risks e.g. default risk, liquidity risk, regulatory risk, interest rate risk.

231

All Notes 5.7. Accounting, Finance and Business

5.7.8. Cash Flow Analysis

The net present value (NPV) concept can be used to check feasibility of an investment (e.g. for a project):

Net Present Value (NPV) = (PV of returns - P0: initial investment / cash outlay)
𝑛=1

𝑁

∑
𝐶

𝑛

(1 + 𝑟)𝑛() − 𝑃
0

Considerations in conducting a cash flow analysis:

● Use incremental cash flows: differences between revenue with and without the project.
● Account for side effects on other cash flows e.g. erosion (decrease) or synergy (increase).
● Ignore sunk costs: costs in the past cannot influence future decisions.
● Consider potential revenues excluded by the project as opportunity costs.
● Allocated cost should be included entirely when budgeting (as opposed to in accounting).

Free cash flow to the firm (FCFF) method: typical tabular layout

● EBIT (earnings before interest and tax) = (sales revenue costs) depreciation [on income statement]− −
● NOPDAT (net operating profit after tax) = EBIT × (1 rtax)−
● CFO = NOPDAT + depreciation + amortisation
● Depreciation = Initial Outlay / Project Length (using ‘straight line’ depreciation method)

Year 0 Year 1 Year 2 … Year N
Cash flow from operations (CFO) 0 CFO CFO CFO

Capital investment (CapEx)
(initial outlay)

(-ve)
0 0 0

Investment in working capital (∆NWC)
(WC)
(-ve)

0 0
WC
(+ve)

Free cash flow [sum down columns] C0 C1 C2 CN
Discounted cash flow (DCF) C0 C1 / (1 + r) C2 / (1 + r)2 CN / (1 + r)N

Net Present Value (NPV) = sum of DCFs

If NPV > 0 then the project is expected to be profitable. If NPV < 0 then the project is unprofitable.

5.7.9. Break-even Analysis

Internal rate of return (IRR): the discount rate r such that a cash flow analysis returns NPV = 0.
If IRR > rrequired then the project is profitable. If IRR < rrequired then the project is unprofitable.

● If the function NPV(r) has multiple zeros, this method may be invalid (need to graph curve).
● When comparing two projects, higher IRR does not always imply higher NPV.

Profitability Index = 𝑁𝑃𝑉 [𝑎𝑡 𝑓𝑖𝑥𝑒𝑑 𝑟]
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

Sensitivity analysis: study how NPV varies with inputs e.g. or .∆𝑁𝑃𝑉
∆𝑥

𝑑(𝑁𝑃𝑉)
𝑑𝑟

232

All Notes 5.7. Accounting, Finance and Business

5.7.10. International Business

An international business conducts some aspect of their business across borders e.g. products
and services, capital (trading), people (employees) and information (digital companies).

Incentives for internationalisation of business:

● Market seeking: economic growth, infrastructure, less competition
● Efficiency seeking: regulatory arbitrage, lower labour costs, lower taxes / tax avoidance
● Innovation seeking: access to talent and specialist workforce
● Resource seeking: critical materials

Barriers to internationalisation of businesses:

● Trade tensions: politicians may legislate against trade with some countries
● Armed conflict: international business is deprioritised in times of war
● Disruptions: (e.g. Houthi attacks on ships in the Red Sea/Suez canal in 2024).
● Climate Change: shortages or failures of land-based raw materials

Strategy of internationalisation: experience or experimentation?

● Deliberate: top-down, global strategy with careful planning.
● Emergent: bottom-up, local strategy embracing learning the new cultural norms.

Modes of entry: resource commitment usually starts low and increases over time (Uppsala model).

● Non-equity modes: import/export, outsourcing, licensing, franchising.
● Joint venture / partial acquisition. Can help with gaining local knowledge.
● Equity modes: green field / full acquisition.

Increasing global supply chain resilience (reconfiguration):

● Shorter supply chains: onshoring / near-shoring
● Political alignment: friend-shoring
● Diversification: dual/multi-sourcing e.g. ‘China Plus One’ strategy for the West
● Bifurcations: separate supply chains for different markets

Examples of Internationalisation in Tech and Energy Industries

● Tesla expands into China in 2014: to take advantage of the EV market,
manufacturing in China is necessary to avoid high tariffs.

● Many tech companies (Arm, Nvidia, etc) set up in high-talent areas e.g. Silicon
Valley (California) or Cambridge.

● LG Chem builds a factory in the US in 2024 to take advantage of the IRA tax
credits for making EV battery cathodes.

233

All Notes 5.7. Accounting, Finance and Business

Factors affecting International Business for Energy and Tech Industry

● US-China Trade War (President Trump, 2019): nationalist protectionism increasing barriers
to trade between the USA and China.

● US Inflation Reduction Act (President Biden, 2022): promotes US decarbonisation by
subsidising domestic clean energy production with tax credits.

● Critical minerals: top producers (mining and refining) include China (Sb, Co, Ga, graphite,
In, Mg, REE oxides, Si, Te, Sn, W, V), Vietnam (Bi), Australia (Li), DR Congo (Ta), South Africa
(Pt), Brazil (Nb).

● Artificial intelligence: potential rise of LLMs and AGI in the near-to-medium future may
force a restructuring of the software workforce.

● Fragility in Semiconductor Industry: impacts all technology and associated supply chains.

○ US firms design chips using software relying on IP licences from Europe.
○ Manufacturing equipment developed in the US, Japan and Europe. ASML (Europe) is the

only producer of extreme UV lithography systems as of 2024: they sell to chip makers.
○ Silicon is mined and refined in the US, processed into wafers in Japan and South Korea.
○ Chips are manufactured and packaged in Taiwan and Malaysia. TSMC makes 92% of

global advanced semiconductor chips.
○ Processors are assembled into electronic products in China.

5.7.11. Institutional Theory in International Business

Institution: a taken-for-granted set of organising principles (‘rules of the game; social scripts’).

Institutional theory was developed to criticise the 19th century ‘economic man’ theory,
explaining how and why business and people behave irrationally. Modern (neo-institutionalism)
theory explores why some organisations of the same type always have a very similar structure
everywhere in the world, due to regulative, normative and cognitive forces driving uniformity.

Examples of institutions: democracy, marriage, banks, places of religious worship, schools…

Properties of institutions: persist for a long time, are collective, are mostly taken for granted,
guide and constrain social behaviour, simplify decision-making, provide order, build trust
and legitimacy, are hard to change (inertia).

234

All Notes 5.7. Accounting, Finance and Business

5.7.12. Analysis of Institutional Distance for Internationalisation

Institutions in International Business:

● Institutional arrangements are highly context dependent. They may be literal (geographic), formal
(legal, political, economic) or informal (cultural, religious, linguistic).

● Institutions are incredibly powerful structures: underestimating or misunderstanding ‘the rules of
the game’ while entering a given country may lead to failure. However, it is hard to fully
understand the institutional environment from the outside due to its taken-for-granted nature
(liability of outsidership).

● If we need to change the institutional environment in order to enter a country, we need to
understand it entirely, and will still be a very challenging task.

Analysing Potential for Internationalisation:

○ Why is the company successful currently in the home country?
○ What is their positioning (reputation, service type) in the market?
○ Identify regulations responsible for forming institutions.
○ Identify the cultural forces that drive these regulations.
○ What are the implications of these differences on the current business model? Is adaptation feasible?

Types of Institutional Distance: may be literal (geographic), formal (legal, political, economic)
or informal (cultural, religious, linguistic).

Approaches to Reduce Institutional Distance: adapt to the target, or influence the target?

● Cultural legitimisation (‘glocalisation’): localisation, polycentric pricing, omnichannel marketing,
workforce training, social responsibility. May require ethnographic studies for market research.

● Market to the diaspora of the target country, then attract locals (e.g. bubble tea in the West).
● Use cultural interests to promote associated products (e.g. K-pop/Korean wave→ Asian food

supermarket)
● Joint ventures with a local company to gain trust or avoid negative perception of host country.
● Institutional entrepreneurship: lobbying to relax regulations, marketing, PR, strategic

collaboration with industry groups.

Example: commerce in the US (e.g. Walmart). Relevant institutional norms in the US include:

1. Economies of scale: a more capitalist free market allows monopolisation by rapid growth.
2. Driving culture: can have large stores, spaced apart.
3. Very high standards of customer service: requires more rigorous management of employees).
4. Low price guarantees: requires lower wages for employees.

These factors are unlikely to work in Europe (hence Walmart’s failure in Germany) due to institutional
distance: e.g. more government oversight, regulations on employee rights, salaries and
environmentalism, limited store opening hours, stronger unions for employees, mandatory holidays, less
emphasis on customer service and the appearance of friendliness.

235

All Notes 5.7. Accounting, Finance and Business

5.7.13. Cross-Cultural Communication

Models for Understanding Culture:

● Human mental programming hierarchy: 1) human nature (universal; inherited), 2) culture
(specific to group; learned), 3) personality (specific to person; inherited and learned).

● Cultural iceberg: only behaviours and practices are observable. The hidden factors
informing them are the perceptions, attitudes, beliefs, values, which in turn are influenced by
climate, geography, demographics, economics, media, education, ideology, religion.

● A nation is often not the best unit to study a culture: the cultural unit may be larger or
smaller, and may not be geographically united.

Dimensions determined by culture (Hofstede and more recent critical work):

1. Individualism vs Collectivism. Integration of people into primary groups. Most significant.
2. High vs Low power distance. Solutions to basic inequality.
3. Low vs High uncertainty avoidance. Response to stress in the presence of unknowns.
4. Motivation towards Achievement / “Masculinity vs Femininity”. Division of emotional and

gender roles in society, into competitive/tough/assertive vs cooperation/relationship building.
5. Long vs Short term orientation. Focus of people’s efforts in the present or the future.

Other important dimensions are Indulgence vs Restraint (Personal happiness, freedom of
expression, and the importance of leisure) and Perception of Time (Sequential vs Overlapping).

Differences along any of these dimensions can lead to unexpected clashes in many social
interactions while doing business.

236

All Notes 5.7. Accounting, Finance and Business

5.7.14. Institutional Voids and Developmental Distances

Developing economies may have a lack of formal institutions (voids): within each dimension
of institutional distance, there is also a developmental distance (informality). Often occurs in:

● Functioning political, economic and legal systems
● Hard infrastructure e.g. roads, rail, airports, seaports, telecomms, energy
● Soft infrastructure (business ecosystems) e.g. talent, logistics, information availability

Conglomerates (highly diversified, often family-founded corporations) tend to perform well in
countries with voids as they provide all necessary services at once, becoming MNCs.

Network Effects: some services become intrinsically better when more people use them.
Commonly exploited by digital companies to cement a monopoly in a void.

Examples: taxi apps (more drivers, more users), e-commerce (more buyers, more sellers),
social media (more users, more engagement), shopping malls (more shops, more buyers).

‘Super-apps’ are all-in-one digital service apps, proving highly successful in ‘recently’
developed countries, combining the benefits of conglomerate-style void-filling and the
network effects. Localisation helps to tailor services to the local market e.g. Grab in
South-East Asia. Super apps are not popular in the West due to anti-competition laws,
already matured institutions, data privacy concerns etc.

Technological leapfrogging: using voids as opportunities by building the service around
what is already there on the ground, not worrying about the necessary infrastructure in
the home country e.g. mobile internet in Africa, mobile fintech, renewable energy in Asia,
electric mobility.

237

All Notes 5.7. Accounting, Finance and Business

5.7.15. Business in the Anthropocene Epoch (Climate Change and Pollution)

The ‘anthropocene epoch’ refers to the observation that collective human activity is
impacting the planet itself.

Climate risk: the negative financial effects of climate change on business e.g. supply chain
disruption, higher costs, lower sales, transportation disruption, food shortages, regulatory risk.

Double materiality: the recognition that companies have a significant impact on the climate
and should be held responsible for the waste they produce (rather than the consumer).
Implementations include ESG data reporting (Section 5.7.2), extended producer responsibility
(EPR) schemes, right to repair laws and results-based government funding.

Scopes of climate reporting (e.g. greenhouse gas emissions):

● Operational emissions: company-owned vehicles and facilities.
● Operational resources: purchased heating, cooling, energy, steam…
● Upstream activity (suppliers): assets, employee commuting, purchased goods/services,

business travel, waste, fuel/energy, transport/distribution, capital goods
● Downstream activity (consumers): processing of sold product, use of product, leased

facilities, investments, franchisees activity, end of life treatment (LCA)

Wastage per person is increasing over time due to increased consumerism and illegal
business practices e.g. planned obsolescence, proprietary interfaces, fast fashion, as well as
growth in emerging economies. In developed economies, ‘degrowth’ has become a viable
strategy for decreasing waste without short-term economic loss. Companies producing in
underdeveloped countries are being scrutinised for the ethics of their supply chains e.g.
slavery, poor working conditions, sometimes resulting in supply-chain restructuring.

Recently, advanced technologies have been used to make deep supply chains more
transparent (e.g. blockchain, molecular tagging in cotton supply chains), but this approach may
not be locally suitable. Other methods include supplier code of conduct, monitoring the
workplaces (auditing) of direct suppliers, publishing of supplier details for information
transparency and industry alliances. However, the reputation of segments of the public remains
almost the only incentive to comply, limiting full-scale adoption.

Companies are being pressured to take stances on these issues, as well as some social issues
(‘cancel culture’: more controversial, less universally accepted). Companies must decide
whether they want to risk alienating certain demographics with their choices.

238

All Notes 5.7. Accounting, Finance and Business

5.7.16. Important Companies in the Semiconductor Industry

● Arm (UK): designs chips and licences the design as IP to manufacturers e.g.
Nvidia, Intel, TSMC, Apple, Samsung.

● Applied Materials (USA): supplies equipment, services and software for
manufacturing chips.

● Nvidia (USA): fabless tech company producing GPUs widely used to train
large-scale machine learning models.

● ASML (Netherlands): the only producer of ‘extreme UV lithography’ machines,
used to print ICs on silicon for high-performance chips. ASML was formed from
the unification of several industry experts, and they sells their machines to chip
makers, used to surpass the ‘7 nm’ process node from 2019. Its subsidiary, Cymer,
is based in the US.

● TSMC (Taiwan): the world’s largest contract semiconductor manufacturer (foundry),
selling to ‘fabless’ companies who rely on TSMC to produce their chips. TSMC
does not try to compete with its customers. TSMC’s largest customer is Apple.

● FoxConn (China and Taiwan): a competitor to TSMC, which has much friendlier
relations with the Chinese government, used to a smaller extent by Western
companies.

● Samsung (South Korea): ‘chaebol’ (Korean conglomerate) with in-house
manufacturing for their own electronics products, especially for memory chips.

● Intel (USA): manufactures its own high-end microprocessors and GPUs.

239

All Notes 5.7. Accounting, Finance and International Business

5.7.2. Income Tax (UK, FY2022):

Tax brackets vary over time and between different countries, as well as various special circumstances.
The table is only useful as an example and should not be relied on.

The annual tax brackets for the fiscal year 2022 (6th April 2022 – 5th April 2023) in the UK
using tax code 1257L (single source of fully taxable income) are:

Bracket Taxable range Progressive tax rate

Personal allowance £0 – £P 0%

Basic rate £P+1 – £ 50,270 20%

Higher rate £50,271 – £ 150,000 40%

Additional rate £150,001 and above 45%

The standard personal allowance P = 12,570, which holds when income is less than
£ 100,000. If the income I is more than £ 100,000, then P = max{12,570 - 0.5(I - 100,000), 0}.

Example calculation: if income before tax is £ 61,000, then the tax payable is

(12,570 - 0) * 0.00 + (50,270 - 12,571) * 0.20 + (61,000 - 50,271) * 0.40 = £11,831.40.

Effective tax rate = (tax paid) / (income before tax) (× 100%).

240

All Notes 5.7. Accounting, Finance and International Business

5.7.3. Supply and Demand

In a perfectly competitive market, per-unit price of a good
varies until quantity demanded equals quantity supplied
(economic equilibrium).

(P: price of product, Q: quantity of product sold, S: supply
curve, D: demand curve)

Isoelastic supply curve: (power law expression)𝑄 = 𝑘 𝑃𝑛

The graph on the left shows that an increase in demand
(D1 → D2) results in an increase in both price P and quantity Q.

Elasticity: sensitivity of demand to variations in environmental factors.
Liquidity: ease of buying/selling quickly and without affecting the price.

5.7.4. Inflation

Inflation is the reduction in value of money and the resulting decrease in consumer
purchasing power.

Hyperinflation is caused primarily by excessive unsustainable growth in the money supply.
Keynesian economics does not suggest moderate inflation directly results from growth, but
rather that it is caused by excessive demand.

Real (inflation adjusted) rate of return = (all expressed as decimals)1 +
1 + 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑟𝑎𝑡𝑒
1 + 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

5.7.5. Pareto Principle

The Pareto principle (aka the 80-20 rule) is an empirical observation applicable to some
scenarios. It states that 80% of consequences (data) come from 20% of the causes.

It is often used qualitatively, where the goal is to identify the dominant few actions (or
problems to solve) that would generate the most results (profits).

241

All Notes 5.7. Accounting, Finance and International Business

5.7.6. Inventory Models

In operations research, an inventory model advises on the time and quantity of a supply to
purchase in anticipation of a distribution of orders.

Let p: unit sale price, c: unit order cost, h: unit leftover holding cost, b: unit shortage
penalty, D: random demand, x: initial inventory level, y: base stock level, FD(d) = P(D ≤ d)).

Assuming that p + b > c, the optimal order quantity q* aims to maximise the expected profits:

The solution (optimal order up to level) is , where y* = max{q*, 0} + x𝑦* = 𝐹
𝐷

−1 𝑝 + 𝑏 − 𝑐
𝑝 + 𝑏 − ℎ()

↔ q* = max{y* - x, 0} and FD-1 is the inverse cumulative distribution function (ICDF) of D.

Probability of running out of stock = .𝑃(𝐷 > 𝑦*) = 1 −
𝑝 + 𝑏 − 𝑐
𝑝 + 𝑏 − ℎ

If D ~ N(μ, σ2) then and the optimal (maximum) profit is𝑦* = µ + σ × Φ−1 𝑝 + 𝑏 − 𝑐
𝑝 + 𝑏 − ℎ()

cx + (p - c)μ - σ((h + c)z* + (p + h + b) L(z*)) where z* = (y* - μ) / σ = andΦ−1 𝑝 + 𝑏 − 𝑐
𝑝 + 𝑏 − ℎ()

L(w) is the loss function defined as 𝐿(𝑤) = 1
2π 𝑤

∞

∫(𝑡 − 𝑤) 𝑒
− 1

2 𝑡2

𝑑𝑡 = ϕ(𝑤) − 𝑤(1 − Φ(𝑤)).

For an additional fixed (base) order cost K, the optimal reorder point s is defined as the value
such that when x < s we should order up to level (q = q*) and when x > s we do not order. The
value of s is the smallest s such that Profit(y*) - Profit(s) = K, which can be solved using the
profit expression above.

242

https://www.codecogs.com/eqnedit.php?latex=%20q%5E*%20%3D%20%5Cunderset%7Bq%7D%7B%5Ctextup%7Bargmax%7D%7D%20%5C%20%5Ctextup%7BE%7D%5Cleft%20%5B%20%5Cunderbrace%7B-cq%7D_%7B%5Csubstack%7B%5Ctextup%7Border%7D%20%5C%5C%20%5Ctextup%7Bcost%7D%7D%7D%20%2B%20%5Cunderbrace%7Bp%20%5Cmin%20%5Cleft%20%5C%7B%20x%2Bq%2C%20D%20%5Cright%20%5C%7D%7D_%7B%5Ctextup%7Bproducts%20sold%7D%7D%20-%20%5Cunderbrace%7Bh%20%5Cmax%20%5Cleft%20%5C%7B%20x%2Bq-D%2C%200%20%5Cright%20%5C%7D%7D_%7B%5Ctextup%7Bholding%20costs%7D%7D%20-%20%5Cunderbrace%7Bb%20%5Cmax%20%5Cleft%20%5C%7B%20D-x-q%2C%200%20%5Cright%20%5C%7D%7D_%7B%5Ctextup%7Bshortage%20penalties%7D%7D%20%5Cright%20%5D%20#0

All Notes 5.7. Accounting, Finance and International Business

5.7.7. Financial Instruments

Stocks (equities, shares): represent a fixed fraction of a single company’s market
capitalisation (value).

Bonds (fixed income securities): debt instruments with fixed interest rate returns and time to
maturity (repay time to avoid defaulting), issued by governments (gilts / treasury notes) or
corporations.

Commodities: raw materials such as fuels (e.g. crude oil, natural gas), agricultural produce
(e.g. corn, sugar, live cattle), base metals (e.g. lead, copper), precious metals (e.g. gold,
platinum), precious stones (e.g. diamond), lumber, rubber and water rights.

Currencies: the exchange rates of one currency relative to another, including cryptocurrencies,
fluctuating due to national economics.

Derivatives: high-leverage instruments based on an underlying asset, used to hedge risk. May
be contracts to purchase assets for a fixed price in the future (futures, options, forwards), or by
exchanging loans with different interest rates (swaps).

Exchange-Traded Funds (ETFs): a collection of assets, whose price varies throughout the day
as trading occurs.

243

All Notes 5.7. Accounting, Finance and International Business

5.7.7. Time Series Forecasting

A stock ticker represents time series data of the value of a stock over time. Various statistical and
machine learning methods (e.g. SARIMAX, ES, LSTM, transformer etc) can be used to estimate

(forecast) given .𝑋
𝑛+1

𝑋
1
... 𝑋

𝑛

The return of a stock (- 1) is typically more stationary (WSS) than the values Xn, and these
𝑋

𝑛

𝑋
𝑛−1

returns are closer to a Normal or t-distribution, making use of standard scaling (Section 5.5.7)
optimal in preprocessing.

Backtesting is used to test a trained model. For a large span of historic data b, split b into a set of
adjacent sliding windows X = [x(1), x(2), …] and process each x(i),

Processing involves checking data suitability (e.g. checking for stationarity in ARMA), computing
the forecast, and evaluating the performance using a metric.

Stock tickers which perform well in backtesting can be ranked, with the top selection being used
in real-time trading (diversification helps smooth out random variation).

White noise hypothesis: there is no actual pattern to stock data, and any model is as good as
drawing from a Normal distribution with the same mean and variance as the training data. This is
a good reference to see whether a model outperforms the ‘naive’ estimate.

244

~ LN, 2024

245

