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All Notes 1.1. Mathematical Syntax and Techniques

M1. ALGEBRA

1.1. Mathematical Syntax and Techniques

1.1.1. Symbols for Relationships and Operators

ratio of x to y, x+y
Ed floor of x, max1@ € Z :a < :r} round down to integer towards -0
[2] ceiling of x, min{a € Z:a > 37} round up to integer towards -+

{x} fractional part, x — LxJ

1.238307  recurring decimal, 1.238307307307307..., or in dot notation 1.238307
= is identical to; is congruent to

= is defined as

’ therefore

. because

P=Q P implies Q; if P then Q; Q is necessary for P, P is sufficient for Q
P<Q P is implied by Q; if Q then P; P is necessary for Q, Q is sufficient for P
PeQ P and Q are equivalent; P if and only if (iff) Q; P is necessary and sufficient for Q
f:A~B function mapping domain 4 to codomain B
y sample mean of y; Laplace transform of y(¢) into s domain

estimate of y; least-squares solution y; unit vector y
fr () probability density function (pdf) for random variable X, taking value x
FX(x) cumulative density function (cdf) for random variable X, taking value x
= is isomorphic to; is geometrically congruent to
b
]'[ f() product over integers; [[ f(r) = f(a) X f(a + 1) X .. X f(b)
r=a

(f © g)(x) composition; fg(x); f(g(x))
(f* 2 convolution of f(¢) and g(¢)
(F* 2)(®) correlation of f(¢) and g(¢)

[abc] scalar triple product; a * (b x ¢)

[a, b, c] row vector; [a; b; c]"; alternative way of denoting vectors

[a; b; c] column vector; [a, b, c]"; most common conventional way of denoting vectors
T, I time derivatives of x; Z’t‘ , < —

dt
Y(x) nth derivative of y with respect to x; Zn{
X
9 _ of

Jo(x, ) partial derivative; 5y o % ( 6x)
Af change in f; Laplacian of multivariable function f; V2 f

of small change in f


https://www.codecogs.com/eqnedit.php?latex=%20%20%5Cleft%20%5Clfloor%20x%20%5Cright%20%5Crfloor%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5C%7B%20a%20%5Cin%20%5Cmathbb%7BZ%7D%20%3A%20a%20%5Cleq%20x%20%5Cright%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5Clceil%20x%20%5Cright%20%5Crceil%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%20%5C%7B%20a%20%5Cin%20%5Cmathbb%7BZ%7D%20%3A%20a%20%5Cgeq%20x%20%5Cright%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%201.238%5Cdot%7B3%7D0%5Cdot%7B7%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cdot%7Bx%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cddot%7Bx%7D%20#0
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1.1. Mathematical Syntax and Techniques

1.1.2. Symbols in Set Theory and Logic

S is an element of n(4) number of elements in 4

¢ is not an element of %] the empty set

< is a subset of 1 the universal set

- is a proper subset of v for all

{x: ...} the set of all x such that ... 3 there exists

A’ complement of 4 A\ B the set 4 minus B

AUB union of 4 and B A N B intersection of 4 and B

P prime numbers; {2, 3,5, ...} Q rationals; {1, 2, 1/2, ...}

N natural numbers; n; {1, 2,3, ...} R reals; x

7 integers; {...,-2,-1,0,1,2, ...} C complex numbers; z=x + yi
7 nonnegative integers; {0, 1,2, ...} H quaternions; g=w +xi+yj +zk
R"™ n-dimensional vectors; x R™*™ m x n matrices; A

Algebraic numbers are roots of real-valued polynomials with rational (or integer) coefficients.
Transcendental numbers (e, n) are irrational numbers which are not algebraic.

Notethat P C N C Z Cc R ¢ C C H. Irrational numbers can be designated as R\ Q,

1.1.3. Greek Alphabet

Ad a’Ipha H oy (?ta N nu Te tau
Ao nra Vi AL
beta theta Xi upsilon

B = Y

p pnta ©69 onta ¢ & v Oy1lov

Ty ga’mma I, lt?ta 0o o,mlcron Oy, ¢ ph~|

YOO wTo OUIKpOV el

AS dfelta K x kappa Mz o pi X y cljl
OélTaL Kamo, m i

Ee epsﬂon A Iar,nbda Py rho ¥y psi
&ytho Aapdo po Wyt

7c z?ta M u mu S o c SIQma 0w om(::‘ga
Mra 108 clypo ouéyo

The lowercase letters {9, 1, o, ¢, v} are typically not used as symbols in mathematics.
The uppercase letters are typed upright. The lowercase letters are typed in italic.
When using Latin letters (4 a) as symbols, both uppercase and lowercase are typed italic.
In LaTeX, the Greek letters can be written using e.g. \gamma (lower) or \Gamma (upper).



https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BP%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BQ%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BN%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BZ%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BC%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BZ%7D%5E*%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BH%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%5En%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%5E%7Bm%20%5Ctimes%20n%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BP%7D%20%5Csubset%20%5Cmathbb%7BN%7D%20%5Csubset%20%5Cmathbb%7BZ%7D%20%5Csubset%20%5Cmathbb%7BR%7D%20%5Csubset%20%5Cmathbb%7BC%7D%20%5Csubset%20%5Cmathbb%7BH%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbb%7BR%7D%20%5Csetminus%20%20%5Cmathbb%7BQ%7D%20%20#0
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1.1.4. Functions

Domain: the set of all x for which f'(x) is defined

Codomain:  any set containing all the values of f'(x).

Range: the set containing only the values of f(x), so range & codomain.

Injective: one-to-one; there is exactly one f'(x) for every x; =) x=y.
Surjective: many-to-one; there is at least one x for every f(x); f=f@)ex=y
Bijective: two-way one-to-one; both injective and surjective; y=f@ e x=1"0).
Involution: a function whose inverse is identical to itself; f(fx)=x
Idempotent: a function whose nesting is an involution; FUf(x)=fx)

Endofunction: a function whose codomain is identical to its domain

1.1.5. Rounding of Numbers

A number can be rounded to a given number of decimal places (d.p.) or significant figures (s.f.).
Examples:

e 309.51547 rounded to 2 d.p. is 309.52 (5 rounds up)
e 0.00194105 rounded to 2 s.f. is 0.0019 (leading zeroes are not significant)

When working with physical quantities with finite precision, the least number of available
significant figures should be used to most fairly represent the quoted precision.

1.1.6. Standard Form of Numbers

Very large or very small numbers can be written in the form x=a x 10"
(1 <x<10: mantissa, integer n: exponent). This number is said to have order of magnitude 10".

Numbers in standard form can be added by converting both to the same exponent.

1.1.7. Factorisation of Numbers
A divisor ¢ is a factor of a dividend p if the quotient -;L is an integer (i.e. p is a multiple of g).

Prime factorisation: expressing a number uniquely as a product of powers of prime numbers. The
different prime factorisation of two numbers can be represented as a Venn diagram.

Greatest Common Factor (GCF) of a and b: product of intersection of prime factors of a and a.
Lowest Common Multiple (LCM) of a and b: product of union of prime factors of « and 5.

The GCF and LCM are related by lcm(a, b) X gcd(a, b) = |ab]|.
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1.1.8. Power-Law and Exponential Relationships

Variables x and y may be related by nonlinear relationships such as:

Relationship | Equation Inverse Linearised form (Y= MX + C) Linear plot
1 1 =_n Inzx+Ink
Power Law | y=kx" = (%) m \-13;/ “'?;"“%5_'_‘%” Inyvslinx
) Iny =(lna)_x +Ink
Exponential | y=ka" | x=log, (%) \-{-j/ &,ﬁ_l\( had Inyvs x

1.1.9. Dimensional Analysis and Scaling

Dimensions of base Sl physical quantities:: mass (M), length (L), time (T), temperature (®), moles
(N), electric current (I) and luminous intensity (J).

The number of parameters in a problem is reduced by expressing the relationship in
non-dimensional form. Quantities are {¢},. Dimensionless groups are {n},.

Buckingham’s © Theorem: For N variables containing M dimensions, the number of
dimensionless groups is at least N - M.

For a physical equation f(q,, ¢», ... gv) =0 or ¢, =f(q,, ... qx), Where f may be unknown, there exists an
equivalent dimensionless formulation F(xn,, m,, ... w,;) = 0 or n, = F(n,, ... ®,,), where each dimensionless
group can be expressed as a power law function of a subset of the physical quantities:

m=(q) (@) " (g )"

For problems with 1 dimensionless group, the simple indicial method can be used, in which
F(n)=0 — n=C, some dimensionless constant. Find the powers {a}, such that the expression
for = has no dimensions.

Geometric similarity: where all length-ratio dimensionless groups are identical.
Dynamic similarity: where all independent dimensionless groups are identical.

Example with two dimensionless groups: power required to stir a fluid
([P] = ML2T": power, [p] = ML™: density, [u] = ML'T™": viscosity, [d] = L: diameter, [©] = T™': angular speed)

P=f(p, u, d, »): 5 quantities in 3 dimensions — at least 2 dimensionless groups (1 dependent, at

least 1 independent).

2 2
. . . P wd . P wd -
Typical dimensionless groups: s =F 2 — graphing—— =< vs L specifies the
pw d H pw d H

relationship fully.
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1.1.10. Methods of Proof

Proof by Deduction (Direct Proof): use of algebra to show a result.

Example: for all positive integers n, prove that »* — n is always divisible by 6.
1. By factoring, n’—n= n(n2 - 1D =nn+ D(n - 1).
2. This is a product of three consecutive integer factors.
3. At least one of these factors must be a multiple of 3.
4. At least one of these factors must be a multiple of 2.
5. Since 2 and 3 are coprime, the product of the factors must be a multiple of 6.

Proof by Exhaustion: showing that a result is true for all individual cases.
Example: prove that the square of any positive integer cannot end in the digit 3.

1. The ending digit of a square number is determined only by the last digit of the number:
12=1,22=4,3?=9,4°=16,5° = 25, 6° = 36, 7° = 49, 8° = 64, 9° = 81, 10° = 10Q
2. Since none of the units digits’ squares end in 3, no squared integer ends in 3.

Proof by Contradiction: assume the contrary, find it implies something that contradicts the
original assumption, so the assumption must be false (the statement must be true).

Example: prove that ﬁ is irrational.

1. Assume that ﬁ is rational. Then it can be written as ﬁ = % where a and b are coprime integers.

By algebra, a=b\2 > a*=2b = d4%is an even number.

If «® is an even number, « must also be an even number (also proven by contradiction):
Therefore, we can let a = 2n for some integer n. Then a? = 4n°.

So4n? =2 = b?>=2n?> = b’iseven = biseven.

Since a and b are both even, they share a common factor of 2.

However, it was assumed that a and b are coprime. This is a contradiction.

© NOoO O AW

Therefore, the assumption must be false, so ﬁ is rational.

Proof by Induction: verify a base case n,, state the inductive hypothesis and prove that its
validity for case n implies validity for case n + 1, and conclude validity for all integers n > n,.

n

d 1
Example: prove that P (e“ sin \/5:6) = 2"¢” sin (\/gx + ’13—7T> , n>1, neN.
xn

1. Basecase:tryn=1.

LHS = % (" sin \Ex) = ¢ sin \Ex + \E e" cos \Ex

X . T _ X . l . l _ X . X

RHS=2e sm(\ﬁx +3) = 2e (sm\/gxcos >+ cos\/gxsm >) =e€ sm\ﬁx +\Ee cos\/gx

Since LHS = RHS, the base case is verified.
2. Assume that the statement is true for some integer n > 1. Then:

x| n ox . nm nf x . nm x nm n+l x . n+1)m
%(e smﬁx) = %[2 e sm(\/gx + T)] =2 (e sm(\@x + T) + \Ee cos(\ﬁx + T)) =2""e sm(ﬁx + %)
3. Since true for n = 1, and truth for integer n implies truth for n + 1, it is true for all integers n > 1.
7
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1.2. Algebraic Identities
1.2.1. Factorisation and Common Algebraic Manipulations

Factorisation

Difference of two squares: a - b’ = (a + b)(a — b)

Sum of two squares (complex): o+ b= (a + ib)(a — ib)

Differences of two cubes: o’ — b= (a - b)a + ab + b))

Sum of two cubes: @ +b = (a + b)(a2 —ab + bz)

Sum of two fourth-powers: a +b = (a2 + \/Eab + bz)(a2 — \/Eab + bz)
Difference of two fourth-powers: a — b= (a2 + bz)(a + b)(a — b)
Sophie-Germain identity: a + 4b* = (& + 2b° + 2ab)(d’ + 2b° — 2ab)

Expansion: derived by ‘FOIL (first-outer-inner-last)’
(@+ b)Y’ =a"+ 2ab +b° = (a — b)’ + 4ab
@+ b)’=a"+3d°h + 3ab” + b’
(a+b +c)2=a2+b2+c2+ 2(ab + bc + ca)
3 3 3 3 2 2 2 2 2 2
(a+b+c)y=a+b +c +3(aab+ac+ba+bc+ca+ch)+ 6abc

2

2
Completing the Square: X'+ bx +c = (x + %) + (c - bT)

Girard-Newton Identities: if S={«, {3, y, ...} are a set of K variables then

o Ya=(Xay—Yap

o Ya=(Xa)—3(Xa)(Xap)+ X apy

¢ Ya=(XaYa' —(Laf) L+ (Tap) Lo — ...

where sums over non-repeated combinations are Y a=a+pf+y+...,Y af=af + fy+yo+ ...
These are commonly applied to roots of polynomials (see Vieta’s formulas, Section 1.2.5).

If K> nthen the Y o« term will include terms such as Z%, > LZ etc. These can be
o

solved for by substituting previously found expressions recursively. The sum terminates
with the (-1)X" ([T &) (X &%) term.

Componendo-Dividendo identities (corollaries of cross-multiplication):

a c a+b c+d a—b>b c—d a+b c+d
Ifb = d,then ad = bc, Y = g =g and b - c—d"
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1.2.2. Binomial Theorem and Trinomial Theorem

For any positive integer n, the binomial and trinomial theorems are, respectively,

n
n n r o n—r n n!

(a +b) = EO Cab where '€ =— sy

n . m n-m  m-k k n., m n!
(a+ b+ c) =m2=0 IEO c Ca b c where C ~C = =) (m =Tl Kkl
1.2.3. Properties of Quadratic Polynomials
If f(x) = ax’ + bx + ¢ then: (the quadratic formula)

2
b —b+\b —4

The turning point of f(x)isat x = — g The roots of f(x) areat x = — a <

For real coefficients, the discriminant, A = b2 — 4ac, determines the nature of the roots:

e [f A>0 — two distinct real roots.
e If A<0 — two complex roots (complex conjugates).
e If A=0 — asingle repeated real root.
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1.2.4. Properties of Cubic Polynomials

For a cubic f(x) = ax’ + bx’ + cx + d, it can be transformed to a ‘depressed cubic’ using

2 3 2

3ac—b 2b" —9abc+ 27a d

Tand q= - .
a

the substitution x = t — % into f(t) = £+ pt + g wherep = -
a

The inflection point of f(x) isat x = ;—2 i.e.t=0.

v=f(x) The graph of f(x) will have real
turning points if 4% - 3ac > 0.

0 In this case, there is rotational
5 symmetry order 2 about the
I (@) inflection point, with the lengths

shown being

2
2 ; X o see o

If(P)

e =

+“—— et P> 3a

3

For real coefficients, the discriminant is, A = >

4(b2 - ?>ac)3 - (Zb3 — 9abc + 27a2d)2 _ P
27a 2

qZ
7 + -
e If A>0 — three distinct real roots;
e If A<0 — one real root and two complex conjugate roots;

e |f A=0 — arepeated root of multiplicity 2 or 3.

— = 3_ S_ 4 _
The transformed roots of f(t) = 0 are t, —\/ > T A +\/ >~ A

_ 3_1 23_1_ _23_1 3_1_
tz—oow/ 2+A+oo«/ > Aandt3—ww/ 2+A+oo«/ > A

where X =t — ;;a and o is a primitive cube root of unity:

C—14iV3 ,  —1—iV3

3
=1
w 9 w 5 w

10
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1.2.5. Relations Between Roots of Polynomials

For a polynomial P(x) of degree n given by
n
r n n—1 n—2
P(x) = r§0 ax =ax ta x +a x + .t+tax+a

the n roots of the equation P(x) = 0, denoted a, Q. O, are related by:

e Fundamental theorem of algebra: all a are complex, and number of roots = degree.
e Factor theorem: P(x) = a(x—a)x-—o).(x—a)

e Rational root theorem: a = -;L € Q= |p]|isafactorofa,and|q|is afactor of g,

o Vieta formulas:

a

n— an— n— n
Ta= -— anl Taf = anz Tafy = - a: Na=(—1) S

a
0

(sum of roots) (sum of product pairs) (sum of product triplets) (product of roots)
e Conjugacy:

o (1)ifall a, are real and a, =u +iv is a root then a, = a,* = u - iv is also a root.

o (2)if all @, are rational and a, = u = +/v is an irrational root then a, = u ¥ /v is also a root.

For a monic polynomial (monocubic, monoquartic, etc), a, = 1, so these formulas simplify.

11
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1.2.6. Division of Polynomials

A(x) R(x)

Polynomials can be divided into the form B = Q(x) + B0

(4: dividend, B: divisor (same or higher degree than 4), Q: quotient, R: remainder,
deg: degree of)

e degAd>degB

o deg(Q=degAd-degB

e degR<degB

Factorisation: R = 0 iff B divides 4 i.e. B is a factor of 4.

3 2
Techniques: examples to evaluate % —X +x+3+ xf3 :
Polynomial Long Division Synthetic Division (requires B =x - a)
T
x +xr3 } -2 o -k
’)C‘S)?Lz—?-x"'-*Oat-lI- 3)___3,_3’-9—
- —)cz - 311 | | 3 5
x" + Ox -4
—_ 3(1' - '51_
R
3 - 4
— 3% =9
\

S

If it is known that R = 0 beforehand, then an alternative method is to equate coefficients with a
general polynomial e.g. Q(x) = ax’ + bx + ¢, solving for each a, b and c.

1.2.7. Divisibility Rules for Integers

A positive integer n is divisible by...

2, if the last digit is even e 6, if the number is divisible by both 2 and 3
3, if the sum of the digits is divisible by 3 e 7, if subtracting twice the last digit from the
4, if the last two digits form a number rest of the number gives a multiple of 7
divisible by 4 e 8, if the last three digits form a number

5, if the last digitis 5 or 0 divisible by 8

e 9, if the sum of the digits is divisible by 9

These results can be derived from modular arithmetic.

12
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1.2.8. The Triangle Inequality

For any real or complex numbers a, b: la +b| <|a| + |b|
This is also valid for any vectors a and b: l]a+b|<|a] + |b|
The Inverse Triangle Inequality: la - b| > ||a| - |b]]

|a - b =|[a] - b]

1.2.9. The Cauchy-Schwarz Inequality
2 n n
For any n-dimensional vectors u and v: ( > uivi) < ( > uiz)( > viz)
i i=1

i=1 i=1

For n = 2, this can be stated as (ac + bd)’ < (@’ + b + d)

1.2.10. The Harmonic-Geometric-Arithmetic-Quadratic Mean Inequalities

For any real-valued set of n positive variables x with ith variable x;:

n nf I 1 " " 2
0<— < ]‘[x,§72x,§ %Zx,
y L i=1 " i=1 * i=1 "
i=1
HM < GM < AM < QM
For n =2, this can be stated as: given a, b > 0, we have
2 2 2,2
2ab a+b a +b 8ab 1 2 2 2
—_— — <
i+h = ab < 5 = > or (a+b)232absz(a+b) <a +b

Xy +xy +.+xy m
Weighted AM-GM inequality: el 4 Rl 2( % X nxn) e

x1+x2+...+xn

13
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1.2.11. Muirhead’s Inequality

For two N-length sequences {«;} and {b,}, the notation {a;} > {b,;} means that {a;}
‘majorises’ {b;}, which is defined by

n N N

Elaiz b vne[l...Nand Sa=3b © {ai}>{bi}.

i=1 i=1 i=1

. . o b b b
Muirhead’s inequality: if {a,} > {b} then % x “x .x > ¥ x x 2.x
symx symx

where the sum is over all permutations of any chosen set of variables.

Example: the sequence (5, 1) majorises (4, 2). Therefore x5y + xy5 > x4y2 + x2y4.

1.2.12. Schur’s Inequality
For all real a, b, c and all > 0,
ad(a—-b)a—c)+b b —a)b—c)+c(c—a)c—b)=0.

Caser=1: @ +b +c + 3abc = a’b +a’c +b’a +bc +c'a+cb
3 3 3 3
Caser=2: a +b'+c" + abc(a+b+c)2a3b+agc+ba+bc+ca+cb

Generalisation: for all real a, b, ¢, x, y, z, where a>b>c and (x >y >z or z>y > x), and some
convex or monotonic function /: R — R, and some constant k € Z*,

f@@-0a@-0"+fod-ab-0"+f@ec-ac-bn"=o

1.2.13. Jordan’s Inequality

Ao
IA

2 . . .
Forall 0 < x < —, we have —x <sinx < x i.e. sincx< 1
2 i

1.2.14. Fermat’s Last Theorem

If n > 3, then there are no positive integer solutions (a, b, ¢) to the equation a" + b" = ¢".

(The case of n = 2 has infinitely many solutions - the Pythagorean triples.)

14
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1.2.15. Diophantine Equations

The linear Diophantine equation ax + by = ¢ has integer solutions (x, y) iff (a, b, ¢) are all
integers and ¢ | ged(a, b). If (x, y) is a solution then the other solutions are given by
(x + kv, y — ku) where k is an arbitrary integer, and u = a / gcd(a, b) and v = b / gcd(a, b).

Proofs on the solutions to Diophantine equations typically include:
e Chinese Remainder Theorem (CRT): see Section 1.6.5.

e Infinite descent: assume a supposedly minimal solution exists, show this implies
the existence of a smaller solution, which is a contradiction (similar: Vieta jumping)

15
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1.3. Trigonometric Identities

1.3.1. Trigonometric Functions and Identities

sin(x + y) = sin x cos y + cOS x sin y sin(x - y) = sin x cos y - COS x sin y
cos(x +y)=C0S x COS y - Sinx siny COS(x - y) = COS x COS y + Sin x sin y
tanx + tany tanx —tany
+ )= -y)=
tan(x +) 1—-tanxtany tan(x - y) 1+ tanxtany
. . . . . . X 1—
sin 2x = 2 sin x cos x sin3x=3sinx-4sin’x sm7=+«/ﬂ
_ 2 _ 3 X 1+cosx
cos2x=2cos” x - 1 cos 3x=4 cos” x - 3 cos x 0s - =
=1-2sin’x
=cos® x - sin® x
2tanx 3tanx tan3 X X
_ T
tan 2x=——5— tan 3x = > tan —-= «/HCOS"
1—tan” x 1—3tan” x cos x
_sinx  1—cosx
1+ cosx sinx
1 1
sec x = CSCx =" cotx=
CcoS X sinx tan x
sin®x + cos? x = 1 sec?x=1+tan’x csc?x=1+cot? x
sin(-x)=-sin x CcOs(-x) = CcOos x tan(-x) = -tan x
sin(- - x) = cos x cos(5- - x) =sin x tan(+- - x) = cot x
sin(m - x) = sin x CcOS(m-x)=-COS x tan(n - x)=-tan x
sin(x + —-) =cos x cos(x + o) =-sinx tan(x + =) =tan x
sin(x + m)=-sinx COS(x + m) =-Ccos x tan(x + m) =tan x
. . . x+ X — . . x-l— . X —
sin x + sin y =2 sin zy cos zy sin x - siny=2 cos zy sin Zy
X+ X — .o X+ . X—=
COS x + COS y =2 COS zy cos zy COS x - COS y = -2 sin zy sin zy
2 sin x sin y = cos(x - y) - cos(x + ) 2 COS x COS y = cos(x +y) + cos(x - y)

2 sin x cos y = sin(x + y) + sin(x - y)

16
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1.3.2. Hyperbolic Functions and Identities

. 1 1 X_ —X
sinh x = (e -¢”) cosh x = (e +e”) tanh x = ex e_x
e t+e
cschx = sinh x sechx = cosh x coth x = tanh x
sinh(x + y) = sinh x cosh y + cosh x sinh y sinh(x - y) = sinh x cosh y - cosh x sinh y
cosh(x + y) = cosh x cosh y + sinh x sinh y cosh(x - y) = cosh x cosh y - sinh x sinh y
__tanhx + tanhy _ tanhx —tanhy
tanh(x + y) = tanh(x - y) = 1= tanhx tanh y

1 + tanh x tanh y

sinh 2v=2sinhxcoshx sinh3x=3sinhx+4sinh®x  sinh—-=+ /<=L

cosh 2x =2 cosh? x - 1 cosh 3x =4 cos® x - 3 cos x cosh % = /C"S"ITX“
=1+ 2sinh?x
= cosh? x + sinh? x
3
2 tanh 3t —t -
tanh 2x = ————— tanh 8y = ————= tanh %zi«/%
1+ tanh™ x 1—3tan” x cosix
___sinhx
" 14 coshx
_ coshx—1
sinh x
hx= hx=— thx=
sech x = cosh x cseh x = sinh x coth x= tanh x
cosh? x - sinh? x =1 sech?x =1 -tanh?x coth? x - csch? x = 1
sinh(-x) = - sinh x cosh(-x) = cosh x tanh(-x) = - tanh x
. . . x+y XxX—y . . x+y . X—y
sinh x + sinh y =2 sinh > cosh > sinh x - sinh y =2 cosh > sinh >
+ — . + . —
cosh x + cosh y=2 cosh ad zy cosh = zy cosh x - cosh y =-2 sinh = zy sinh = zy
2 sinh x sinh y = cosh(x + y) - cosh(x - y) 2 cosh x cosh y = cosh(x + y) + cosh(x - y)

2 sinh x cosh y = sinh(x + y) + sinh(x - y)
Osborn’s Rule: for a trig identity, for a product of sines, change the sign, to get the hyperbolic identity.

17
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1.3.3. Inverse Trigonometric Functions

_ 14 1 _ o101 _ 4 1
sec1x=cos17 csc1x=s|n‘7 cot1x=tan17
in 1= -1 1= -1 L

sSin” x+CoS™ x= > tan” x+cot' x= > sec x+Csc x= >

sin" x+sin” y =sin™ (x’\/l — Y+l - xz)
cos'x+cos'y=cos™ (xy ¥ \/ 1 - xZ\/ 1 - yz)
sin" x +cos™y =sin’! (xy + \/1 — x2\/1 — yz) =cos™ (y\/l — X Fxfl - yz)

-1 A af_xty
tan” x £tan” y =tan (1¢xy)

1.3.4. Inverse Hyperbolic Functions

: 1 1+
sinh” x=In(x+x" + 1)  cosh™x=In(x +x° — 1) tanh™ x=—-In =

1—x

. 1 1 ) 1
csch™ x =sinh™’ - sech™ x = cosh - coth™ x = tanh™’ -

sinh™" x = sinh™ y = sinh” (;(\/1 4y 01+ xz)

cosh™ x + cosh™ y = cosh™ (xy + \/ X - 1\/)’2 - 1)

sinh™ x + cosh™ y = sinh™! (xy + \/1 — x2\/3/2 - 1) = cosh™ (y\/l +x 4y — 1)

+
tanh™ x + tanh™ y = tanh™ (LL)
1+xy

18



All Notes 1.4. Sequences and Series

1.4. Sequences and Series
1.4.1. Arithmetic Sequence
For an arithmetic sequence with first term ¢ and common difference d, terms are

a,at+d,a+2d, a+3d, ...

nth term: u,=a+n-1d

nth partial sum: S,= Y, u = %(Qa +(n-1)d)

r=1

1.4.2. Geometric Sequence
For a geometric sequence with first term a and common ratio r, terms are

a, ar, ar’, ar®, ...

=
'
-

nth term:

u,=ar
" a(l— rn)

nth partial sum: Sn:r§1u" =—1_

Infinite sum: S, = u =— convergent if 0 <|r| <1
~.n 1—-r 9

<

1.4.3. Harmonic Sequence

In a harmonic sequence, terms are the reciprocal of an arithmetic sequence.

1 1 1 1

a’ a+d’ a+4+2d’ a+3d’""

tht . _+
nth term: U= n = D

n
nth partial sum: S,= ), u < Nn(a+ n—-1d) + v+

r=1

1
2(a+ (n—1)d)

Infinite sum: diverges, always

19
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1.4.4. Arithmetico-Geometric Sequence

In an arithmetico-geometric sequence, terms are a product of an arithmetic and
geometric sequence.

ab, (a + d)br, (a + Zd)brz, (a + 3d)br3,

nth term: u, = (a+ (n- d)br
: : b—(a+ndbr"  dbr(l—r"
nth partial sum: ~ S,= Y u =— (;l_" )or | _dbr( 7;)
r=1 n r (1—7")
- - b db _
Infinite sum: S,= Y u =———+ . convergent if |r| < 1

pono 1o a- 7")2
1.4.5. Partial Sums of Series

r=2nm+ 1) S =dnm+ e+ 3P =tdlm+ 1)
1 r=1 r=1

™M =

r

n
> % >Ilnn+y+0m') wherey=0.5772156649... is the Euler-Mascheroni constant.

n n
+ . .
% nCr =2" > pCr X an_r =7 an (Chu-Vandermonde identity)
r=0 r=0
" sinnTcosi%E n sin”z—esinL*'zlﬁ
Y. cosrf = 5 Y, sinrf = 5 Oftenuseful: u =S —§ .
r=1 SlnT r=1 sinT n n n—1

1.4.6. Infinite Sums of Series

The numerical results below require advanced techniques to prove (e.g. special functions).

~ diverges Yy == y 4+ =73) ~ 1.2021 y L=I
— —1 7T _

1 r

8
|»-n

r

;Llrﬁzmz g e

r=1 r

4>|w
N
\
w
f—
Q
©
O
o
—
ol
S
Nl
=
e
F%
Il
~
3

e} o0}
1 y a 1 _ _m a 1 _ l+4+mcothm
_Z a+br — b SO, _Z = Jab coth /5 2 = 2

2
r=0 1+r7

20
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1.4.7. Common Techniques (Tests) for Proving Convergence or Divergence of Series

(o)
Divergence Test: for ) a , evaluate lim a .
n=1 n n— oo n

If lim a # 0 then the series diverges. Otherwise, inconclusive.
n— o

oo
. . n—1
Geometric Series: for } ar °, evaluater.
n=1

If |7/ <1 then the series converges to

a
1-r"

Otherwise the series diverges.

oo
. 1
Power Series: for ), —, evaluate p.
n=1"

If p>1 then the series converges to {(p). Otherwise the series diverges (in the usual sense).

[o9] [o¢]

Comparison Test: for ) a with all a = 0, compare to a known series Y. bn.
n=1 n=1

< 1lforalln > N,and ) bn converges then the series

a
n

b

If there exists some N such that a < bn i.e.

n n=1
converges. Otherwise the series diverges.
Limit Comparison Test: for ) a (all @, > 0), compare to known Y, bn and evaluate L = lim -+
n=1 n=1 n—oco "
If L is finite and nonzero then ) a and ) bn either both converge or both diverge.
n=1 n=1

[o9]

IfL=0and Y, b converges then the series converges.
n=1

IfL —>oand ) bn diverges then the series diverges.

n=1

Integral Test: for ) a, if (n) = a, is positive and decreasing for all n > N, evaluate = [ f(x) dx.
n=1 N

If I is finite then the series converges. If 7 diverges then the series diverges.

o]

Alternating Series Test: for ) (-1)"a,, ifa,., <a,foralln>1and lim a_= 0 then the series converges.

n=1 n— oo

[o¢]

Ratio Test and Root Test: for any ) a, evaluate either p = lim

n=1 n—>oo

a
n+1

1/n

or p= lim |an|

n n— oo

If 0 <p <1 then the series converges. If p > 1 then the series diverges. If p =1 then inconclusive.
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1.5. Complex Numbers
1.5.1. Complex Number Definition

Im(z) Any complex number z & C can be represented as
. z=x+yi=r(cos0+isin0)=re’=rcisd (Euler's formula)

The components are related and defined by
o x=Re(z); y=Im(z); r=1z; f#=argz -n<6<m
Re(2) (r: magnitude, 0: argument/phase, x: real part, y: imaginary part)

1.5.2. Complex Conjugate

z*=x-iy=re' =rcis(-0) zz* = |z]* is purely real

z z*
(21 tz)* =z/* +2,* (z212)* =z,* 2, (_1) =—

1.5.3. Cyclic Nature of Exponentials and Logarithms

e Periodicity: e™i=1, z=re"?™ for any integer n

e De Moivre’s theorem: z=¢“ — z*=(cos 0 +1isin )" =exp (ia(0 + 2nn)) = cos al + i sin ab

e Natural logarithm: z=re’ - Inz=Inr+1i(0+ 2nn)
; 2k n K n—1 -
[ ] i ) = n = = = =
nth roots of unity w, =e , W, 1, W Fw, 0 W, Eo w 0

The roots of unity form a regular n-polygon around the origin.

1.5.4. Trigonometric and Hyperbolic Functions

ix —ix ix —ix ix —ix
. e —e e +e e —e
Sinx=—"">—"— cosx=—"-— tanx=—F——
e +e
2
. 1 1 . z —1 .
z=e¢’ > z+—=2cos 0 z——=2ising > =itan 6
z z z +1
sin ix =1 sinh x cos ix = cosh x sinh ix =1sin x cosh ix = cos x
sin(x +1iy) = sin x cosh y +i cos x sinh y cos(x £ 1iy) = cos x cosh y T i sin x sinh y
sinh(x + iy) = sinh x cos y + i cosh x sin y cosh(x £1iy) = cosh x cos y +isinh x sin y
= -1 . 2 . . -1 . -1 l 1_lZ . - .
sin"z=In|iz +\1 — z |=1sinh”(-iz) tan z=7ln 1T iz =itanh™(-iz)
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1.5.5. Exponentiation of Complex Numbers

let z=a+ bi=r eie. Then, for integers n, the value of f(z) is given by R eiq’, where:

f(@) R =112 ¢ = arg f(2)
Zl- e—(e + 2mn) Inr
5 — L sin @ dnt+1 0
i e > I CoS
ZC + di TC e—d(e + 2mn) dinr + c(9 + 21'[7’1)

The principal value is for when n = 0.

i Fr/2 .
i =e is purely real.

1.5.6. Root of Unity Filter

o] N-1 [e¢] 2m
For a series f(x) = Y a, xk, the value of Y, f(mk) =N)Y a, . where o =e " for N>1.
k=0 k=0 k=0

This is often useful when working with generating functions (series multisection) whose
coefficients are periodic modulo N.
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1.6. Discrete Mathematics and Abstract Algebra

1.6.1. Binary Operators

Let * be a binary operator. We say that * is

e Commutative: ifa*b=>b*a
e Associative: if(@a*b)*c=a*(b*c)
e Distributive (over +): fa*(btc)=a*b+a*c

1.6.2. Axioms of Group Theory

A set S and an operation * form a group (S, *) if and only if all of the following are true:
e Closure: *is a binary operation on Si.e. a * bis in S for every a, b € S.
e Identity: there exists exactly one element a in S such that z * a=z for all z in S.
e Associative: (a*b)*c=a*(b*c)foralla,b,c € S.

e Inverse: every element « in S has exactly one corresponding element 4 in S such
that a * b equals the identity element for the group.

An Abelian group is a group in which * is commutative in S.
Equivalently, the group is Abelian if its Cayley table is symmetric about the leading diagonal.

Examples of groups and their identity elements:
e If Sis the integers and * is multiplication, then the identity element is 1.
e If Sis the real numbers and * is addition, then the identity element is 0.

e If Sis a set of geometric transformations and * is composition, then the identity
element is the transformation which does nothing (i.e. the identity matrix, if
represented by affine transformation matrices).

For finite field groups, see Section 8.8.10.

For point and space (symmetry) groups and their character tables, see Section 13.2.8.
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1.6.3. Axioms of Ring Theory
A set S and two operations + and * form a ring (S, +, *) if and only if all of the following are true:

(S, +) is an Abelian group.
S'is a closed under *.

* is associative.

* is distributive over +.

A commutative ring is a ring in which * is commutative on S.

A field is a ring in which every nonzero element in S has an inverse element under *.
Equivalently, a field is a group under both + and *.
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1.6.5. Modular Arithmetic

b .
Definition of modulo operator: a=5b(modn) <& % and - have the same remainder,

where a, b and n are all integers.

a—>b

If a = b (Mmod n) then is an integer.

Euler’s totient function:  ¢(n) is the number of integers between 1 and n which are
coprime with » (ho common divisors except 1):

o(n) = I a=n I (1-7)

a€N:a<n,gcd(a,n)=1 PEP:p|n P
Fermat’s little theorem: d =a (mod p) for prime p which does not divide a

Euler’s theorem: a®™ =1 (modn) for coprime a and n
Wilson’s theorem: (p —D!'= =1 (modp) & pisprime

Chinese remainder theorem:
N

A system of N congruences N {x = a (mod ni)} where all n; are pairwise coprime
i=1
has solutions x, any two of which X, and X, satisfy X =X, (mod N).

The residue class of « modulo 7 is the set a ={.,a-2n,a-n,a,at+n,a+2n,...}.

The ring of integers modulo # is the set of all residue classes modulo n, represented by
Z/nZ = {@n | a € Z} = {ﬁn,In,in,...,n—ln}

and when n = 0, this ring is isomorphic to Z since a_o = {a}.

This ring is commutativeasa + b = (a + b) and ab = (ab) .
n n n n n n

Z | nz is a finite field if and only if n is prime.

26



All Notes 1.6. Discrete Mathematics and Abstract Algebra

1.6.6. Kuratowski’s Theorem for Planarity of Graphs

1.6.7. Minimax Cut-Flow Theorem for Networks

1.6.8. Simplex Algorithm for Linear Programming

1.6.9. Lagrange Multipliers for Nonlinear Programming

A typical problem is stated as “Minimise / Maximise f(x) subject to g(x) = 0”, where x is a
vector of n scalar independent unknown variables. The Lagrangian is defined as

L(x, ) = f(x) - 2 g(x). The solution is given by V L(x, 1) = 0 (a system of n + 1 equations).
Note that these are critical points, not necessarily extrema (may be saddle points).

For multiple constraints, formulated as “Minimise / Maximise f(x) subject to g(x) = 07,
where g is a vector-valued function for each of the m constraints, the Lagrangian is

m

Lx,N)=f(x) — A gx)=f(x) — ) }\i gl_(x) where A is a vector of m unknown multipliers. The
i=1

solution is again given by V L(x, 1) = 0 (a system of n + m equations).

In the Hamiltonian formulation, H(x) = f(x) + 4 g(x), which ensures minima.

1.6.10. Game Theory for Zero-Order and Higher-Order Games
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1.7. Special Functions and Identities

1.7.1. Gamma Function, I'(x) and Digamma Function, y(x)

e Gamma function as a generalised factorial: T'(x) = (x — 1)! ie. xl=xT(x)
e Gamma function as an integral: I'(2) = Ofo e dt for Re(z) > 0
0
e Reflection identity: ['2)T(1 — 2) = si;nz for non-integer z
e Half-integer identity: ')z + %) = 21_22\/5 ['(2z) for non-integer z
e Useful exact values: F(%) =m F(— %) = —2Jn
e Digamma function: Yx) = d% InT'(x) = %
e Reflection identity: Y1 - x) — Y = for non-integer x

tan mx

e Integer identity: Ulx + 1) = Y +

1.7.3. Error Function, erf x

X 2
e Error function: erfx=—=[e ' dt /
o ol 7
e Relation to Normal distribution: 20
erfx=2 CD(\ﬁx) -1 (®: standard normal c.d.f.) 7
e Complementary error function: erfcz=1-erfz /
e Imaginary error function: erfiz=-ierfiz e O I PO ORI ORI A

Graph of y=-erf x

1.7.4. Beta Function, B(x, y)

1
e Beta function: Blx, y) = [T (1 -t "dt
0
. . RACIRNE))
e Relation to gamma function: B(x, y) = T(x+y)
e Pascal’s identity: B(x,y) =B(x,y+1) + B(x + 1, y)
, +
e For integers m, n: B(m, n) = i m:;
mn X C

m

28



All Notes 1.7. Special Functions

1.7.5. Hypergeometric Functions, including ,F,(a, b; c; 7)

ORONEE

(c)n n! ’

Gaussian hypergeometric function: 2Fl(a, b; ¢c; z) = Y,

for |z| <1
This series terminates if b or ¢ is an integer, forming a binomial series.
_ ! b—1 c—b—-1 —-a
Euler’s integral formula:B(b, ¢ — b) 2Fl(a, b;c;2) =[x (1-x) (1 -2zx) dx
0

. I(c)T(c—a—b
Gauss summation theorem: 2Fl(a, b; ¢; 1) = % for Re(c) > Re(a + b)

100

’ . . Lo _ I'(c) 1 [a+9)Th+s)T(=s) , N
Barnes’ contour integral: JFi (@ b; ¢ 2) =170 X o f T (— 2) ds
_ioo
Generalised HGF: F b, bz = 3 e S for |z| < 1
eneralise : ) q(a1’ vy @5 by D z) = ngo By, @), or |z|
Regularised HGF: F b, b g) = 2 b
egularise : ) q(al, v @5 by b z) = TGy (b

Kummer’s confluent HGF, first kind: M(a, b; z) = F.(a b; z) = lim F (a, c; b; %)

c— oo

Kummer’s confluent HGF, second kind: U(a, b; z) = z 2Fo(a, 1+a-b;; —21)

29



All Notes 1.7. Special Functions

1.7.7. Elliptic Integrals, K(k), E(k) and I1(n, k)

/2 1
e Complete elliptic integral, first kind: Kk) = a0 = dt
P P 9 () { \1-ksin’ 6 { (1-2)(1- K"t

n/2 1 2.2
e Complete elliptic integral, second kind: E(k) = [ 1 -k sin®0 de = fEkzt dt
0 0 1-t

/2
e Complete elliptic integral, third kind: Mn, k) = [ do
0 (1—nsinze)m
¥ de f dt
e Incomplete elliptic integral, first kind: F(g, k) = [———, F(x; k) = [————
) 0 V1-K'sin’e ( 0 V(1-t)(1-k

¢ x 2.2
e Incomplete elliptic integral, second kind: E(p, k) = [\/1 — k*sin® 0 d6, E(x; k) = fE dt
0 0 Vi-t
©

Incomplete elliptic integral, third kind: nm; e\ = J 40

0 (1 —nsin® 6) V1= (sinasin 9)2

Substitutions used above are t = sin® and x = sin .

Legendre’s relation: K(k) E(\/l - kZ) + E(k) K(\/l - kZ) — K(k) K(\/l - kz) ==

Arithmetic-Geometric mean identity: K(k) =

T
2agm(1, 1—k2)
(0]

Inverse elliptic integrals (Jacobi functions): with u = F(¢o, k) —{ o then
e Jacobi amplitude function: am(u, k) = @

e Elliptic sine: sn(u, k) = sin(am(u, k)) = sing

e Elliptic cosine: cn(u, k) = cos(am(u, k)) = cos @

e Delta amplitude: dn(u, k) = —= am(w, k) = 2= =1 — k" sin” ¢

1.7.8. Zeta Function, {(z)

e Zeta function as a series: ()= Y r = F(lz)f fz_l dx, for Re(z) > 1
r=1 0°-~

e FEuler’s product formula: 0(z) = [1 —— a product over all primes p
pep -~ P

e Riemann’s functional equation: U(z) =27 " sin % I'(1 - 2){(1 - 2)

e Riemann hypothesis: does {(z) = 0 & Re(z)=% or z € {-2,-4,-6, ...} ?

(critical line) (trivial zeroes)
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1.7.9. Bessel Functions, J,(x) and Y,(x), and Hankel Functions, H,"(x) and H,?(x)

Bessel functions, J,(x) and Y,(x): Hankel function, 7, "(x) and H,%(x):
. 1 . W, _ I @=e" @
1st kind: ]n(x) = ?g cos(nt — xsint)dt 1st kind: Ha (%) —]a(x) + lYa(x) = e
. N @ _ I @="
2nd kind: Yn(x) = ?{; sin(xsint — nt) dt 2nd kind: Ha (%) —]a(x) - lYa(x) = r——

Modified Bessel Functions, /,(x) and K, (x): Spherical Bessel functions, j,(x) and y,(x):

2m+a

. . _.a . _ (x/2) : ] —
Istkind: I (x) =i ] (ix) = z T tarD Tstkind: j (x) = ,C]n+ (%)

I 0-1,0

sin am

2nd kind: K (x) =+ ondkind: y (¥) =oY@ =(D""j__ @

1.7.10. Associated Legendre Polynomials, P,"(x)

2m/2 d l

Associated Legendre Polynomials: P (x) = (1 X)) o ( 1), -I<m<|
le(x) m=20 m=1 m=2 m = 3
=0 1
I =1 X —a _x2)1/2

2
=2 | =(Bx' -1 — 3x(1 — x)"? 3(1 — x°)

2 2.1/2

[=3 | 26" -390 | 20 -5 - | 152 - ) | = 150 = DY
For negative index m: P = (D" % P"(x)

1.7.11. Hermite Polynomials, H,(x)

Hermite polynomials as a derivative: Hn(x) = (- 1)" e’ ;x" e
Recurrence relation: Hn+1(x) = 2x Hn(x) — Hn'(x)
The first few Hermite polynomials are
H () =1 H()=2x HE) =4 -2 Hx =8 — 12
H,(x) = 16x' — 48x" + 12; H_(x) = 322" — 160x" + 120x
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1.7.12. Generalised Laguerre Polynomials, L,”(x)

(a) ()

Recurrence relation:  (k + 1) L ) =Ck+1+ a—x) L, ) — (k+ o L, (a)( X)
The first few generalised Laguerre polynomials are:

L0 =1 1w = —x+@+1; L =32+ (a + Dx + 5 (a + D(a + 2)

1.7.13. Airy Functions, Ai(x) and Bi(x)

2

d LR B | LR | LR A |
};—xyzO L A — ]

dx o5 Bi(x) —— |

Airy equation:

Linearly independent solutions are:

i
Ai(x) = —f cos(xt + )dt ok \‘/fl \‘(;’f\‘ / \V," WI

—0.50

3

Bi(x) = %f exp(xt - t?) + sin(xt + tT) dt X
0

1.7.14. Fresnel Integrals, S(x) and C(x)

Fresnel sine and cosine: 1

S(z) = f ’ sin(¢%) dt = i(—l)’”’ z , ]

0 et (2n+1)Y(4n + 3) ) AVIAAVAVAVAVAYE

’ 2 _ B gintl M_ / A ’ e

C(z) = /.] cos(t*) dt = ;{ —(4n 1) / s
Clothoid curve: {x(1) = C(1), y(1) = S()}. e

which has a constant rate of change of curvature: % = 2 and % = 1.

Limiting value: lim S(x) = lim C(x) =/

X —> © X —> oo
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1.7.15. Lambert W Function, W,(z)

z . W, (2)
The Lambert W function is the inverse function of f(z) = ze i.e. Wk(z) e “ =x (k€ 7).

2

For real x, the two branches y = Wy(x) and y = W_4(x)
are the solutionsto ye’=xforx>0and -1 <x<0 !
respectively. 0

© n—1
Taylor series: W (x) = i_—fl,L x", x| <1/

n=1

. H 1 d
Lambert differential equation: x(1 + y) d_i =Yy

All branches are solutions to this DE (y = W,(x)).

1.7.16. Trigonometric Integral Functions, Si(x), Ci(x), Shi(x), Chi(x), li(x), Ei(x)

4 I | I +o0
y Chi
i(x) i lim  Si(x) = f sint g - 4T
| : | 2 1 : | x> too
\ Si(x) +oo .
lim Ci(x) = [ =L gt diverges to o
r E E 2 4 6X X = +oo0 0
lim li(x) = f— diverges to -«
lix) ‘ ' x—1
X X i
e Sine integral: Si(x) = [ sincrdr = [ dt
0 0
X
e Cosine integral: Ci(x) = [1—2L gt =y + Inx + f L dt
0
x .
e Hyperbolic sine integral: Shi(x) = f%ht dt (y=0.577216...: Euler-Mascheroni constant)
0
X
e Hyperbolic cosine integral:  Chi(x) = y + Inx — f1_+’sm dt, x>0
0
e Logarithmic integral: li(x) = lnt’ 0<x<1
_ X,
e Exponential integral: Ei(x) = — f = = [ =at, x<0

t

—0Q0
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1.7.17. Spherical Harmonics, Y,"(0, ¢)

. . 2L+ D)1 — m)! imd 20+1
Spherical harmonic: Yl’”(e, d) =«/%le(cos 0) e’ = 4; Clm(e, d) for|m|<I

The ‘Condon-Shortley phase’ is due to the term (-1)”, which is included in the definition of P/".

Expressions for C,, in angular spherical coordinates (6, ¢) and Cartesian coordinates (x, y, z) are

- 4 - :
= +w/%smeel¢= e

T

COO=1; Clo=cose=7; Cl,il

2 2
CZO=%(300526—1)= 37 T r=x"+y +7)

21”2

= [3 . tio - [3 axtizy, _ B .2, b [3 Xy’ +2ixy
CZ,i‘l_ + /5 cosBsinBe” " = +«/2 7 ’CZ,i-Z_ g sin Be =1/3 =

Real Spherical Harmonics: real-valued alternative definition

1
— (Y™ —(=1)"Y, ™) if 0 m
\/E( 14 ( ) £ ) nm < ﬁ(—l)mj[}/g ‘] ifm<0
Yo = ¢ Y) ifm=0 =4 Y ifm=20
—5 0T im0 VIR im0,
5

Vector Spherical Harmonics: a complex vector-valued function.

Ylm(eu ¢> = Y2m<07 ¢)IA’, \Illm(ru 07 ¢) = Tv}/}m7 le<7a7 07 ¢> = 1T Xx VYEm

Spherical Harmonic Transform: for a function in angular spherical coordinates f(6, ¢),
l 2mm

fO.9 =% 3 a, Y"® ¢) where a = J7@ ®)v"® ¢)sinodody

=

This is analogous to a Fourier series (Section 3.6), with a,,, as complex coefficients of the basis
functions Y;”. The Jacobian term is sometimes written as the solid angle dQ = sin 6 do6 d¢.

2m T 2T

2 o
Normalisation: ff|Ylm| aq = 1. Orthogonality: [ [ (Ylm)(Yl,m) Q=88 .
00 00
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1.7. Special Functions

1.7.18. Miscellaneous Special Functions

Generalised Marcum Q-function: Qv(a, b) =

1
-1

v
a

[oe]

[x e

b

1,2, 2
v —5x +a)

Iv_l(ax) dx
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M2. GEOMETRY

2.1. Properties of 2D and 3D Shapes

2.1.1. Properties of Simple 2D Shapes

Circles and Parts of Circles

circumference

C arc chord
a a
S
W
r r .
0 W) a
r r
Circle Sector Segment Equilateral Triangle Regular n-gon
2

Area: A = mr Area: A =%r29 Area: A =%r2(e —sinB) Area: A = %az Area: A = “m -

an —
Diameter: d = 2r Arc length: s = r0 Chord length: ¢ = 2r sin % r= 63 a r= = , R = - -
2tan— 2sin--
Circumference: C = 2nr = nd R = 33 a External angle: 6 = ZT“

Special Quadrilaterals (For properties of scalene/right triangles, see Section 2.2.7.)
b
| a
d, i
d d
1 1 h h
r
d, a
Kite (Deltoid) Rhombus Parallelogram Trapezium (Trapezoid)
Ch = = Ch = = -4 = =L i =L
Area: A = - dld2 Area: A = - dld2 Area: A = bh =5 dld2 sin@ A =—=h(a + b)
diagonals perpendicular diagonals perp. bisectors diagonals bisect

2.1.2. Symmetry

Rotational symmetry of order n: identical after turning through 360° / n
Reflective/mirror symmetry of order n: identical after reflecting in » different axes
A regular polygon is both rotational and mirror symmetry order n
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2.1.3. Volumes and Surface Areas of 3D Solid Figures

Curved bodies:

<< 772

/’."Q“‘ "‘
TS,
EAR

5
i)
W ZSSN

>

>
2\

SN
,‘ = \

7 o
Sphere Cone Torus
4 3 1 2 2
Volume ST < Trh 21 Rr
Surface 2
Area 4mr nrl + nr 41t Rr

Pyramidal and Platonic solids (f: faces, v: vertices, e: edges):

a
AN 4 :
Pyramid Tetrahedron | QOctanedron | Dodecahedron | Icosahedron
@4f,4v,6€) 8f,6Vv,12¢) (12f,20v,30e) | (20f, 12V, 30¢)
Volume %Ah A2 P A2 A 15 + 74/5 P 5(3++/5) 2
12 3 4 12
surf L + A
urface 2 ) ) )
Area (p: base perimeter \/§ a 2\/§ a 3\/25 + 10\/5 a2 5\/5 a
L: slant length)
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2.1.4. Sections of Spheres (Sections of Revolution)
Spherical Cap (blue): radius r, flat radius a, height 4, half-angle 6

‘ + ______ a.’ Volume:

2 3
14 =%(3r —h) = “Tfl(gaz +hY = —— (2 + cos8)(1 — cos 0)°

Curved surface area: (circular plane face area: naz)
A = 2nrh = 1'[(a2 + hz) = 2117”2(1 — cos 0)

Spherical Sector (blue): radius r, flat radius «a, height 4, half-angle 6:

Volume:

2mr’h T 2 22 2mr
V== :W( +h)= 53— (1 — cos )

Curved surface area: (cone area: mar)
A=2mrh= Qr’ = 2117‘2(1 — cos 0)

(Q: solid angle, in steradians (by definition))

Spherical Wedge: radius r, dihedral angle 6:

Volume: Curved surface area (lune):

3
v =2t A =20

A plane intersects a sphere in a circle. The maximum area of this circle occurs when the
plane cuts the sphere in two equal parts (hemisphere caps separated by a ‘great circle’).
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2.1.5. Some Geometric Results in 3D

C

3D Quadrilateral Coffin Problem

AB, BC, CD, AD tangent to a sphere at W, X, ¥, Z
W, X, Y, Z are coplanar
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2.1.6. Circle-Circle and Sphere-Sphere Intersections

R R

0, 0) d, 0)

— Q —P

«——x—» X &

-] —»

Circle-Circle Intersection Sphere-Sphere Intersection

Area of overlapping lens region: Volume of overlapping lens region:
d?> +r? — R? _ T 2

— 12 cos™ L V=—(R+r—d)°x

A =1r°cos oy 12d( +7 )
2 2 2
L Repet R (d? + 2dr — 3r? + 2dR + 6rR — 3R?)
2dR
1
— §\/403232 — (d? —r2 + R2)2
In both cases,
d’—r° + R

Distance to intersection chord or intersection plane: x = d

: . . 1
Length of intersection chord or diameter of intersection circle: a= x \/4dZR2 - (d2 —r RZ)2
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2.1.7. Ellipses and Ellipsoids

Ellipse (2D): an elongated circle.

b
a
Ellipse Elliptical Sector

Area: A = mab cos? §, +sinfa=1 and cos? ), +sin® =1

2
Eccentricity: 2= 1 — = Area: “TbQB -a-sin - a))

a

Perimeter: P = 4a E(e) Elliptical arc length: a(E(B, e) — E(a, e))

Ellipsoid (3D): an elongated sphere along two axes (radii a, b, c)

4
Volume: ?Ttabc

2,.2 2
Surface area: Zn[cz + ,a—b(K(q), k) cos” @ + E(o, k) sin’ cp)] cos@ =<andk’ =-2t=c)
sin @ a b (a —c )

Spheroid: a sphere compressed (oblate) or elongated (prolate) along one axis (radii a, a, ¢)

2 _ 2

Surface area, oblate (c < a): 21'ta2(1 + l_ee tanh” " e), ef=1-<
a

2 c . -1 2 a

Surface area, prolate (¢ > a): 2Ta (1 + — sin e), e =1——
Cc

A plane whose normal is parallel to the axis of stretching intersects the spheroid in a circle.
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2.1.8. Pappus’ Theorems

YA YA

|~ Ist theorem | 2nd theorem
of Pappus of Pappus

centroid
of lamina

Surface Area=L x d Volume =4 x d

For partial revolutions, use the arc length instead of the circumference as d.
Generalisation to Pappus’ theorems:

The path traced out by the centroid does not need to be circular: it can be any simple
curved path (e.g. linear, parabolic, helical). This will result in a ‘swept’ solid or surface. The
appropriate length d is then the arc length along this path.

Additionally, the curve/lamina being swept may rotate in its plane (torsion: remaining
perpendicular to the path) along the path, as long as the angle of twist is continuous. E.g:

Volume = area of lamina x path length

curved path . . Surface area = perimeter of lamina x path length
\ twist during sweep

resulting solid
(twisted, bent prism)

The resulting solid or surface must not be

centroid lamina self-intersecting to produce valid results.
of lamina (equilateral triangle)
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2.2. Angle, Triangle and Circle Theorems

2.2.1. Angle Theorems
Types of angles: acute (0° <4< 90°), right angle (6 = 90°), obtuse (90° < 4 < 1809,
straight line (¢ = 180°), reflex (180° < # < 360°)

For angles at a given point,

A ol

Angles on a line Angles around a point Opposite angles
a+f=180° a+ f+y=_360° are equal

For parallel lines intersected by a single transversal line,

. /. /.
- L
/ / /

Corresponding Angles (‘F’) Co-Interior Angles (‘C’) Alternate Angles (‘Z’)
are equal a+f=180° are equal

2.2.2. Measures of Angles

180
Common measures of angles are: (1 rad = — 7 57.29°%

e Degrees: a full turn is 360°.
e Radians: a full turn is 2 rad. Assumed in all calculations (natural units).
e Gradians: a full turn is 400 ° (archaic).

Units for small angles include the DMS (degrees-minutes-seconds, D° M’ S”’) system:

e 1 degree = 60 arcminutes (1° = 60°)
e 1 arcminute = 60 arcseconds (1’ = 60”)

Three-figure bearings, used in navigation, are given in degrees clockwise from North,
using three digits by convention (e.g. “050” for 50° clockwise from North).

43



All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.3. Triangle and Quadrilateral Theorems

C
/f&
B AT, B 4

Midpoint Theorem Angle Bisector Theorem Apollonius’ Theorem
1 b m 2 2 2 2
|DE| = —~ |AB| —_— = a+b =2(d +m)
2 a n
C C C Case 1
N
D
A
b a B F
d £ C
Case 2
F 4 B
A B A B
_m n “ r ND
C
Stewart’s Theorem Ceva’s Theorems Menelaus’ Theorem
2 2 2 |AF| |BD| ICE| |AF| |BD| ICE|
bn+am=c(d + mn) \FB| DC| T =1 \FB| IDC| \EA| =1
sin LABE sin £BCF sin £CAD 1 in both
sin £CBE sin £ACF sin£BAD In both cases
B
C A
D
C
b
D d
A
C a B
Ptolmey’s Theorem Routh’s Theorem Pythagoras’ Theorems
_ APQR (ryz—1)° 2 2 2
’ABHCD‘ + ‘BCHDA| N ‘ACHBD’ AABC T (xy+y+1)(yzt+z+1)(xz+x+1) a+b =c
. . . __|BD| __|CE| __|AF| 1 .1 1
If ABCD is not cyclic, then: where x = oo Y = e 2 = e = + =7

|[4B||CD| + |BC||DA| = |AC||BD|
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2.2.4. Circle Theorems

T
B
B 7S A
C
s
A 5 C &S
C
A
B
Thales’ Theorem Inscribed Angle Theorems Alternate Segment
(Angle in a semicircle) Angle at the centre Angles subtended by an arc Theorem
AC is a diameter ZAOC=2 LABC ZDAC= £ZDBC ST tangent at 4
Z ABC =90° /L TAC= L ABC
B 4P P
) . B 0\
0
0
D
Cyclic Quadrilaterals Tangent Theorem  Chord Bisector Theorem Butterfly Theorem
ZABC+ ZADC =180° |AP| =|BP|, 04 L AP PQ is a chord M midpoint of chord PO
opposite angles add to 180° OAPB is a cyclic kite 04 L PQ, |AP|=140| |MX] = MY
A
‘ (0] A 0
3 C
D
C
Three Cases of the Power of a Point Theorem Carnot-Euler Theorems
Intersecting Chords Tangent-Secant Intersecting Secants |OX] +|0Y| +|0Z| =R+ r
|OA||OC| = |OBJ|OD| |OA|? = |0B||0C]| |OA||OB| = |0C||0OD] OIP +# = (R - r)?

distances negative
if entirely outside triangle
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2.2.5. Some Special Geometric Constructions

These setups may require unique methods of solving, and are extremely difficult without
knowing the technique.

Ford Circles Langley’s Adventitious Angles
Three circles tangent to each other, Given a, b, c, d, find e.
as well as one common tangent line In general, it is extremely difficult without trigonometry.
-1/2 -1/2 -1/2 , , . :
c =a +b Techniques include: trigonometric Ceva’s theorem,

identifying congruent/equilateral triangles,
three circumcentres method

|
T

Triangle Construction Coffin Problem

The line segments between a point in an equilateral triangle
and its vertices are used to form a new triangle.

Angles: o' = a — 60°, ' = B — 60°,y' =y — 60°
Can be solved by rotating the diagram 60° about a vertex.
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2.2.6. Similarity and Congruence of Triangles

Two triangles are similar (A4BC ~ APQR) if one is an enlargement of the other (AAA).
Two triangles are congruent (AABC = APQR) if they are identical (SSS / SAS / ASA / AAS / RHS).

(S/A/R/H: aside/ angle / right-angle / hypotenuse known to be equal in both triangles.)

A
Fundamental theorem of similarity: AABC ~ AAB'C’
AB| _ JAC AB| _ JAC '
|BB'| ~ |cC| < |AB'| T |AC e BCI|B'C
B C

B! \ C(

2.2.7. Trigonometry of Right-Angled Triangles

The sides are said to be a (adjacent), o (opposite), 4 (hypotenuse)
h relative to acute angle 6.
0 (0] a o
p Definitions: sin = - cos 0= e tan 6= " (SohCahToa)
VAR R , 2 2 2 . 2 2 2
a Pythagoras’ Theorem: a +0 =h (more often written a” + b™ = ¢")
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2.2.8. Trigonometry of Triangles

The results here are valid for any cyclic permutation of {a, b, ¢} and {4, B, C}.

2 . .
¢ sinAsinB

- — i — L [ =
Area of a triangle, AABC = —-bh = -absin( == sin(A + B)

(h: height perpendicular to b)

a b c

Law of Sines (Sine Rule): ind - sinB - sinC

Law of Cosines (Cosine Rule): ?=a?+b?-2abcos C

1
a—b tan—(A - B)

Law of Tangents (Tangent Rule): ath - %(A 1B

1 1 1
cot ?A cot TB cot TC i

Law of Cotangents (Cotangent Rule): —— —=—"—,—="_-__, =

AABC  absinC
S T a+b+c

Inscribed Circle Radius: r =

abc a
4 AABC ~ 2sinA

Circumscribed Circle Radius: R =

Heron’s Theorem: AABC =+/s(s — a)(s — b)(s — ¢)

1 1
] a+b cos—(A—B) a—b sin=(A — B)
Mollweide’s formulas: = : I and = : n
¢ sin>-C ¢ cos —C
at+b+c

(s: semiperimeter, s = , NABC: area of triangle ABC, r: inradius, R: circumradius)

2
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2.2.9. Rational Trigonometry

Rational trigonometry is an alternative formulation of trigonometry in Euclidean geometry
that uses ‘spreads’ and ‘quadrances’ instead of angles and lengths, which avoids the use
of transcendental functions and irrational numbers.

A line with equation ax + by + ¢ = 0 is represented as{a : b : c).

2
(alaz B blbz)

Spread: s(l, 1) = (equal to sin? 6)

2 2., 2 2
(a1 +b1 )(a2 +b2 )

Quadrance: Q is equal to distance squared. (equal to 4?)

A triangle is considered a set of three lines. Identities are:

e Pythagorean Theorem: Q1 + (22 = Q3 s Q1 1 Qz.

. 2 2 2 2
e Triple Spread Formula: (s1 +s,+ 53) = 2(51 ts, +s, )+ 4515253 (angle sum)

S S S

e Spread Law: — =t = (sine rule)
Ql QZ Q3

e Cross Law: (Q1 + Q2 — Q3)2 = 4Q1Q2(1 — 53) (cosine rule)
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2.2.10. Projective Geometry

D _ The cross ratio (anharmonic ratio) of any four
collinear points is invariant under perspective projection:

|AC||BD|  |ac||bd]
|BC||AD| ~ |bc||ad)|

Cross ratio =

2.2.11. Mass Point Geometry (Barycentric Coordinates)

50



All Notes 2.2. Angle, Triangle and Circle Theorems

2.2.12. Spherical Geometry and Trigonometry (Non-Euclidean Geometry)

For a triangle made from three great circle arcs of unit radius:

a, b, c represent both (arc) lengths and angles subtended from the
centre of the sphere O (in radians) i.e. ZAOB=c¢, ZBOC=a, ZCOA =
b.

Spherical Cosine Rule: cos a =cos b cos ¢ + sin b sin ¢ cos 4
. . sin A sin B sinC
Spherical Sine Rule: - =— =—
sina sinb sinc
Inverse Cosine Rule: cos A=sin Bsin Ccos a — cos Bcos C

Area of triangle AABC (on sphere)=A4+ B+ C—=n (Girard’s Theorem)
Solid Angles: trihedral angles measured from O (units: steradians [sr]; full sphere = 4x sr.)

e Spherical triangle, ABC from O: Q,=4+B+C—n

., B
e Cone, vertex O, apex angle 20: Q,=4n sin? -

2, 0A-0B x0C

e |Irregular tetrahedron O4ABC: tan = — — —
2 |OA||OB||0C| + (OA - OB)|0C| + (OB - 0C)|0A| + (OC - 0A)|0B|

1
cos Q,= ?(cos ZAOB +cos ZBOC +cos £ COA)

The solid angle of a polyhedron is the sum of solid angles of the non-overlapping tetrahedra
sharing the vertex (e.g. compute from Delauney tetrahedral mesh of 3D point cloud).

2.2.13. Hyperbolic Geometry (Non-Euclidean, Lobachevsky Geometry)

Klein disk model (projective model): points represented as being inside a unit disk.
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2.3. 2D Coordinate Geometry
2.3.1. Coordinates
A point P can lie in the xy Cartesian coordinate plane with origin O (frame x0Oy).

The coordinates of P can be written as P(x, y). (x: abscissa of P, y: ordinate of P)

2.3.2. Equations of Lines

Gradient-Intercept: Point-Slope: Two-point Interpolation:
y-y,  Y,7Y,
y=mx +c y—y,=mkx—x) r—x % —x

1 2 1

2.3.3. Ratio Division of a Line Segment

» n B B hn 0
m m
A A
Internal Division: External Division:
If |[AP| : |PB|=m : n, then If [AQ| : |BO| =m : n, then
nx + mx ny +my mx_—nx my_ —ny
P:( :n+nB’ :n+nB Q:( rz+nA’ rS+nA

2.3.4. Tangential Angle and Angle Between Lines

For a tangent line of gradient m, the angle with the x-axis is y, where

m —mz

d
Y —tany Ay =tan™

m= dx

1+m1m2

2.3.5. Parallel and Perpendicular Lines

If lines L, and L, have gradients m, and m, then



my=my < Lq|| Ly

and

mims = -1 L1 J_ L2.
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2.3.6. Area of an Irregular Plane Polygon From Coordinates

Shoelace formula: if an n-sided irregular polygon has vertices (ordered cyclically
anticlockwise) at coordinates (x,, y,), (x,, »), ..., (x,, y,) then the area enclosed is

n

Azlz Li  Tit1 :1(331 L2 T2 T3 Ln 961)
2410Y Yier| 2 \|Y1 Y2|  |¥2 U3 Yn Y1
In the case of a triangle, n = 3, this is equivalent to
1 1 Y 1
A= 5 [%2 v 1 = D) (T1Y2 — Toy1 + TaY3 — T3yo + T3y — T1Y3)
r3 Yz 1

2.3.7. Collinearity of Points and Concurrency of Lines

Collinearity: three points (x;, y,), (x,, 1»), (x3, ¥3) lie on the same line if

1 y1 1
o Yo 1|=0 & Ty — Toy1 + Toys — T3y2 + 23y — 11y3 = 0.
x3 Y3 1

Concurrency: three lines a\x + b,y + ¢, =0, ax + b,y + ¢, = 0 and asx + byy + ¢; = 0 intersect at a
single point if

a; by

ay by | =0 < aj(becs—bzce)—by(agcs—ascs)+cq(azbs—asby) =0

az by c3

In homogeneous coordinates (Section 4.2.3), there is a duality between collinearity of
points (X, Y, Z) and lines (4, B, C).

2.3.8. Equation of a Circle

For a circle with centre (x,, y,) and radius r, the equationis (x — xO)2 + (y — yo)2 =7

@-x)" -y
Standard form: — + — =1

T T
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2.3.9. Centres of a Triangle: Incentre, Excentres, Circumcentre, Barycentre, Orthocentre

For a triangle with vertices 4 = (x,, y,), B = (x5, v5), C = (x¢, yc) opposite sides of length a, b, c:

centroid /
barycentre

excircle A

circumcircle

Incentre: 0 = ax,+bx,+cx, ay, +by +cy, radivs. . — _2AABC
] B a+b+c '’ at+b+c ’ S
ax +bx_—cx ay +by_ —cy )
R B A_TB e . _2AABC
Excentre (of ): 0' = ( atb—c 4t bh—c , Exradius: R' = Ttbh—c (on 4B)

Circumcentre:

0" = (xAz+yAz)(yE—yC)+(xBZ+yBZ)(yC—yA)+(xcz+ycz)(yA—yB) (xA2+yAZ)(xC—xB)+(x82+y32)(xA—xC)+(xcz+ycz)(xg—xA)
Z(XA(yB_yC)+xB(yC_yA)+xC(yA_yB)) ’ Z(XA(yB_yC)+xB(yC_yA)+xC(yA_yB))

. . abc
Circumradius: R = 2 AABC
< xA+xB+xC yA+yB+yC . .
Barycentre: X = 3 ) 3 % along any median line from vertex

_ xAtanA+thanB+thanC yAtanA+thanB+thanC
Orthocentre: 0 =

tanA+tan B + tan C ’ tanA+tan B+ tan C ) (4, B, C: angles)

e Every triangle has a unique incentre, circumcentre, barycentre (centroid) and orthocentre.

e Every triangle has three distinct excentres.

e The size order of the excircles follows the size order of the lengths of the tangent edges, or equivalently,
the size order of the opposite internal angles.

e The incentre, excentre and external point (O, O’, C) are collinear.

e Area relations for incircle and excircle:

AABC = AAOB + ABOC + ACOA = —ar + br + 5cr = sr
AABC = AO'BC + AO'AC — AO'AB =—aR' + bR ——CcR = (s — OR’

2 2
r +s
4r

e The Appolonius circle to the three excircles is internally tangent to all three and has radius
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2.3.10. Properties of Conic Sections

Ellipse Parabola Hyperbola
Q. i y=tx
P P
: d T Jd 9’4 d1¢
¢
i 0 ¢ A\ ea ¥
Diagram T e —— ; . e
4
-b
Cartesian LY 2 S
equation a + b’ y = 4dax 7z 2
b 4a cos O b
r=———(poleatO) | r =—-_—(poleat 0) | r = ———— (pole at 0)
Polar \1- ¢’ cos” 0 5”21 0 \/e2 cos"8—1
equations _ b2 d = ———— (pole at A) _ b
d1 T —— (pole at A) l—cos¢ d1 = e (pole at A)
Parametric X=acost y=bsint 12 , x=asect, y=btant
X=—15y= .
equations | x=xasecht y=btanh¢ 4a Y x=xacosht, y=bsinht
O: centre O: vertex 0: centre .
A, B: focal points (foci) A: focal point (focus) A, B: focal points (foci)
Definitions a: semi-major axis a: focal length a: Semi-major axis
b: semi-minor axis e: eccentricity e: eccentricity
e: eccentricity x = -a: directrix y=x= %x: asymptotes
.. 2 b 2 2 b 2
Eccentricity e=1-(7); O0<e<A1 e=1 e=1+(7); e>1
Plane-cone | Plane gradient shallower | Plane gradient equals | Plane gradient steeper than

intersection

than the cone.

that of the cone.

the cone.

Reflective
property

Internal rays on AP are
reflected into B.

Incident rays on PO
are reflected into A.

External rays parallel to AP
are reflected towards B.

Distance
property

IAP| +|BP| = d, + d, = 2a

[AP|=|PQ|=d=x+a

|4P| - |BP|| = |d; - dy| = 2a
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2.3.11. Conic-Line Intersections

Foraline L: y = mx + ¢, and conics translated to the origin given by
2

2 2 2
ellipse E: = + -bLZ =1, hyperbola H: = — -ZT =1, parabola P: y* = 4ax
a a

Then L makes either zero, one or two intersections with any conic, with x-coordinates of
all intersections at the roots of

e Ellipse-line: (azm2 + bz)x2 + 2a°mex + az(c2 - bz) =0
e Hyperbola-line: (azm2 - bz)x2 + 2a°mex + az(c2 + bz) =0
e Parabola-line: m’ % + (2mc — 4a)x + =0

Condition for tangency: discriminant of the quadratic is zero.
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2.3.12. Canonical Matrix Equation of Conic Sections (Homogeneous Coordinates)
Equation of a Conic Section: any conic plane curve can be represented by the equation
AxX*+By*+2Cxy+2Dx+2Ey+F=0

which can be represented in homogeneous coordinates (see Section 4.2.3) as

x'Qx=0
x A B D
where X= [y|and Q= |B C E|isa symmetric 3 x 3 matrix.
1 D FE F

Conic Equation from Points: five points on a conic define the conic: (x, y,) (i=1, 2, 3, 4, 5).
[2? o zy z oy 1]

] Y Ty 1 Y
Ty y% T2Y2 T2 Y2
T3 y§ Tr3Yys I3 Y3
T Y] TaYs Ty Ys

2
Ty Ys TsYs Ts  Ys

The coefficients 4...F can be found by evaluating the

det _ o Six5 x5 sub-determinants across the top row.

Note that C, D, E have an extra factor of 2.

T G

Affine Transformations on Conic Sections: transformations can be applied to a conic using

Q=R"H QR where R is a 3 x 3 affine transformation matrix mapping
a conic represented by Q into a conic represented by Q’

For the general form of the affine transformation matrix R, see Section 4.2.3.
Geometric Parameters from a Conic Canonical Matrix: using singular value decomposition.

For any conic section x' Q’ x = 0, define the matrix M as the 2 x 2 matrix formed from the first two
rows and columns of Q’ (i.e. M : Q — Q’ is a linear transformation matrix from a conic Q aligned
with the {i, j} axes into the conic represented by Q’ translated to the origin).

If the singular value decomposition (SVD, see Section 4.3.7) is written as M = ULV, then:
e The columns of U represent the normalised principal axes of Q’.

e The columns of V (rows of V') represent the vectors on the original quadric Q which are
mapped to the principal axes of Q’.

e The singular values are the linear scale factors in the corresponding axes.
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2.3.13. Radius of Curvature

A curve in 2D space has a curvature «, with associated circular radius of curvature R, where

1\2)3/2
Cartesian, y(x): R = 1+ @)°) (x: independent var, y: dependent var)

y//

"2 1N\2)3/2
Parametric, {x(¢), y(¢)}: R = ()" + (¥)°) (¢: parameter)
x’y” _ l‘”y/

2 2\3/2
Polar, r(6): _ (r + (")) (r: radial distance, 6: polar angle)
r2 4+ 2(r")2 —rr”

/

Intrinsic, s(y): R=s (s: arc length, y: tangential angle)

where 1~ is the derivative with respect to its argument.

2.3.14. Areas, Arc Lengths and Centres of Mass for Plane Curves by Integration

Area 4 Arc Length s Centre of Mass (of plane region under curve)
b b b b
. dy \? - 1 - 1,2
Cartesian [ ydx /1 + (W) dx X = Tf xy dx, y =7fy dx
a a a a
F d F dx \? dy \? - 1 F d - 1 P d
Parametric [ y4de  [A[(4) + (&) dr  ¥=dfmyLan y= Sy L a
tl tl tl tl
6, o, 5
Polar % [ +*de ) P+ (%) de (use Cartesian substitutions)
0 0

1 1

59


https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20s'%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20R%20%3D%20%5Cfrac%7B%5Cleft%20(%201%20%2B%20(y')%5E2%20%5Cright%20)%5E%7B3%2F2%7D%7D%7By''%7D%20#0

All Notes 2.3. 2D Coordinate Geometry

2.3.15. Tessellation (Tiling) and Partitioning of the Plane

Tessellation uses a fixed set of tile shapes to tile the plane completely, using only rotation
and translation of the tiles to form unit cells which span the plane.

Delaunay triangulation (DT) is a mapping from a set of vertex points {P}, to a set of
triangles {T}; connecting the points {P}, such that no point in {P}, is inside any triangle in
the set. DT results in the maximisation of the smallest angle in every triangle. The convex
hull of the vertices is the smallest convex polygon containing all vertices. If there are n
vertices, of which 4 are on the convex hull, then there are 2n - 2 - & triangles and 3n - 3 -
edges on the Delaunay triangulation.

The Voronoi diagram of a set of vertex points {P}, is a partitioning of the plane into
convex irregular polygonal cells. The vertices of these polygons are the circumcentres of
the corresponding Delaunay triangles (duality). Gradually expanding circles at equal rates
from each vertex produces the Voronoi diagram when any two circles ‘collide’. The
closest vertex to any given point is the vertex contained within the cell.

Delaunay Triangulation Voronoi Diagram

vertices in black, circumcentres in red vertices in black, cells (partitions) in red

The Delaunay and Voronoi partitions are useful in modelling a wide variety of phenomena.
They can also be extended to higher dimensions.

The Bowyer-Watson algorithm computes the Delauney triangulation of a vertex set.

60



All Notes 2.4. Vectors and 3D Geometry

2.4. Vectors and 3D Geometry
2.4.1. Direction Cosines
If a vector a = (a, a, a,) makes angles a, f, y with an orthogonal set of x-, y- and z-axes, then:

e the quantities cos a, cos  and cos y are the direction cosines of a.
e cosa=a,/|a, etc.
e a=|al(cosai+cospfj+cosyk).

The direction cosines represent the component of a unit vector along a parallel
to each axis.

2.4.2. Scalar Product (Dot Product) and Vector Product (Cross Product) Algebra

The scalar and vector products are defined by components as

a-b=a'b=> ab; = ab, + ayb, + a.b.

i j k
axb=la, a, a,|=(a,b,—a.b,)i+ (a;b, —a,b,)j+ (asb, —a,b,)k
b, b, 0,

In terms of magnitudes and angles,
a-b = |a||b|cos@ ax b =|a||lb|sinf i
Commutative / anticommutative properties:
a-b=b-a axb=-bxa

Useful identities: (for the triple product identities see Section 2.4.4)

la x b|* + |a- b|* = (|a]|b|)* (Lagrange’s identity)
latb[’=a-a+b-b+2(a-b) (from cosine rule)
ax(bxc)tex(axb)+bx(cxa)=0 (Jacobi identity)
(axb)-(cxd)=(a-c)(b-d)—(b-c)(a-d) (Binet-Cauchy identity)
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2.4.3. Right-Hand Rules for Vector Product Orientation

* axb
*axb

S

Right hand rule: Right hand grip rule:
for rotations

2.4.4. Triple Products

Scalar triple product:

a, ay a ay, by ¢y
a.(bbxe) = | by by b, |=|ay by ¢
Cy Cy ¢ a, b, c;

b.(cxa)=c.(axb)

—a.(cxb)=-c.(bxa)=-b.(axc)

Vector triple product:

ax(bxec) = (a.c)b—(a.b)c
(axb)xe (a.c)b—(b.c)a

2.4.5. Vector Products for Areas and Volumes

Area of triangle spanned by a and b: A= % |]a x b|
Volume of parallelepiped spanned by a, b and c: V=1]a (bxc¢)]
Volume of tetrahedron spanned by a, b and c: = é la-(bxc)|
N 1]
Volume of a polyhedron of N faces, triangulated as Ql{a,-, b,c}: V = G Z a; - (b; x ¢;)
i=1
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2.4.6. Equations of Lines and Planes

Line (p=[p, p, p.]":pointonline,d=[d, d, d.]": direction vector):

x=p, y-p, z—p, B B
7 = Z = Z (=10 r=p+td (r-p)xd=0
scalar (if not parallel to any axis) parametric non-parametric

Plane (p: point on plane, {a, b}: vectors in plane, n=[n, n, n.]": normal vector to plane):

nxx+nyy+nZZ=d r=ptsa+thb (r-p)'n=0

scalar parametric non-parametric

Plane-Plane Intersection: I1;: (r - p;)*n, = 0 and IL,: (r - p,)*n, = 0 intersect in a line with
direction vector given by (n, X n,). In a view parallel to this vector, the two planes are
projected as straight lines parallel to all viewing planes, which can simplify problems.

2.4.7. Shortest Distances Between Points, Planes and Lines

Point ¢ to line r=p + ¢ d: Aumin = (¢ - p) % d|
cC—p)n
Point ¢ to plane (r - p)*n=0: dmin:—l( |r1i)|) |
— -(dy xd
Skew linesr,=p,+¢td,and r,=p, + ¢t d,: Aymin = (P~ p2) - (d 2)
|d1 X d2|

To find the point(s) of closest approach, define generalised point(s) (r; and r,) on the object(s) in parametric
form and assert perpendicularity: solve (r, - r,)*d, =0 and (r, - r,)*d, = 0 for parameters ¢, and ¢,.

Shortest distance to an (external) sphere is shortest distance to its centre, minus the radius of the sphere.
Shortest distance to an (external) cylinder is the shortest distance to its axis, minus the radius of the cylinder.

2.4.8. Vector Equations of Curved Surfaces

Sphere, centre ¢, radius R: (r-c¢)-(r-c)=R? or |r-¢/=R
Double cone, axis n, opening half-angle 6: (rn)®>=r-rcos?d or ren=r| cos 6
Cylinder, axis n, radius R: (rxm)*(rxm)=R* or |rxn/=R
Ellipsoid of revolution, r-f|+|r-f,)|=2a

foci f;, and f,, semi-major axis a:

Hyperboloid of revolution (two sheets), Ir-f,| —|r-1£))|=2a
foci f, and f,, semi-major axis a:
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2.4.9. Surfaces and Volumes of Revolution and their Centres of Mass

For a plane curve rotated 360° about a horizontal axis to produce an axisymmetric solid or

surface (shell), properties are:

Volume COM (solid) Surface area COM (shell)
b b
Cartesian, y(x) b [xy" dx b : [y N1+ o) dx
revolving around nfy dx ab 2 y\1 + (v) dx ab
the x-axis a fy2 dx a [y\1+ (y')2 dx
, b b
P{"’"(a)me(")'}?’ - fxy’x'dt A I P2 (OO
x(t 4 t T[f ' d a ' ] a
. y x'dt p 2nfy &) + ) dt |
reV(:::/elng:):ioSund a fyzx' dt a [ x'y (x')2+ (y')2 dt
X= a a

The COM (centre of mass) is given as its x-coordinate, x, and assumes uniform density. The

other ordinates are y = z = 0.

For COMs of common geometric figures, see Section 6.3.

For Pappus’ theorems for solids of revolution and solids swept along a curve, see Section 2.1.5.
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2.4.10. Quadric Surfaces (3D Extensions of Conic Sections)

Surface Cartesian Parametric Canonical Matrix Q
2 2 2 X=acosusinvy _% 0 O 0-
N SHS+ 5 =1 =bsinusinv 0 L 0 o0
(R b Y R
. «u:‘»““‘,“!""}g N z=¢ COS vV 0 0 % 0
SR e et g i C
a, b, c: semi-axes _
Ellipsoid "0 O<u<2m O<v<g| LO O O —1]
z2 x2 i 1 7]
===+ X =av COS u = 0 0 0
b .
4 ‘ ¢ y=bvsinu 0 b% 0 O
- c ¢ , z=cv 0 0 —L1 0
2SN —, —: slopes in xz c?
"..‘?‘A\\\}\\\\\\\“‘ a b 0 < < 2 0 0 O 0
and yz planes Susen - -
Cone ZP
2 2
AN ST )
¢ gt o2 X=avCcosu = 0 0 0
a?
y=bvsinu 0 bLQ 0 0
z Zp. =2 1
'¢?dg¢?b. z=cv 0 0 01 —
semi-axes of ellipse | o<y <27, v>0 0 0 —5 O
cross-section at z
2 o yz
riniainier xZaVCQShu a% 0 0 0
y= bvsinhu 0 _ 1 0 0
< a: focal length z=o/ b 1
c ’ 0 O 0 —5
of hyperbola (only for |L| < by 0 0 _% 0
1 X - a
cross-section at z
xZ yZ ZZ
7t 7=7=1 | x=acosucoshv L0 0 0
\:“\““";’OI'I” . a 1
) )\;\""/ kkkkk = = y=>bsin u cosh v 0 &z O 0
x ,/’l:’:"l"“t\\\‘\\ y \/1 +?a, \/1 +7b: z=csinh v 0 0 _lz 0
,?,/f/:’l:ll:l'l":‘.n’z. . . c
— semi-axes of ellipse 0<u<2m 0 0 0 -1
cross-section at z B
— 77t 7=1| x=acosusinhv [[-& 0 0 0
_ i y=bsinusinhv 0 _biQ 0O 0
N%?—lafy%?‘1b3 z=+ccoshv 0 0o L o0
. . C
semi-axes of ellipse 0 0O 0 -—1

Hyperboloid, two sheets

cross-section at z

O<u<m
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2.4.11. Quadrics in Homogeneous Coordinates
Any quadric surface can be represented by the equation
a, x>+ a,, V+a,?+ 2a,,xy+2a,yz+2a,xz+2a,x+2a,y+2a,z+a,=0

which can be represented in matrix form as x" Q x = 0 (canonical form) where

x Agz Ary Qgz A
a Ay Qyy Qo | , :
X = Y| and Q= | "™ "YW "¥F Y| isasymmetric 4 x 4 matrix.
1 y Qy ap a4y

Quadric Equation from Points: nine points on a quadric define the quadric: (x;, ) (i=1,2, ... 9).

The coefficients a,,, a,, ... a; can be found by evaluating the ten 9 x 9 sub-determinants across the top
row of the 10 x 10 matrix A, whererow 1is[x* y* 2> xy yz xz x y z 1]androws2-10 are:

2 2 2
[x7  yi Z; Xy yvizi Xz X Y oz 1]

The equation satisfies |A| = 0. Note that the off-diagonal coefficients in Q have a factor of .

Quadric-Line Intersection (Raytracing of Quadric Surfaces)

A line x = p + An intersects a quadric x' Q x = 0 at values of 1 satisfying the quadratic
(m"Qn)*+@2n"Qp)i+(p'Qp)=0.

A quadric generally intersects a plane in a conic section curve in the plane.

Affine Transformations on Quadric Surfaces

Transformations can be applied to a quadric using

Q’=[R")QR" where R is a 4 x 4 affine transformation matrix mapping
a quadric represented by Q into a quadric represented by Q’

For the general form of the affine transformation matrix R, see Section 4.2.3.
Singular Value Decomposition of a Quadric Canonical Matrix

For any quadric x" Q’ x = 0, define the matrix M as the 3 x 3 matrix formed from the first three
rows and columns of Q’ (i.e. M : Q — Q’ is a linear transformation matrix from a quadric Q aligned
with the {i, j, k} axes into the quadric represented by Q’ translated to the origin).

If the singular value decomposition (SVD, see Section 4.3.7) is written as M = UXV', then:

e The columns of U represent the normalised principal axes of Q’.
The columns of V (rows of V') represent the vectors on the original quadric Q which are
mapped to the principal axes of Q’.
e The singular values are the linear scale factors in the corresponding axes.
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M3. CALCULUS

3.1. Limits and Numerical Methods
3.1.1. Formal Definition of Limits
Let ' (x) be defined for all real x # a over an open interval containing a. We say that

lim f(x) =L (the (two-sided) limit of f(x) as x approaches a is L)

x—a

if, for every ¢ > 0, there exists some 6 > 0, such that if 0 <|x - a| <J, then |f(x)- L |<e&:

lim f(x) =L & (Ve > 0)@35 > 0)(Vx €D): (0< |x —al <8 = |f(x) — L| < )

x—a

The one-sided limits are lim+ f(x) (right-sided) and lim f(x) (left-sided).

x—a x—a

e For limits to infinity, the condition is x > ¢ (if a is +o) or x < -4 (if a is -o).
e For one-sided limits, use 0 <x - a < ¢ (right-sided) or 0 <« - x < ¢ (left-sided).
3.1.2. Limits at Discontinuities and Circle Notation

A graph of a function y = /' (x) should include open circles O for limiting values and closed
circles e for defined values. For example:

Y lim f(x) = 0 (removable discontinuity)
x— =2
lim f(x) = —1 but f(— 1) =1 (jump discontinuity)
x— -1
lim f(x) =0 and lim f(x) = f(0) =1
x>0 x>0

lim f(x) =0 and lim+ f(x) =3 and f(1) = 2

N 0 1 9 r x—1 x—1
\/ \ lim f(x) and lim f(x) do not exist.

x—0 x—1

A discontinuity at x = « is said to be removable if lim f(x) exists. Continuity can be
x—a

established by including x = a in the domain of f(x), at which f(a) :=lim f(x) = lim f(x).

x—a x—>a
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3.1.2. Standard Limits
Asymptotic (x — o) growth order: X >>x! >> g >> x9 ¥ >>x log x >> x >> log x >> 1.

Limits to values:

lim (zp") =0 |p| <1, Va €R. . x"—a n1

r—00 hm — = Na , n & Q
. @ z—a I —
lim (z*Ilnz) =0, Va > 0.
® x—0 o 1
. sinax . tanax lim =1.
lim = lim =a e z—0 I
e z—0 z—=0 X
T . a* —1
. a lim =Ina, a>0.
lim { — | =0. e 250 I
o I !

Limits to functions:

lim (1+£) = lim (1 + nz)"/" = &*
® n—oo n n—0

1; n xr —%:ﬂ

11 COS — = €
e "X \/ﬁ

xr 1.2

lim cosh” [ — | = e2”*

e N> (ﬁ)

Derivative and integral as limit definitions:

limn(f (az+%)—f(:v)):af’(:1:), Va € R

1, (k !
lim = =) =
nzalonzk:of@ [, st ae

For Stirling’s formula involving asymptotic expressions for n! and In n!, see Section 1.7.1.

(forward difference)

(Riemann summation: rectangular rule)
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3.1.3. Numerical Differentiation

Difference Quotients (finite difference approximations to derivatives):

e First derivative, forward difference: f'(x) = [t h})l — /() + O0(h)

e First derivative, backward difference: ~ f'(x) ~ [ _{l(x =L 0(h)

e First derivative, central difference: fl(x) ~ [t h) z_hf x=h . 0(h")

e Second derivative, central difference:  f"(x) ~ [t h) 2] g") e h) 0(h%)

h
For partial derivatives (central differences):

. . af (x, +h,y)— —h, af (x, L y+h)—f(x,y—h
e First partials: f(ax y) _ fC y)th(x Y) and f(ax ) Iy )th(xy )
2
H a ) +h, _2 ) + —h’
e Second partials: fo; y)  SEthy) f(?; )+ fx—hy)
dx h
2
: : 0 f(x +hy+h) —f(x—hy+h) —f(x+hy—h)+f(x—hy—nh
e Mixed partials: af(x Y JethytH=fx-hy+h Zf(x y—m+fx-—hy—"h
x dy 4h
For discrete sequences:
H un+ _un d dz A
e One-sided: — = d_LtL + d_t’;z_f +
; L Y T du du At
e Two-sided: ————=—-+ = +..

Python (SciPy): f is a callable function

from scipy.misc import derivative
gradient = derivative(f, x, dx=h)
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3.1.4. Numerical Integration by Riemann Summation

b
A definite integral I = [ f(x) dx can be approximated by splitting the interval [a, b] into N

equally-spaced intervals containing N + 1 ordinates from x, = a to x,, = b inclusive.

Midpoint Rule Trapezium Rule

| |

Simpson’s Rule (N even)

< A

nilnv

. [ . . 1. .
PO I T T I

Xy

X Xy x5 Xy X X XU Xl Xg X3 X4 Xj Xﬁ XU Xl Xg X3 X4

e Midpoint Rule: I =~ Z f(z}) - Ax

N-1
e Trapezium Rule: [~ A1 (f(xo) + flzn) +2 Z f(%))

2 —
N N_1
S A . 2
e Simpson’sRule: |~ 737 f(xo) + flan) + 42 f(@ai1) +2 Z f(x2;)
i=1 i=1

(Simpsons’ pattern of factors: 1, 4, 2,4, 2, ..., 4, 1)

Maximum error bounds: if £ is the absolute error in the approximation to /7, then

Midpoint Error Trapezium Error Simpson’s Error
K —a)? K —a)? M(b— a)®
Fyl < —— Erl < ——— EFql < — 2
Euls —ye  Brls g 1Bl s g

where | f7(x) | <K and |f®(x)|<M foralla<x<b.

Python (SciPy): f is a callable function representing the integrand

from scipy import integrate
val, abserr = integrate.quad(f, a, b)
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3.1.5. Fixed Point Iteration for Solving Algebraic Equations

A root x = a to a single-variable equation f(x) = 0 can sometimes be found by writing the
equation in the form g(x) =x (so that g(x)=f(x) + x) and iterating (for suitable x,):

xn+1 = 'g(xn)

& lim x =
n

n— oo

The iteration process, if it converges, can be represented as:

Y
A

Y
A

a=g(a) if[g']<1

Yy

AA

x1

Convergent Staircase

Convergent Cobweb

Convergence Behaviour: the type of iteration depends on the gradient of g(x) in the
region between the initial point and the true root. Convergence requires |g’(x)| < 1. If
the true root is x = a then the behaviour around the root is:

Convergent Staircase:
Convergent Cobweb:
Divergent Staircase:
Divergent Cobweb:

If 0 <|g’(x)] <1 then convergence is linear:

If g'(a) = 0 then convergence is quadratic:

when 0<g'(a) <1.
when -1<g'(a) <0.
when g'(a) > 1.
when g'(a) < -1.

xn+1 —a
. |xn+1 B 0(|
lim ——— =1 (some constant).

2
nve |r,~ql
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3.1.6. Newton-Raphson Method (Gradient Descent) For Solving Algebraic Equations

A root x = o to a single-variable equation f(x) = 0 can be found by iterating (for suitable x,):

fx) .
X =X = lim X =« (if convergent)

n+1 n f (xn) n—w

The iteration process forms a pattern as follows:

LYy

—

Convergence Behaviour: convergence of Newton’s method is generally difficult to predict.
If the root is a single root then convergence is quadratic.

If the root is repeated (algebraic multiplicity m) then convergence is linear, but can be

accelerated to quadratic by using the iteration X =X —mX % instead.
Generalisation to Multivariable Equations: for systems of algebraic equations of the
form f(x) = 0, where f is a vector-valued function containing each equation and x is a
vector of variables, Newton’s method is x,.; =x, — J'(x,) f(x,) where J is the Jacobian
matrix (Section 3.5.2) of f. For increased efficiency and numerical stability, instead of
computing J, the system of linear equations J(x,) (x,.; — x,) = —f(x,) can be solved for
X,.1 - X, at each iteration.

Python: f is a callable function representing the system (input: array x; output: array f (x))

from scipy.optimize import fsolve
root = fsolve(f, x0)
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3.1.7. Numerical Methods for ODEs

An ODE integrator operates on either an individual ODE (y’ =f'(z, y) ) or a system of
coupled ODEs (y’=f(¢,y) ). The iteration is of fixed step size 4, i.e. t,,, =1t,+ h.

Euler’s Method: Euler’s Improved Method: Predictor-Corrector (Heun’s method):
Yn+1 = Yn + hf(tna yn) Ynt1l = Yn—1 + th(tna yn) @n+1 = Yn + hf(tm yn)

ﬁ[f(tm yn) + f(tn—l—l; @n-{—l)]

Yn+1 = Yn + 9

Stérmer-Verlet Integrator (symplectic: ideal for position-velocity-acceleration equations)

For a 2nd-order ODE given by x” = A(z, x, v), (Withv=x"and ¢, =1t,+ Al
1.setx; = xg + vo At + %A(xo) At
2.forn=1,2, ... iterate
Xpe1l = 2%, — X1 + A(x,) A2,
For the more sophisticated Gauss-Jackson integration algorithm, see Section 9.1.6.
Runge-Kutta Method (RK4; implicit 4th order): Butcher Tableau for RK4

L (see Section 3.1.7.)
Yn+1 = Yn + 8 (knl + 2]{7712 + 2kn3 + kn4)

0
kno = f(tn+0.5h,yn+0.5hk:n1) 1/2 0 1/2
kns = ftn +0.5h, yn + 0.5hky) 1o 0 1
1/6 1/3 1/3 1/6
kna = f(tn+ h,yYn + hkn3) /6 1/3 1/3 1/

Programming:
MATLAB: implements RK4. f is a callable function for the RHS.

[t, y] = ode45(f, [t_start, t_end], yo0)

Python (SciPy): f is a callable function representing the RHS (inputs: ¢ and y; output: y’)

from scipy.integrate import odeint
y = odeint(f, yo, t_array)
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3.1.8. Butcher Tableau for Generalised Runge-Kutta ODE Integrators

N
A general RK method has an iteration step of the form Yo =y h bk ..
i=1

(s: order of the method, b;: coefficients, k,; evaluations of f'near ¢, and y, (below)).

Explicit Scheme Implicit Scheme

i-1 s
km, =f t + cih, y hEl aijknj km, =f t + cih, y hEl aijknj

0 €| a1 a2 ais
Co | Aoy C2 | Q21 Q22 a2s
C3 | @31 A32 :

Cs | Qs1 Qg2 - As s
Cs | Gs1  Us2 Qg s—1 bl b2 e bs

bl bQ bsfl bs

This allows any RK method to be represented as a matrix a, a vector b and a vector c,
allowing for efficient computation.
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3.2. Series Expansions
3.2.1. Single Variable Definitions of Maclaurin Series and Taylor Series

The Maclaurin series about x = 0:

r

> ()
f(x) = Z / !(0) 2" = f(0) + f(0)x + %J‘””(O)ar;2 + éf’"(O)x?’ + ...

The sequence of coefficients of x” is given by z ! [f(l'_l)] (n) where z" is the inverse
z-transform (see Section 3.4.12).

The Taylor series about some value a:

® (g
1@ =3 oy = @)+ @ - @)+ 5@ - 0

T

This can also be written in the form (expanding about a fixed x)

X FO) (g
f(z + éx) :Zf 7“!( ) -h" :f(:(:)+f'(:c)5:c—|—%f”(;@)(533)2+...
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3.2.3. Maclaurin Series Expansions of Common Functions

Exponentials and Logarithms:

€$:1+$+Z_T+:§_?+”':§%Z_T
ewzl—x—i—Z—?—z—T—F---:i(—l)”i—T
In(1+ z) :x—%Q—I—%S—--- :7:0(—1)”57:11
B
Generalised binomial series expansion:
(1+:L‘)”:l—l—nx+n(n_l)x2+n(n_1)(n_2>x3

2! 3!

Trigonometric and hyperbolic functions:

] 3 d o . g2+l
Sm:x_?*ﬁ_'”:;<_1) 2n + 1)
2 gt o0 o
cosle—g—kﬂ—-..:;_:o(_l) oD
ta +1 3+2 5 17 T
nr—==x =T —X —2x
3 15 315
1 5! 61
=14 =2+ g — ...
secx +2x +24x +72Ox +
3 ° > p2n+1
inhr = R g _
sinh x x+3!+5!+ n:O(2n+1)!
coshx:1+§+z+...:n§:%<2n)!
1 2 17
tanhz =2 — =23+ —2% — —2"+ ...

3 15 315

1 5 61
sechx:1—§x2+ﬂx4—%x6+~-

for all complex x

for all complex x

for all x| <1, x # -1, principal value

for all |x| <1, x # -1, principal value

for all complex x

for all complex x
for all |x| < -

T
forall [x[ <—-

for all complex x

for all complex x

T
forall [x| <=

T
forall [x[ <=

for all x| <1
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Inverse trigonometric and inverse hyperbolic functions:

1 3 o}

sin_lx:x+8x3+ﬁm5+mx7+--- for all x| <1
s 1, 3. 5 . .
. . S Y SR orall |x] <1
cos T 5 x 6x 4Ox 112x x| <
23 N g 2l .
tanlr=r— 34 2 4= —1)" forall x| <1, x #=+i
an”'r =z — ox + = + nz_%( ) 1
T 2 2 o = g2l .
t7ly =2 oz a2 - —1)" forall |x| <1, x#=+i
e R T T > ;( S T &
o 3 5 L (—=1)™(2n)! 2!
Wy ogd e 250 T
R R T T TR nz% 2a(n2(2n 1 1) orallkd<1
L 3 .TE) .I‘7 > $2n+1
tanh x:x+§+€+7+---= 1 for all x| < 1
n=0
Special Functions:
2 2 1 1 2 — gl
for=—x— 3 5 _ Ty = 2 _1y_
erf = Zmr gt g g e = 2 ) () gy forall
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3.2.4. Lagrange’s Inversion Theorem

If y = f(x) and therefore x = f_l(y) then a Taylor series for x about a is given by

- e ‘gn n
[fO)=x=a+ 3 Sr0-f@)

. 9, _ d x—a n
The coefficients are — = where g = xlina P ( 00— f@ ) :

For shifting of Maclaurin series, the inverse function of f(x + a) is f_l(x) - a.

The radius of convergence is not easily determined from the function alone.

3.2.5. Laurent Series

Laurent series allow for inclusion of poles by summing over all integer powers of x, often
used for complex functions f(z). The Laurent series for f(z) about ¢ is given by

f@= % g (-9

n=—oo

f(2)

, dz.
2T Y (Z_C)n+1

(Cauchy contour integral around y: counterclockwise Jordan curve where f(z) holomorphic)

The coefficients are g =

78



All Notes 3.3. Differentiation and Integration

3.3. Differentiation and Integration
3.3.1. Continuity, Differentiability and Smoothness

A function f(x) is said to be

e Continuous at x = a: if lim f(x) = f(a)
x—a
e Differentiable at x = a: if lim [at h})l — /(@) exists
h—0
e Smooth (infinitely differentiable) at x = a: if /(x) is continuous at x = a for all

nonnegative integer n.

If these terms are used without specifying a point x = a, then the condition must hold for
all values of a in the domain of f.

3.3.2. Limit Definition of a Derivative
The first and second derivatives as limits are (as forward differences, assuming they exist):

fi(x) = lim f(x+h})l—f(x) 00 = f(x+h)—2f(2x)+f(x—h)

rR—0 h

3.3.3. Limit Definition of a Definite Integral (Riemann Sum)

b n
In general, / f(z) dz = lim Zf(xr) Ax
a n—oo —1

where Ax = < and x =a-+ (r — 1) Ax.

n

3.3.4. Mean Value Theorem and Intermediate Value Theorem

Mean Value Theorem: for a monotonically increasing function 1 (x), we have f(a) <M < f(b)

1
b—a

b
where M = [ f(x) dx is the mean value of f(x) on a < x <b.
a

Intermediate Value Theorem: for a continuous function f'(x) on the domain [q, 5], for all y
such that f'(a) <y <f(b), there exists some a <x < b such that y = f(x).

Bolzano’s Theorem: if a continuous function has values of opposite sign inside an

interval, then it has a root in that interval.
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3.3.5. Derivatives and Integrals of Functions

Algebraic, Exponential, Logarithmic, Trigonometric and Hyperbolic functions:

Function, f(x)

Derivative, f“(x)

Integral, F(x) (+ C)

1 0 X
n n-1 1 n+1
X nx nt1 X
\/7 1 2 el
. £
2/x 3
e’ e’ e’
a
a (Ina)a X
Ina
1
In x| — x(Inx —1)
X

sin x COS X —COS x
COS x —sin x sin x
tan x sec? x In |sec x|
sec x sec x tan x In |sec x + tan x| = In |tan % + %|
CSC x —CscC x cot x —In|csc x + cot x| = In Jtan %|
cot x —csc? x In|sin x|
sinh x cosh x cosh x
cosh x sinh x sinh x
tanh x sech? x In cosh x
sech x —sech x tanh x 2 tan™ tanh = =tan™ sinh x
csch x —csch x coth x —~Injcsch x + coth x| = In [tanh =
coth x —csch? x In |sinh x|
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Rationals with Radicals and Inverse Trigonometric / Inverse Hyperbolic Functions:

Function, f'(x) Derivative, f“(x) Function, f'(x) Integral, F(x) (+ C)
int - — sin™ =
sin”™ x 0

1— xZ laZ _ X2 a
; -1 a a4 X
cos™ ' x . — sec”
1—x X —ax
1 : : sinh =
tan” e — 0
e 1+ Va© +x°
1 — — cosh™ =
sec” x a
|x|\/x2 -1 X —d
. -1 —1 1 L tan—1 L
sinh™ x m az n x2 a a
1 1 1 40X
cosh™ x — 77 (W<a) — tanh™ —
x —1 a —x
- 1 1 1 X
tanh p * - —— (K[>a) — coth™ —
coth™ x 1—x @ —x a a

Integrals of radical functions:
[VEFE do = 5 (Va4 snn 1 D) 4
/\/ﬂdx: % (x\/W—i—aQsinl 2) +C
[ V= dn = (V=@ — oot D) 0

a

DN | =

Other common useful integrands:

1
/sec3x dr = 5 (secztanz + In|secx 4 tanz|) + C

+C

- e (a sin bx — b cos bx) e*® sin(br — tan~! 2)
/e sin bx dox = poa—e +C = N
/eax cos br da — e (a cosbx + bsin bx) Lo — e cos(br — tan™! g)

a2 + b2 VaZ + b2

+C
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All Notes

3.3. Differentiation and Integration

3.3.6. Indefinite Integral Reduction Formulas

Integral, 1, Recurrence Relation
I — / ot du _ 22"axr +0b 2nb I
" Var +b " al2n+1) an+1)""
7 _ dz I var +b a(2n—3)]
" x"ar +b " (n— Dbzt 2b(n—1) "
2" 3
I, = /:E”\/ axr + b dx 1, = "/ (ax + 1) - 2nb I, 1
a(2n + 3) a(2n + 3)
_ dx var +b a(2n — 3)
]n - In = - 1 ]n—l
(pz + q)"Vaz +b (n — 1)(ag — bp)(pz + )~~~ 2(n — 1)(ag — bp)
m,n (am2 + bx + C)'n‘ n a(2n—m—1)(ax® + bz +c)* !  a(2n—m—1) b a@n-m-1) " "
Iy = dz Vlpyn = ! 2n — 3)]1, b 2)1,
] am (ax? + br + )" —etm = D = zm 1 (az? + ba +c)! tolm 420 = Blnan +bmtn =Dl
. 1 —1
I, = /sm” ax dx I, = ——sin" ' azcosax + L]n_g
an n
1 —1
I, = /cos” axr dx I, = —sinaz cos" ! ax + n I, o
an
e™ sin™ ! bx n(n — 1)b?
I, = [ e* sin” bz dx n = ———— (asinbz — bncosbx) + ————1,,_
" f a? + (bn)? ( )T (bn)2 "
e cos™ ! n(n — 1)b?
I, = | €% cos" bz dx = acosbxr +bnsinbz) + ————1,_
" [ a? + (bn)? ( )Ty (bn)2 "
-2
. m,:]l_- -1 —|_ m+111 'm,n—2
m n I . a(n—1) sin az cos" 1 ax n
In = [ sin™axcos" bx dz mn = § 1 n mn—2
a(m—1) sin™ ! az cos™ 1 az m—1 ~mn
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3.3. Differentiation and Integration

3.3.7. Special Definite and Improper Integrals

/_ Z exp(—az?) do = \/g
/: " exp(—ax?) dz = —(27;2;)7{)” \/g
/

oo

x" exp(—ax) dz =
0

> sin ax
=7
— 0

(m — D! (n — 1)

/ sin” z cos" x dox =
0

0 dx s T
n n —1 ese—
ot t+x na” n

(m + n)!!

k!! is the double factorial, see Section 1.7.7.

if m,n both even

otherwise

(for even n)
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All Notes 3.3. Differentiation and Integration

3.3.8. Differentiation Rules: Product Rule, Quotient Rule, Chain Rule
If u, v, w... are functions then:
e Product rule: (w)' = w' + u'v (uvw)' = uwwvw' + w'w + u'vw

e Leibniz rule for repeated differentiation of a product:

(n—p)v(p) 4 uv(n) _ nC u(n—p)v(zo)

@)™ =™ + " P+ L+ nCpu ,

=
™M =
o

e Quotient rule: (—)’ =—F

e Chain rule and Implicit differentiation: if z = u(v(x)) then

1 T v ' ' dZ—dZ dv
zZ=@W@-°v) =u) =u@v dx = dv " dx

3.3.9. Integration Rules: Integration by Parts, Integration by Substitution

b b
d d
Integration by parts: / w— do = [uv]’ —/ v <2 de
. dz @ . dz

b dw v(b)
Integration by substitution: / u(v) o dr = / w dv
a v(a)

Leibniz Integral Rule for differentiation under the integral sign (Feynman’s Technique):

d @ db da M@ af(x,y)
— — — h— I I

3.3.10. Dirac Delta Functions (Impulse Function) and the Sifting Theorem

[oe]

The delta function (x) is zero for all x # 0 and ‘spikes’ to +w at x = 0, such that [ §(x) dx = 1.

—00

Integral of delta function: [ 8(x — a)dx = H(x — a) (H: Heaviside unit step function)

—00

Sifting property: Ofo f(x)8(x — a)dx = f(a) (Convolution: f(x) * 6(x — a) = f(x — a).)

—00

For unilateral convolutions (integrating from 0 to x), the RHS is multiplied by H(x).
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3.3.11. Standard Substitutions for Integration
Integrals of radicals should use trigonometric (trig sub) or hyperbolic substitutions:

2 2 2 2 .
e (a —x) or \Ja —x — let x=asin® or x=acosf

° (a2+x2) or Va’ + x° — let x=atan @ or x=asinh 6
° (xz—az) or \/xz—a2 — let x=asecH or x=acosh§

Integrals of rational functions of x and radicals should use:
1

(ax+ b)\px+q
1
(ax + b)\/px2 +gx+r

More complicated rational functions of x and \/pxz + gx + r should use Euler substitutions:

— let WP=px+gq

1
° — let 7=ax+b

2
o ifp>0: —>Iet\/px2+qx+r=uix\/z;—>x=L
+2u\p —q
, 2 iZu\/;—q
o ifr>0: —>Iet\/px +qx+r=xui\/;—>x=—2
p—u
2 B—auz
o ifg?-4pr>0: — let \/px +qx+r=\/p(x—a)(x—B)z(x—a)u—>x=p—2
p—u

Integrals of rational functions of (sin x and/or cos x) or (sinh x and/or cosh x) should use
the Weierstrass substitution (tangent half-angle substitution):

P(sin x, cos x) X . 2t 1-¢ 2dt
° . — let r=tan—- — sinx= >, COSXx= >, dx = 5
Q(sinx, cos x) 2 1+t 1+t 1+t
2
P(sinh x, cosh x X ) 2t 1+t 2dt
. ( , L let r=tanh—- — sinhx= >, cosh x = >, dx= >
Q(sinh x, cosh x) 2 1—¢ 1—t¢ 1—t¢
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3.3. Differentiation and Integration

3.3.12. Identities for Definite Integrals

Simple identities:

Reflections (King’s rules):

Periodic function, T:

Parity:

Absolute values:

Cauchy-Schwarz inequality:

Monotonically increasing:

b a b b
J o) dx = —{f(X)dx, Jfe)dx = [ f(y) dy

b b b 00 b_a
[feyde =Jflavb—nav | ey =3

a

a+nT b+T
[ f(x)dx =n [ f(x)dx forany a, b and integers n
a b

odd: } f(x)dx = 0, even: }f(x) dx = Z}f(x) dx
—-a 0

—a

b b b
JfCo dx < |[ f() dx| < [If ()] dx

2

b b b

[Fo0) g(x) dx| < (f f@)° dx)(f 90’ dx)
b fo

[ FQx) dx + f(f ST @ dr=bf0) -~ af(@
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All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4. Ordinary Differential Equations, Laplace and Z-Transforms

3.4.1. Classification of Ordinary Differential Equations (ODES)

Ordinary differential equation (ODE): an equation relating a dependent variable y and its
derivatives ()’, y”, etc) with respect to a single independent variable x.

(The dependent function is sometimes also written as y(x) or x(¢), or any other variables.)

Linear ODE: a (x) y(r)(x) = f(x) (n: order, a,: coefficient functions)
r=0
Homogeneous ODE: linear ODE with f(x) = 0. (nonhomogeneous: f(x) # 0)

Autonomous ODEs have no explicit dependence on x e.g. ydy/dx =1 - y.

Nonlinear ODEs may have functions of the derivatives or products of variables e.g. xy, )%, exp y’.
The degree of a nonlinear ODE is the exponent on the highest-order derivative
e.g. x(y")* - (»)* = 1 is a nonlinear second-order ordinary differential equation with degree 3.

3.4.2. Separable DEs (First Order, Nonlinear)
For a separated ODE of the form f(y) dy = g(x) dx, the solution can be found by integrating

y X
both sides. Initial conditions y(x,) = y, can be applied with [ f(y) dy = [ g(x) dx.

yO xO

3.4.3. Linear DEs (First Order, Linear)
Ay
dx
factor I(x)=exp(] P(x) dx) and use the product rule so that the solution is given by

I(x) y(x) = | I(x) O(x) dx. The computation of /(x) does not require an arbitrary constant +C,
even if initial conditions are not given.

To solve an ODE of the form + P(x) y = Q(x), multiply both sides by the integrating
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3.4.4. Homogeneous DEs (First Order, Nonlinear) and Common Substitutions

To solve an ODE of the form =X f( ) substitute u = % so that Z— =u+x % which
. du dx C .
yields fw—u — x which is a separable DE in u(x).
dy

To solve an ODE of the form = f(ax + by + ¢), substitute u = ax + by + ¢ so that

dx

dy 1 du a d_ _
dr b de B’ which ylelds = b f(u) + a, which is a separable DE in u(x).
dy ax+by+c
To solve an ODE of the form = , substitute x = u + & and y = v + k, where

dx azx+b2y+c2

h and k are the constant solutions to the system {a h +b k tec = 0, azh + bzk tc,= 0}.

dy dv
*dx

1

|§ :l:

Then , which is a homogeneous DE in %

¢ dv +b
and the DE becomes = —
du du b
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All Notes 3.4. ODEs, Laplace and Z-Transforms

3.4.5. Linear DEs with Constant Coefficients (Second Order, Linear)

2
d d
To solve an ODE of the form a g 32/ + b d—i’ +cy = f(x): (or with higher order)
X
e Solve the characteristic equation, aX’ + bA + ¢ = 0. (or with higher order)

e Depending on the nature of the roots 4, find the complementary function, y:

o If 1, and 4, are real and distinct,

A A
y, () =Ae’ +Be® or y_(x)=Ccoshlix+Dsinh i

o If 1, =1, =41is the real repeated root,
At
yCF(x) = (A + Bt)e

o IfA;=a+ipand 1, =« - if are the distinct complex conjugate roots,
yCF(x) = eax(A cos Bx + B sin Bx) or Yep = ce” sin(Bx — D)

e Find the particular integral y,; using one of the following methods:
(note that if /(x) = 0 (homogeneous) then y,(x) = 0.)

o Method of Undetermined Coefficients: choose a suitable trial function based on
the form of f(x) from the table in Section 3.4.5, substituting it into the differential
equation and equating linearly independent terms to solve for the coefficients.

o Variation of Parameters: evaluate the Wronskian, W yi(z) ya(w)
where y, and y, are the basis functions of y. () = y1(x) yh(z)
The particular integral is then

y,(x) f(x) y,(x) f(x)
Yo () = =y (0 [ dx + 3,00 [ dx

e By superposition, the solution is y(x) = yCF(x) + yPI(x),

e The remaining constants in the y.x(x) term can be found using initial/boundary conditions.
Alternative methods without solving the characteristic equation are:

e Laplace transform (Section 3.4.15.): take LT of both sides, rearrange for Y(s), take ILT

e Convolution: if the impulse response g(¢) is known, then y(t) = (f * g)(t).
Note that for an LTI system with »(0) = 0 the impulse response is the derivative of the step response i.e.
let f(x) = 1 and differentiate the solution. This is the 1D Green’s function approach.
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3.4.6. Trial Functions for Nonhomogeneous Differential Equations

For linear differential equations with constant coefficients, where f'(x) is linearly
independent of the complementary function:

fx) Trial function
1 C
x", forinteger n CxX"+Dx"'"+ ...+ C,
k* Ck
eloc C ekx
xeM (Cx + D) e~
x" e (Cx"+Dx""'+ ... +Cp) e”
sin px or cos px C sin px + D cos px
et sin px or e cos px (C sin px + D cos px) e~
x" e sin px or x" e cos px (Cx"+Dx""+ ... + Co)(Cy sin px + C. cos px) e

where C, D, ..., C., Cs are undetermined coefficients.

If /(x) has a component which is not linearly independent of y.x(x), then the corresponding
component in the trial function must be multiplied by x, or by x? in the case where this is
still not linearly independent (i.e. repeated real roots solution with the same form as 1'(x).)

3.4.7. Cauchy-Euler DEs (Second Order, Linear)

d d .
To solve an ODE of the form ax’ }2} + bx di + cy = f(x), substitute u = In x so that
X
2 2
dy 1 dy dy 1 (dy dy
A = % adu Ad =TT T )
x x du dx « \ du du

which yields a second-order differential equation with constant coefficients. The resulting
RHS will be f(e*), for which a particular integral may often be found.

3.4.8. Bernoulli DEs (First Order, Nonlinear)

To solve an ODE of the form % + P(x) y(x) = Q(x) [y(x)]", substitute u(x) = y' "(x) so that
dy __1 o B hich yields a linear ODE in u(x): 2+ (1 — n) PG u = (1
e 4 Which yields a linear in u(x): ax T A -nPxu=(1-n)Qx).
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3.4.9. Exact DEs (First Order, Nonlinear)
An ODE M(x,y)dx + N(x,y)dy=0 < N(x,y) % + M(x, y) = 0 is exact if there exists a

‘potential function’ F(x, y) such that% = M(x, y) and g—; = N(x, y).
The condition for exactness is met if %_1\; = ‘;—Iz (by Clairhaut’s theorem).

To solve, find F(x, y) by integrating M and N, separating the components for each variable.
Use unknown functions f(x) and g(y) for the arbitrary constants of integration, and solve to
make the antiderivatives equal to each other. The solutions are the contour lines of

F(x, y), implicitly satisfying F(x, y) = C for some arbitrary constant C.

Almost Exact DEs:

An ODE M(x, y) dx + N(x, y) dy =0 that is not exact can sometimes be multiplied by an
integrating factor pu(x, y) on both sides to make an ODE X/I\(x, y)dx + fv\(x, y) = 0 that

. . M _ oN -~ -~
is exact i.e. & = ox (where M(x, y) = u(x, y) M(x, y) and N(x, y) = u(x, y) N(x, y)).

Techniques for finding such an integrating factor, if it exists:

If — (a—M - a_zv) is a function of x only, then p(x) = exp |

1 oM _ JdN
N(x,y) \ dy 0x N(x,y)

% e ) dx.

1 dN oM \ . . 1 JdN oM
If W(W — a_y) is a function of y only, then u(y) = exp [ My (E — 6_y) dy.
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3.4.10. Power Series Solution of DEs (Taylor Series Expansions) (Any Order, Linear)

[oe]

To find the power series expansion y(x) = Y. a x" of the solution to a DE of the form

n=0

N
% p,@ @) = f(x), valid in some neighbourhood around x = 0:
k=0

Power Series Method:

o let y(x) = X anxn = y'x) =3 ncznxn_1 = y'x) =Y nn—-1) anxn_z... in the DE.

n=0 n=0 n=0

Write the power series for each pk(x) and f(x) and absorb these powers into the y(n)

series.

Re-index the summations to make them all have the same exponents of x.

Pull out the first few terms of summations to make them all start at the same index ».

Combine the summations and factor out the x” term.

Set everything inside the summation to zero to yield a recurrence relation in a,, and set the pulled out
terms to zero.

)
e Use initial conditions e.g. a = %l or let (ao, a, .) € {(1, 0), (0, 1), ..} for a linearly independent set
of basis solutions.

Leibniz-Maclaurin Method:
e Differentiate both sides of the differential equation with respect to x, n times, using the
general Leibniz rule for differentiating products.

(]
e Letx=0, convert the derivatives to series coefficients i.e. a = -%91 to yield a recurrence relation in a,.
e |If there are undetermined coefficients, evaluate the original DE at x = 0 to find them.

Frobenius Method: used when any p,(x) and f(x) is not infinitely differentiable at x = 0.

Forthe DE y" + p(x)y' + q(x) y = 0:

e Solve the indicial equation, »(r - 1) + uyr + v, =0, where u, and v, are the constant terms in the Taylor
series expansion of u(x) = x p(x) and v(x) = x* g(x) respectively, for r.

e (Case 1: Distinct real roots where r, and r, do not differ by an integer:

oo
. . + . . .
o Use power series method withy = ) anxn ", find recurrence relation in terms of r

n=0
_ & ntr, » n+tr,
o Subineachroot: y=4Y ax "+BY bx
n=0 n n=0 n

e n+r e n+r da

e (ase 2:repeatedroots. y = (A + Blnx) ) ax +BYbx , b = —(0)
n=0 n=1

. . *® n+r, *® n+r, dan
e (Case 3: roots that differ by an integer. y = (A + Blnx) ) ax + B bnx , bn =—(0)

n=0 n=0
Fuch’s theorem: radius of convergence of Frobenius series, R > min{R,,), R ), R} -
If x =0 is the only ‘regular singular point’ (u(x) and v(x) infinitely differentiable at x = 0) then the
Frobenius series converges everywhere. Otherwise, R is the distance to the nearest singular point.
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3.4.11. Higher Order DEs as Systems of First Order DEs

N
An Nth order ODE Y a (%) y(n)(x) = f(x) can be written as a set of N first-order ODEs.
n=0

N-1
Label the N new dependent variables {y >y, AN Yy o AN yN_1].

' Tdx !
N-1
. dyo dyl dyN—Z dyN—l
The system is then { = oV o T Yy T TV e f(x) — nE_]O an(x) Y[

Initial conditions correspond directly to the initial condition for each equation in the system.
The method still works for nonlinear higher order ODEs but the resulting system will be nonlinear.

ODEs in this form are readily solved by computer/numerical methods.
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3.4. ODEs, Laplace and Z-Transforms

3.4.12. Systems of Differential Equations

A system of n first-order ODEs can be written in the form x = f(x, ¢)where x is a vector of
unknown functions: x = [x;(1), x(f), ..., x\®)]".

An autonomous system is one in which f(x, 1) = f(x) i.e. explicitly independent of .

Linear homogeneous systems with constant coefficients:

x(t) =

Standard form:

Ansatz:

x = Ax

(A: square n x n matrix of constant coefficients)

x = exp(Af) X

General solution (for a 2 x 2 system):

cle’\

1tu1 —+ 626)\2tu2

cre®(uy cos Bt 4 uy sin Bt) + cpe®(uy cos St — uy sin ft)
cre’u + cpeM(ut +v), for any v: (A — A)v =u

(u: eigenvectors of A, A: eigenvalues of A)

(xo: initial conditions at ¢ = 0)

(u: eigenvectors of A, 1: eigenvalues of A)

if A\ o are real

Linear nonhomogeneous systems with constant coefficients:

Standard form:

x = Ax

+ 1(2)

Solution methods include the method of undetermined coefficients (using the
complementary solution from the homogeneous case) or variation of parameters. The
formula for variation of parameters is

xpr(t) = X/X1 f(t) dt

if \12 = a £ (¢ are complex

if A\ is a repeated defective eigenvalue

(X: matrix where each column is a linearly independent
part of the complementary solution)

Phase plane and equilibrium point stability: equilibrium point(s) occur when dx/dt = 0.

y

Node
(unstable)

Y

AVERS

y

2D

x %
Node
(asymptotically stable)

N\

Saddle point
(unstable)

=

Limit cycle
(stable)

Type Eigenvalues Stability
Node Real A, same signs A <0, stable
A > 0, unstable
Saddle Real A opposite signs Mostly Unstable

Center

A pure imaginary

Focus/Spiral

Complex A, Re(A) # 0

Re(A) < 0, stable
Re(A) > 0, unstable

Degenerate Node

Repeated roots,

A > 0, stable

Lines of Equilibria

One zero eigenvalue

A <0, stable

For linear homogeneous systems, the origin is the only equilibrium point.

The eigenvectors of A are directed along the asymptotic trajectories of the system (nuliclines).

An equilibrium point is the intersection of the x and y nullclines, for which % = 0 and —‘;tl = 0.

For nonlinear systems, the nullclines may be curved.
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3.4.13. Graphical Representations of Differential Equations

Slope Field (Direction Field) of a Differential Equation

ay

For a differential equation dx =

f(x, ¥), the slope field is a unit vector field in the x-y
f&y)

1
i+ j.
Vi+f@y' 1+’

Every solution to the differential equation is a field line of the vector field.

plane given by u(x, y) =

dy

Curves wit e = f(x, y) =k for constant k are ‘isoclines’.

. d
Example: slope field ford—z =x' - x - 2.
The curves represent solutions for initial conditions y(0) = 4,
v(0)=0 and y(0) = -4.

SSS LSS

72
T AV A A A A

LSS VAN S A e A
PP A vy, /v arays SN LA A eV ey ey avs

VAV AN/ SV

Phase Plane of a System of Differential Equations

d d .
For a system of two ODEs { d); =f(x,y, 1), d}t] =g(x,y,t)}, the phase space plot is a vector

[,y t) i+ gxyt
VFoy, 02+ 9@y, 0" ey 0t + 9@y’

field in the x-y plane given by u(x, y, 1) = j-

If the system is autonomous (no ¢ dependence), this is a static vector field.

dt

dy
dt

A fixed point occurs at the intersection of nullclines.

. d d
Example: phase portrait for {d—gtc =x(7-x-2y), d_}t’ =y5-y-x)}
, d : :
Lines for — = 0 are shown in blue (x-nuliclines: x=0,x+2y=17)

Lines for == 0 are shown in red (y-nullclines: y =0, x + y=15)
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3.4.14. Special Forms of DEs (Second Order, Nonlinear)

Bessel’s differential equation (generalised):

d2 dy A A
€T d——l—(2 +1) dx ()\2 2q—I—Oé )y 0 = y:xip (AJ\/pg—az (ECCQ) —|—BY\/W (qu>>

Spherical Bessel’s differential equation (a particular case of the above):

o d? dy
L AT o Y + (N2?—n(n+1))y=0

d:):2 dz
Jn—i—l()\x) Yvn—l—l<A )
= A —2— 4+ B —2_—"=A".5.02)+ B -y,(\x
y = — in(\) + B+ o (A1)

In the case n = 0, the solutionis y = A' % - B == C"SM , for which B> = 0 if 1(0) is finite.

Generalised Laguerre differential equation:

x@+(a+1—x)dy+ny20 = y=A-L'2)+B-U(-n,a+1,x)
da? dx " ’ ’

Hypergeometric differential equation:

d?y dy
(1—x)@+(c—(a+b+l) )a—aby:()

= y=A- yF(a,bc;x)+ B-(—2) “yFi(a—c+1,b—c+1;2—c;x)
Confluent Hypergeometric differential equation:

d2
ol (c— )

d
e _y_ay:() = y=A- 1Fi(a;c;2)+ B- Ula,c,x)

dx

Hermite’s differential equation:

d zdy 1,2
@( d$>+)\€ Yy = Oiy—AHA<

l\3|>/

>+B 1 Fi(—

Sl

(For the special function definitions, see Section 1.7.)
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3.4. ODEs, Laplace and Z-Transforms

3.4.15. Laplace Transforms

F(s) = L{f(t)} = / T A e dt

Derivatives, Integrals, Deltas and Algebraic Functions:

Q) F(s)
e~ x(t) i(s+a)
x(t—-T)H(t-1) e *Tx(s)
dx(r) - 0
Frale x(1) sx(s) — x(0)
dxr) P ,
- x(1) s°x(s) — sx(0) — x(0)
L;J;ff) =x"(1) sE(s) = s (0) = s"72x0(0) = .. = sx7D(0) = XD (0)
t
f x(t)dr s71E(s)
0
t
fn X (T)x2(r —71)dT X1(8)x2(s)
d vy 9
tx(t) *ax(é)
1=H(t) 571
a(1) 1
H(t—71) s lesT
o(t—1) e T

Powers, Exponential, Trigonometric and Hyperbolic:

S® F(s) NAU) F(s)
t 572 " nls™1
n!
e (s+a)! e~ _—
(S + a)n+l
it w , K
sin w COS W
5%+ w? 52+ w?
) w (s +a)
e~ sin wt _— e~ cos wt _—_—
(s +a)? +w? (s +a)? + w?
¢ sin w 25w . ; 2 — w?
sinw S — cos w S
(s2 + w?)? (52 + w?)?
inh @ hwt ?
sinh wt coshw
52 —w? 52— w?

Initial Value / Final Value Theorem: f(0+) = lim sF(s) and lim f(t) = lim sF(s).

s— o0 t— s—0
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3.4.16. Convolution Theorem (f*g)(t) = /t f(t—7)g(r) dr
0

The Laplace transform of a convolution is the product of their transforms:
L{(f=g)#)} = F(s)-G(s) equivalently L7HF(s)G(s)} = (f * g)(t)

The convolution theorem also applies to Fourier transforms (Section 3.6.5).

3.4.17. Inverse Laplace Transform by the Cauchy Residue Theorem

The inverse Laplace transform is defined as (Fourier-Mellin formula)

Y4100
F(t) = LY F(s)} = % F(s) e* ds

where y is a constant larger than the real part of any pole of F(s).
If y=0 (i.e. no unstable poles: Re(s;) < 0) then this is similar to the inverse Fourier transform.

Using the Residue Theorem and Jordan’s Lemma (using a semicircular contour), this is
equivalent to (by complex analysis):

f(t) =2mi ) " Res[F(s), s]
k
with the sum over all residues at the poles of F(s). The residue is defined as

1 ) dn—l .
ReS[F(S), Sk] = m 511>I£lk W(S — Sk-) F(S)

where n is the multiplicity of pole s,.
If n =1 then the residue simplifies to Res(F, s) = ILm (s — sk)F(s).
S—Sgk

which is the formalised ‘cover-up method’ of partial fractions if F' is rational.
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3.4.18. Linear Difference Equations

Difference Equations are discretised differential equations, expressed as a recurrence
relation between terms of a sequence {y},forn=0,1, 2, ...

To solve a second-order difference equation of the form (or higher order)
ay +by  +cy ,=f),

e Solve the characteristic equation, ar’ + bA + ¢ = 0. (or higher order)
e Depending on the nature of the roots 4, find the complementary function, y,“":

o If A, and 4, are real and distinct,
O ar"+B2"
n 1 2
o If A, =1, =A11is the real repeated root,

©h _ AN+ Bn A

n

o If ;=R expif and i, = R exp -i0 are the distinct complex conjugate roots,
5 _ g (AcosnB + Bsinnb)

n

e Use the Method of Undetermined Coefficients to determine the particular ‘integral’,
v, (note that if £ (n) = 0 then y,* = 0). The trial functions are identical to the case
of a nonhomogeneous differential equation (Section 3.4.5.), with x replaced by n.

e By superposition, the solution is y, = y," + y,® where the remaining constants can
be found using given conditions.

Alternative methods without solving the characteristic equation are:

e Z-transform / generating function (Section 3.4.19): y, = Z"'(Y(z)), where Y(z) is the
generating function with x = z' given by Y(z) = Y, v, z" (the Z transform). (The
generating function is Y(x) =Y, v, x".)

e Convolution: if the impulse response g, is known, then y, = (f * g)[n].
For the definition of the discrete convolution, see Section 5.4.7.
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3.4.19. Z-Transforms, Inverse Z Transforms and Generating Functions

Sequence: Z-transform: G(_\u(;rat']n!: function:
Yo = Z7'Y(2)][n], n=0,1,2,.. Y (2) = Z[y,)(= Zy"“ V(z) = Z[y,)(x Zy“
n=0 n=0
. 1 1
1 (unit step) [ ==
T Tz 1 Tx
(1—z1)? (1—a)
(;’? +m — 1)' nt+m—1 1 1
_— = Cn, 1\ 1 _ am
n!(m — 1)! (1—2z71) (1—ux)
1 1
—anT
‘ 1 —ealz-1 l—ealy
. sin{wpT) 2! sin(weT)x
sin(wonT) po T_- , 2
1 —2cos(wpT)z~! 2 1 —2cos(wyT)x +x
cos(wonT) : 1 — cos(wpT)z" , , 1 = cos(wT)x ;
1—2cos(weT)z"t + 272 1 —2cos(weT)x + a2
Fnt _ . ) . 1 — gzt 1—ax
sin(wgT) [rsin{wo(n + 1)T) — asin(wonT)] 1 —2rcos(wyT )z + riz—2 1 —2rcos(wyT)a + rix?
aa—1 v (s _ vval s o TR — Acos(w
7 [A cos(wanT) + B sin(wonT)] A+ rz7 (Bsin(wpT) — Acos(woT))| A+ rz(Bsin(wel) — Acos(weT))

1 —2rcos{wyT)z=! 4+ r2z=2

1 —2rcos(wyT)x + ria?

Yy Y(rtz) Y (rta™h)

Yn+1 2Y (z) — 2y U s I

Yn—1 2Y(2) +y- oY (27 +y

Yntm 2"G(z) = (2Myo + o+ 2Ym 1) e Gt = (M b )
Yn—m 2TMG(2)+ (3'(”"1)y_1 RO 'y_.m) "Gz

DA (@™ o+ yem)

Initial Value / Final Value Theorem: Y, =

lim
n— oo

lim Y(z) and

7= oo

lim (z — 1) Y(2)

z—1

y:

Note: the final value theorem requires the poles of (z - 1) ¥(z) to have |z| < 1.

The Laplace-analogous residue formula for the Inverse Z-Transform is

g = Z HG(2)} = 2my§GZ " 1dz—ZRes 2" 2]

where the residue Res is defined in Section 3.4.10. Note the extra factor of z'.
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3.5. Multivariable and Vector Calculus
3.5.1. Differentiation of Vector Products
For vector-valued functions a(f), b(¢), and scalar-valued functions u(¢) of a single variable,
(ua)’ = u'a + ua’

(a.b) =a’.b +a.b’ (axb)Y =a’xb+axb’

3.5.2. Jacobian Matrix

af .
For a vector valued function f of »n variables x,...x,, the Jacobian J is ]i], = a—xl:
j
(06 o]
Tfl 8-?:1. aTn
g e |
| 8y oz, | : B - .
VT fm 8er: Ofm
L 3."."!]_ 8"-"';;. -
3.5.3. Hessian Matrix
o’ f
For a scalar valued function f'of n variables x,...x,, the Hessian H is Hl_]_ = ox x -
i
[ &f & f i ]
Ox? Oz dza Oz Oz,
> f O f *f
H, - Oxo Oy 6‘3:5 dxs Oz,
& f o f & f
L 3:1:1'.'. a:1:]_ axn. axﬁ 5:1.'}21 _

The Hessian for a vector-valued function f=[f,, ., ..., f,] is the third-rank Hessian tensor
whose elements are [H,, Hp, ..., H,], where H, is the Hessian matrix of f..
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3.2.3. Multivariable Taylor Series

For a scalar-valued function f(x) about x,,
G+ ) = fx0) + (B V) (x0) + oy (e 9) (0 9) f o) + 5 (- V)b )b 9) ) + .

In the case of a two-variable scalar function f about (x,, y,),

00 1 n n . "

n=0 1=0

) af _of N
f(xo+h, yo+k) = f(x0, ?JO)+[ o + kay] lh o2 + zhkaxay +k Dy o

The quadratic approximation is
f(x+h) = f(x,) +h" Vf+—- hT H(xp) h+ ...

where H(x,) is the Hessian matrix of f(Section 3.5.3) at x,. The linear term h" Vf is the
directional derivative of f'in the direction of h, also written as D,, f(x,) = Vf*h.

For a vector-valued function f(x) about x,,

The quadratic approximation is
1
f(x +h) = f(xo) + I(xo) h +— h" H(x,) h + ...

where H(x,) is the Hessian tensor of f (Section 3.5.3) at x,, and J(x,) is the Jacobian matrix of
f at x,. In Einstein summation notation (Section 4.4.1), this quadratic approximation is

1
Ji(o +h) = fi(Xo) + J(x0) by + = Hy(Xo) By by +
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3.5.4. Stationary Points of a Scalar-Valued Multivariable Function

A function ¢(x,, ..., x,) has a stationary point when V¢=0 i.e.

ox ox Toox
0.

If the determinant of the Hessian matrix A = |H| # 0 at a stationary point, then

2

d
e Minimum point: A>0 and all p q; > 0. (¢ is locally convex)
X
O’
e Maximum point: A>0 and all o’ <0. (¢ is locally concave)
X
e Saddle point: all other cases for which A # 0.

The case A =0 can be a maximum, a minimum, a saddle point, or none of these.

2
2 2 2

. dd 0¢ Jd o
For two variables, ,Y), A= — .
wo variables, §(x.y), A==~ ( 5%y )

2

2
. R . . d d
Second partial derivatives are symmetric (Clairhaut’s theorem): 9% g)y = 3y da)x .

3.5.5. Total Differentials

do

do
+
dy dy

dz

For a function ¢(x, y, z...), d¢ = dx + dz + ...

If f(x, y)dx + g(x, y) dy = dg, then —gyL = %;L (an exact differential).

3.5.6. Multivariable Chain Rule

If x, y, z are functions of u, v, w...

o W o e o ) B 1 )
ulf,, — 0x\du oy \ou dz \Ou
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3.5.7. Derivatives on Curved Lines and Curved Surfaces

For a curve defined parametrically as r(r) = [x(f) »(/) z(¢)]", the unit tangent vector T,
unit normal vector N and unit binormal vector B are given by

; dr dt & o
A~ r az N 3 N N . & N
Tt) == = 1ar N(t) = & B(t) = T(t) x N(t) K
2] ’E‘ ‘Q &
dt :
ki V]
so that {T, N, B} forms a right-handed orthonormal set. /“

The equation of the tangent line at r =ry isthen (r-ry) xr’=0.

The vectors T, N and B vary with arc length s along the curve by (Frenet-Serret formulas):

d T 0 k 0 T («c: curvature, 7: torsion)
= Nl=|-« 0 7| |N L S (f X T)- ¥
A A K = n T = —
B 0 -7 0] |B EE EERE

The associated radius of curvature is R = x ™' and the ‘osculating circle’ lies in the plane
spanned by T and N, with B as its normal.

For a surface defined implicitly as ¢(x, y, z) = 0, the unit tangent vector T (defined as being
the projection of some vector u in (x, y)-space onto the surface) and unit normal vector N are
z (D)o — (Dag)k S Vo

T(z,y,2) = Vol N(z,y,2) = IVl

where k is the unit vector in the z-direction and D, f' is the directional derivative, defined
as D, f= Vf-a, representing the component of the gradient parallel to a.

The equation of the tangent plane at r = ry is then (r - ry)* V¢(ry) = 0.

If N is evaluated at a vector r, which does not lie on the surface, then N can instead be
interpreted as the direction of steepest ascent for ¢ at r = r, (since ¢ # 0 off the surface).

For a scalar-valued function ¢(r), the regions of constant ¢ are called isosurfaces (contour
surfaces; level surfaces) in 3D or isolines (contour lines) in 2D.

These results are easily generalisable to other dimensional functions, except the binormal
vector which is only uniquely defined in R®.
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3.5.8. Reduction of a Multiple Integral with Common Bounds to a Single Integral

X u X
Double integral to single integral: [[ f®dtdu = [(x — t) f(t) dt
Triple integral to single integral: [ f®©dtdvadu = % [ = 6 f(b) dt

These can be useful for simplifying numerical integration of multiple integrals.

3.5.9. Change of Variables for Multiple Integration
Surface Integrals:

For a change of variables in a surface integral from (x, y) — (u(x, y), v(x, y)),

ox 0x
a(x,y) | du v
(x.y)dxd =ff Fu,v) 17 du dv J= _
fvfsf Y Y s o(u,v) Q @
ou dv
For surface integrals involving vector normals, or oOr

ndA =ndxdy = +— X —dudv

where the sign is chosen to preserve the sense. “ou  Ov

Volume integrals:

For a change of variables in a volume integral from (x, y, z) — (u(x, y, z), v(x, y, z), w(x, v, 2)),

O0x O0x Ox

ou v ow

5(3@)’12) 6)7 3)7 3)7
s Vs d d d = F s Vs J d d d J=7= —_ - -
ﬂvf(xyz) xdydz ﬂf’ (u,v,w) |J| du dv dw D) 5 v Do

dz 0z 0z
du Jdv oOw
The inverse Jacobian determinant is the same as that of the inverse substitution:
L ou,v,...)
J A, y,...)
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3.5.10. Vector Calculus in Cartesian Coordinates

Parameters: (x, y, z), all real ordinates

Scalar field: r=xi+yj+ 2k
Vector field: w = Uy + uyj + uk
Kinematics:
! o Position: r =i+ yj + zk
o » Velocity: I =it + 9+ 2k
' Y Acceleration: i =i+ ) + sk
X ¥ Angular velocity: w=0 . (fixed)
Unit vectors: ©1=0,3=0 k=0 (fixed)
Differential Elements Distance:
Line element: dr=dx 1+ dy 7+ dz k d — \/m

Volume element: dV = dxdydz
Surface elements: 45z = dydz, dS, = dxdz, dS, = dzdy

Vector Operators:

0 0
Gradient: Vf = a—ii + a—f”Jr a£ Divergence: V -u= %Zx 4 a;yy I %Zz
1 j ’27 82 82 32
Curl: Vxu=|9/0x 9/dy 0/0z Laplacian: Vif=Af= f 5+ e / azjs
Uy Uy U,
4 4 4 4 4 4
Biharmonic: V4f:A2f:af+af+af+2 o°f 492 o°f +9 o f

oxt Oyt  0z4 0x20y? 0y?0z? 0120z

3.5.11. Vector Calculus in Spherically Symmetric (Radial) Coordinates

Parameters: » > 0 (radial coordinate): uniform in every direction
df . 1d

Gradient: Vf=—L¢ Divergence: V.y= —— (r Ur) Cur: Vxu=0
dr r2dr
2
Laplacian: V2f = Af = ﬂ 4z 2 df — ! i ﬂﬁ (auxiliary function: u(r) =r f(r)
dr2 " rdr  r2dr dr 1 Lu
df 2df 1df  1df —>V2f—rdr2

. , 4 2
. — A — — — —=
Biharmonic: V" f f TS S R S R

Volume element: dV = 47r? dr (shell element)
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3.5.12. Vector Calculus in Cylindrical Coordinates

Parameters: 7:radius, 0 <0 <2m: polar angle, z: elevation
Scalar field: r=rt-+z2z

Vector field:  u© = u, T + upl + u.2

Coordinate Conversions to and from Cartesian (x, y, z):
xr=rcosf, y=rsinf, z ==z

r=+/x2+y% 0=atan2(y,x), z =z

Unit Vector Conversions to and from Cartesian (2; 7. K):

r = cos 02 + sin 67, 0= —sinf#2 + cos by, z = k

i = cosOf — sin 60, 3 = sin Ot + cos 0O, k = 2

Kinematics: time derivatives of displacement r

Position: r=rt-+z2

Velocity: I =7+ 100 + 22

Acceleration: r = (7“ — r92) T+ (27’"9 + ré) 6 + 32

Angular Velocity: w = 0z

Unit vectors: P = 99, 0 = —9?‘, =0

Differential Elements

Line element: dr=dr#+rdf 0 +dz 2

Volume element:  dV = r drdfdz (Jacobian:
Surface elements: dS, =1 dfdz, dSy = drdz, dS, = r drdf

o) _ )
a(r,0,z)

Distance: d= /1?4715 —2riracos(0y — 03) + (21 — 22)2

Vector Operators

- COf . 10fs  Of, . _ C19(ru) | 10up | Ou,
Gradient: Vf= 5.7t ;%9 +5.2 Divergence: V-u= o T30 5,
|76 2 . 10 [ of\ 10°f o2f
Curl: = Laplacian: Y R Pt Sl drS
V xu " 8{;97“ 8r/1;900 82&2 P Vof r (rar) + 2 592 + 9.2

. . Nf 2 9if 10 203f 2 03f 1 0% 40*f 10f 0O'f
Biharmonic: A?f=Vf=—L + = — L L 4 =L
=V ort  r2or2062 + rt 004  rord  r3orof? r2or2  ri 002  r30r 024
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3.5.13. Vector Calculus in Spherical Coordinates

r Parameters: r: radius, 0 < 0 < 2xn: azimuth/longitude angle,
= R 0 < ¢ < m: zenith/colatitude angle
/ 6 R R
T TN~ Vector field: % = UrT + 16 + updh
28 Y AN\
: <O~ ; é Y Coordinate Conversions to and from Cartesian (x, y, z):
\ N

1
1
! . . .
Yol xr=rsingcost, y=rsingsinf, z =rcos¢o

\
\ r=+2?24+y>+ 22, 0 =atan2(y,z), ¢ = cos™! 2
A\ r

Unit Vector Conversions to and from C?rtesian (’27371;): ) )
r =singcosf 2 +singsing j+ coso k, 2 =cosfsing r —sinf 0 + cosf cosp ¢
éz—sin@’i#—cos@j, j:sinGSinqbercoseé+sin0€os¢<2)
(Aﬁ:COSQCOSQb’i—l—SiD@COS(bﬁ—SiD(ﬁi{i’ I%:cos<bf—sin<b£b

Kinematics: time derivatives of displacement r

Position: r=rft
Velocity: I = 7T + r0sin gl + ro¢
Acceleration: r= (7’ — rf%sin® ¢ — 7’(;52) r+ ((T9 + 2%9) sin ¢ + 2r0é cos ¢) 0+ (T¢ + 27 — r6? sin ¢ cos (p’) (2)

Angular Velocity: —w = 0 cos ¢t + ¢0 — 0sin ¢ = $O + Ok
Unit vectors: t = —0singb + do, 0 — —fsin ¢t + 6 cos ¢, qb ot — 0 cos HO

Differential Elements

Line element: dr =dr i +rsing df 0 +rd¢p ¢
. o(x .

Volume element:  dV = r*sin¢ drdfde (Jacobian: 8(( 5 9; = r?sin ¢)
Surface elements:  4Sr = r*sin ¢ dfdep, dSp = rdrdep, dSs = rsin¢ drdf
Distance: d= \/r% + 75 — 2r179 (Sin ¢y Sin ¢g cos(6; — O2) + cos ¢y cos ¢a)
Vector Operators

B O_f 10f 4 1 of, . 1 0(r%u,) 1 O(sing uy) 1 Oug
Gradient: Vf = + %d) ppE 209 Divergence: V-u= =5+ rsing 00 rsing 00

T 7“(}5 rsin ¢ ]

Curl: V xu= 8/87" d/06  9/00

TSI

Uy TUy TSNP Uy

Laplacian: _, ,Of 1 ., Of 1 0*f
vf_r28r( 8T)+r281n¢8¢( ne ¢>+r2sin2¢w 109
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3.5.14. Vector Fields
Field Lines of a Vector Field

The plot of a vector-valued function u=f(x,y,z)=f(r)=ui+uj+uk isa vector field.
The equations of the field lines (curves with tangent vectors u) are given by u— = = ﬂ,

. . . . dy u (x,y,0)
so that e.g. the field lines in the plane z = 0 satisfy = 2y 0)

Potentials of Vector Fields

e Irrotational (conservative) field: if V x u = 0 (curl free). In this case, then there exists
a scalar potential fsuch that u = V. For some applications it is more natural to use u =
—Vf. The isosurfaces of f are the equipotentials of u, and u is perpendicular to these
isosurfaces (the normal vectors of u) everywhere.

e Solenoidal (incompressible) field: if V -u =0 (divergence free). In this case, then
there exists a vector potential A such thatu=V x A.
A is usually chosen so that V A = 0. Then, u is the vorticity field of A.

Decompositions of Vector Fields

e Helmholtz Decomposition: a field u can be written as u= -V '+ V x A (irrotational
part plus solenoidal part). The expressions for fand A are

// VI‘/ : dV/ # N u( ) dS/ A7 A // vr/ X u V/_# fl/X u( ) dS/
g R /A e

e Poloidal-Toroidal (Chandrasekhar-Kendall) Decomposition: if V -u = 0 (solenoidal) and
u is defined in spherical coordinates {e,, e, e,}, then the vector potential u=V x A can be
written as A =T + P, where T = T e, (toroidal part) and P =V x (Pe,) = VP x e, (poloidal
part).

The toroidal part satisfies e,* T = 0. The poloidal part satisfies e,*(V x P)=0.

T(r) and P(r) are scalar fields that satisfy the Poisson equations e.*(V x u) = — AHT and
e u=—AP, where A, is the scalar Laplacian containing only the {6, ¢} (‘horizon’) terms.
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3.5.15. Vector Calculus Identities

Properties of Vector Calculus Operators with Vector Operators: for scalar-valued
functions f'and vector-valued functions u,

Vih+L)=Vi+Vf Ve(utu)=Vey + Ve,

Vxut+tu)=V xuy+V xu, Ve(fu)=fV-u+(Vf)u

Vx(fu)=fV xu+(Vf)yxu Ve(uy xw)=u,*V xu, —u,* VvV xu,

VeV xu=0 V xVf=0

V x(V xu)=V(V-u)— Vu Vx*xuw)=uq, V', -,V u+ Vg —(u-Vu,
ux(Vxu)+@uVu= % V (u?) (V2u=[Vu, Viu, Vu]" vector Laplacian.)

Gauss Theorem (divergence theorem): for a closed surface S enclosing a volume V, with
the outward normal taken for dA, the total emitted flux @ is equal to the net internal divergence

q):// V-udV:#u-dA
v S

Stokes Theorem (curl theorem): for an open surface S bounded by a closed curve C circulating
S anti-clockwise, the circulation T is equal to the net enclosed rotation (flux of vorticity):

PZ%U-dIZ//VXu-dA
C s

Green’s Theorem: in planar 2D space, Stokes’ theorem reduces to:

ou ou
T = cdl=Q u, d dy = || = — 5 dvd
R A

Green’s First Identity: divergence theorem withu=fVgand V-(fVg) =V/f-Vg+fV-Vg.

#Sng-dA:///V(Vf-Vg)anL//VfVQg dVv

Green’s Second Identity: difference of symmetric forms of first identity.

fhirva—ovp-an= [|f (19— gvis) av
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Green’s Third Identity: in the second identity, let /= G (a Green’s function, Section 3.7.4), chosen
suitably for the PDE to be solved such that G = 0 on the boundary. Substitute solutions for V G and
V3iG.
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3.5.16. Differential Operators

Expressions of derivatives of functions can be written as operators acting on functions.

nth partial differential operator: Dxn =

2
Example: DxD = di(xi) =L ixL =D+ xD’
X dx

2
General operators can be constructed e.g. L = ZDX2 — xDny = L = 2‘;4*;— - x%%
X

Differential operators are generally not commutative.
Linear differential operators with constant coefficients are commutative.

Separation of a coupled system of linear partial differential equations: using operators

If L, are commutative linear differential operators with L,L,=L,;L, and L,L, = L,L, then the coupled
system of PDEs {L1u + sz = f; L3u + L4v = g} can be uncoupled to yield the two PDEs

{(L4L1 - L2L3)u =Lf-Lg (L3L2 - L1L4)v =Lf - ng}

(u=u(x,y,...),v=vw(x,y, ...): dependent variables, L; linear differential operators of {x, y, ...}
with constant coefficients, {f=1(x,y, ...), g =g(x, y, ...)}: differentiable functions)
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3.5.17. Multivariable (Spatial) Continuous Fourier Transform

For the ordinary Fourier transform, see Section 3.6.4. When the input domain is multi-dimensional
(e.g. position space x = [x, y, z] rather than time #), the output frequency domain is also
multi-dimensional (e.g. spatial frequency k = [k,, k,, k] rather than temporal frequency w).

1

F(k) = [ f(x) exp(—jk*x) dx f=—""= | F(k) exp(jk-x) dk
c" "
Forward Fourier Transform Inverse Fourier Transform

The integration is generally performed over all x & C" and k € C". In many practical applications,
the function f(x) is real and even so F(k) is real and even so x € R”and k € R".
In quantum mechanics =y € C and k-space is momentum space (since p = 7k).

[0¢] [00] [00] oo

Multivariable Parseval’s Theorem: [ [ f®)Pdx= (21)" [ .. | |F(k)]?dk

3.5.18. Multivariable (Spatial) Discrete Fourier Transform
For the ordinary discrete Fourier transform (DFT), see Section 3.6.5.

When the input domain is discrete multi-dimensional (e.g. pixel space w = [u, v]), the output
frequency domain is also discrete multi-dimensional (e.g. discrete spatial frequency k = [k, k,]).

N-1 N -1 m oy N-1 N -1 m oy
FR)= % .. % f(W) exp(— y — ) fW=535% . T F® exp(z = )

n1=0 nm=0 a=1 a m k1=0 km=0 a=1 a
Forward Discrete Fourier Transform Inverse Discrete Fourier Transform

Multivariable Convolution Theorem: F(k) G(k) = DFT{(f* g)(w)} (DFT: discrete FT)
where the convolution is circular (periodic). Common application: imagine filtering (Section 5.6.1).

3.5.18. Multivariable Z-Transform

For the ordinary Z-transform, see Section 3.4.19.

[e¢]

Forward Z-transform:  F(z,...,z,)= Y .. Y f(n,..,n,) X (zlnl...zmnm)

n =—oo n =—
1 m

114



All Notes 3.6. Fourier Series and Fourier Transforms

3.6. Fourier Series and Fourier Transforms
3.6.1. General Fourier Series Definition
Real-Valued Fourier Series

The real-valued Fourier series is defined for a function f(f) on 0 <¢< T as

O =d+ i . 2mnt b 2nnt
f() = ] (p COS T n SiN —T
n=

1T 2 T 2rnt 2 (T 27nt
where d = —f foyde, a, = —f foycos 2L g | b, = —f F(t) sin 2 g
T Jo TJo T TJo T

If the function £'(¢) is periodic, of period T, then these relationships are valid for all z. The
integrals may then be taken over any range of T.

e If f(¢r)is eventhenb,=0.
e If f(¢)is odd then q,= 0.
e If (¢) has zero mean value then d = 0.

The rate of convergence, O(n*™), is such that the k-th derivative of f(¢) is discontinuous.
Complex-Valued Fourier Series

Equivalently, the complex-valued Fourier series is

[

; 1 7 _
f{i‘) = Z CneiQmH,-’T where ¢, = ?j(; f(t)e—;}lmm‘T dt

n=—ea

oo

i 1 T _
ie. f(r) = Z c, €™ where ¢, = ?ﬂ f(r)e—mwnr dt

n=—co
The relationship between the complex and real forms of the coefficients is

1

—(a, —ib,) forn >0
cp=13 2

d forn=0

and, for real functions f'(¢), we have c,, =c,*.

2 ope .
The (scientific) fundamental frequency is w, = Tn and the (scientific) nth harmonic is nw,.
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3.6.2. Half-Range Fourier Series Definition

If a Fourier series representation of f'(x) is required to be valid only in 0 <x <L, then it only
needs to contain either the sine terms alone or the cosine terms alone. For example

= . nmx
f(x) = ) bysin —
n=1

2k )
where b, = — (x) sin nax dx
L L
0

Note that the wavelength of the first term in the series (n = 1) is 2L rather than L (as would
be the case for the full-range series).
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3.6.3. Fourier Series of Common Waveforms

Half-wave Rectified Cosine

1 1 2w cos 2muwot
1) = —+ = coswot + — E —mH
Fo T 2 0 ;rrmzl( ) 4m? - 1
L1 1 1 © ginwot
= — !wor_l_ ewm+_ E: +1
Fo x4 4¢ m 4 w( )nz—l
"nz0

signs alternate, + forn = 2

Full-wave Rectified Cosine

2mewpt
r: 142 )+ EO8 SMWol
f@) Z( e

2 e
fOy ==+ 3 E)——

signs alternate, + for n = 2

Square Wave

_ 4 o sin@m — Dwot
fo ==

2m—1
m=1
o
2 .
r) = Z ._emwgr
f() —
n=—00
n odd

0| 71/4 T=2

o| 7/4 T=2

wy
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Triangular Wave

1 8in(2m — 1wyt

8 - m+
f@) = ;;(—1)

(2m — 1)2
oo emw{]f
f=—5 ), Eh—
T odd

signs alternate, + forn = 1

Sawtooth Wave

2 = a1 SIN RWOt
flty== ) (=) ===

n=1

1 0 emwm
t) = — +1
f =5 ), &=,
nz0

signs alternate, + forn = 1

Pulse Wave
a & sip 424
f(t) = T 1+ ZZ "MT cos nwot
n=1 T

oo a
a sin %74
f(f) = ? 1+ E nma e
T

Y~

~Nd o) e

2T
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3.6.4. Fourier Transforms

The Fourier transform maps a continuous time domain ¢ to a continuous frequency domain w:

i) = [ e at )= 5 [ ) e
i
— 00 —
Forward Fourier Transform Inverse Fourier Transform

e Some sources handle the 2x factor differently and define transforms with differences in signs
of the exponent. All transform theorems are valid as long as it is done consistently.

e Fourier transforms are sometimes written in terms of frequency /= w /2xn (as done below in the
analogous discrete Fourier transform).

e The Fourier transform is a slice along the imaginary axis of the Laplace transform: s = iw; w = Im{s}.

3.6.5. Discrete Fourier Transforms

The discrete Fourier transform (DFT) maps a finite sequence (x,, n =0, 1, ..., N— 1) to a finite
sequence of discrete frequencies (X, k=0,1,...,N—1)

N-1 1 V-l

. —2mikn/N _ = 2mwikn/N
Xk—ane xn—NZXke
n=0 k=0
Forward Discrete Fourier Transform Inverse Discrete Fourier Transform

Notes:

e The DFT gives a discrete approximation to the frequency spectrum of a continuous function

passing through all points x, containing frequency components no higher than 2—1T, where T

is the sampling period. The Nyquist frequency is equal to twice the highest frequency
contained in the original signal before sampling. Sampling at a rate below the Nyquist
frequency leads to high-frequency information loss and aliasing effects (distorsion).

e Time and frequency parameter relation: fk = %[l and t = nT [s] forintegers O <n, k<N.

1 . . _ 1
—7- Sampling rate: fv=71
e For real sequences, X,* = X,,, since the cosine waves at these frequencies pass the same points.

e Total sampling time: NT. Fundamental frequency: f1 =

Common DFTs (for N = 4):
e Cosine: x,=cosZ- ie. x,=[1,0,-1,0] - X,=[0,2,0,2] (fi=am fo =)
e Sine: x,=sin2- ie. x,=[0,1,0,-11 - X,=10,-2i, 0, 2i]

For infinite discrete sequences (N — « and summing in both directions), the DFT is called the
‘Discrete-Time Fourier Transform’ (DTFT), X(w) = Y, x e_mm, which is equivalent to the the
n=—oo
bilateral Z-transform :X\(z) of x, with z = ¢,
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3.6.6. Fourier Transforms of Common Signals

Time-domain waveform g(¢)

Frequency spectrum G(w)

1 (DC level)
H(¢) (Heaviside step)

Jjw,t

e (complex sinusoid)
cos w t

Sin (JL)Ot

2
—at

e (Gaussian)

2n 8(w) = 8(f)
mé(w) + ]%
2no(w — u)o)

1'[[8((» — ooo) + O6(w + wo)]

71‘[6(0) —w,) - 8w + wo)]

1m2
T " 4a
e
a

Y. 8(t — nT) (impulse train)

[

t ,
a rect o (rectangle function)
0 — /2 b2 i
t
I\ atr 5
0
— t

(triangle function)

21 - 2mm
- 2 8w —-—=)

m= —oo

. wb
ab sinc -

where sinc x :=(sin x) /x

) wb
ab sinc? >

main lobe bandwidth: 1 /54

it t
/N == — b . b— : b+
o/ \ @ 008 =~ Hy™ = ) az[smcw2ﬂ+smcw2ﬂ]
bi2 b2 t
af(t) + bg(t) aF(w) + bG(w) (linearity)

gt — to) (time shift)

jw t
e g(t)
d"g(t)

~ (differentiation)
dt

f*9 = ofo f(t) g(t — ©)dt (convolution)

— t
e 0 G(w)

Glw —w 0) (frequency shift)
(jw)" G(w)

F(w) G(w) (multiplication)

F(©) g(®  (multiplication) —— (F * 6)(w)  (convolution)
G(t) (duality) 3
if o(f) — G(w) then G(t) — 21 g(—w) 2ng(-)
g(H)* (complex conjugate) G(—w)*

real-valued even function g(7)
real-valued odd function g(7)

real-valued even function G(w)

imaginary-valued odd function G(w)
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3.6.7. Signal Energy, Power and Parseval’s Theorem of Energy Conservation

The energy of a signal g(¥) is defined as E = [ 19| dt.

T/2
The power of a signal g(¢) is definedas P = lim % [ 19® |2 dt.
I 15w -T2

The power spectral density (power spectrum) is S, (o) = %|G(co)|2 = |G(f)P.

Parseval’s Theorem: The energy in the time and frequency domain must be the same:
2 1 2
Eg= [ lg@)IF dt = [ |G(w)]" dw

For more on signal analysis, see Section 5.4.
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3.7. Partial Differential Equations and Variational Calculus

3.7.1. Classification of Linear Second-Order Partial Differential Equations (PDEs)

A PDE of the form
9%u 0%u 9*u ou ou
A— +2B C D—+E—+F G=0
Ox? * Oxdy * 0y? + Ox * oy Al
is said to be
e Elliptic: if B> < AC (e.g. Laplace equation, Poisson equation)
e Parabolic: if B = AC (e.g. Heat equation, Diffusion equation)
e Hyperbolic: if B> AC (e.g. Wave equation)

3.7.2. Classification of Boundary Conditions

A PDE requires initial conditions (ICs: u = f'(x, 0)) and boundary conditions (BCs) to be
fully specified. The BCs constrain the value of the dependent variable on the boundary of
the region satisfying the PDE. The types of BCs are:

e Dirichlet: dependent variable specified on boundary
eg.u=0whenx=0; u=1-¢*whenx=1

e Neumann: gradient of dependent variable specified on boundary

e.g.%:Owhenx=Oandx=1

e Robin: an ODE for the dependent variable is specified on the boundary

e.g. % +2u=x when [x| =1, defined for |x| <1.

e Mixed: the boundary is split into several parts, each with different conditions
d

e.g.u=4rwhenx=0; —==1-uwhenx=1, definedon0<x<1.
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3.7.3. Common PDEs and their 2D General Solutions

Partial Differential Equations

oT a dc 01
2 . 2 : 2¢72
— =aVT + — — =DV-7c+¢ 2, — =cV
ot Rl o gen Vi) = pyen or? v
Heat Equation Diffusion Equation Poisson’s Equation Wave Equation
(T: temperature, (c: concentration, (Laplace’s Equation if pge, = 0)  (y: scalar displacement,
a: thermal diffusivity, D: diffusion coefficient) (p: scalar potential, c¢: phase velocity)
k: thermal conductivity, p: source density)

g: heat source per volume)

Heat Equation / Diffusion Equation: 2D Solutions

Separation of variables using T'(x, t) = X(x) ?(t) with a negative separation constant — %
gives X" + M’X =0 and T' + od’T = 0 with solutions

X(x) = AsinAx + BcosAx and ?(t) = Cexp(— oc?\zt).

Self-similar solution: letn = L, separate as T(x, t) = H(n) ?(t). Find an ODE in H(n).

Jat

Heat flux: q=-k V T; Diffusion flux: J=-D V ¢; Convection boundary condition: k

aT
o = h(T, = T)

out
oo

Normalisation condition: all solutions satisfy Wf T(x, t) dx = 0 (conservation law).

Laplace’s Equation: 2D Solutions
General solutions may be Separation constant
d(x, y) = X(x) Y(y) = (AsinhAx + B cosh Ax)(C sinAy + D cos Ay) using + A’

= (AsinAx + B cos Ax)(C sinh Ay + D coshLy) using — %
= (Ax + B)(Cy + D) using 0

Wave Equation: 1D Solutions
Separation of variables using Y(x, t) = X(x) T(t) with a negative separation constant — %

gives X" +2°X = 0 and T' + aA’T = 0 with solutions X(x) = A sin Ax + B cos \x and
T(t) = CcosAct + D sin Act.

0

D’Alembert’s solution: consider the PDEs _aty_ tc % = 0 andletn = ct + x. Itis clear that

any y = f(n) is a solution, so the general solution is y(x, t) = f(ct — x) + g(ct + x). The
lines ¢t — x = constant and ¢t + x = constant, along which the right and left running waves
move in the (x, ) plane, are the characteristics of the PDE. By differentiation, these PDEs are
jointly equivalent to the wave equation.
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3.7.4. Techniques for Solving Partial Differential Equations
For a typical PDE for a multivariable function u in terms of space x and time ¢,
Separation of Variables: assume u(x, t) = X(x) T(t).

1. Substitute u = XT where X is a function of x only and T is a function of ¢ only. Compute
the derivatives as e.g. u,, = X"(x) T(x), u, = X(x) T'(¢) etc.

2. Rearrange so that all X terms and all 7' terms are on opposite sides. Set both sides
equal to a separation constant, initially +12.

3. Solve each ODE for X(x) and T(¢) in terms of A, selecting the appropriate sign (or zero)
depending on whether the behaviour can meet the boundary conditions: it may be
oscillatory, exponential, or linear.

4. Use initial conditions and boundary conditions to constrain or discretise A and the
undetermined coefficients.

5. Use superposition to sum over remaining undetermined indices, if required.

(00}

Laplace Transforms: defined such that L{u(x, 1)} = U(x, s) = [ u(x, t) e dt
0

1. Transform the PDE using e.g. L{u,} = U(x, s), L{u,} = s U(x, s) - u(x, 0), etc. Also
transform the boundary conditions e.g. {u(0, /) = f(¢)} — {U(0, s) = F(s)}, and substitute
the initial condition for u(x, 0).

2. Solve the resulting ODE for U(x, s) and apply boundary conditions.

3. The inverse Laplace transform of U(x, s) (considering x as a constant) is u(x, ¢).

Fourier and other integral transforms may also be used.

Green’s Functions: multivariable convolution of input function with the impulse response
to solve the equation L[u] =f.

1. Identify independent linear differential operators L and the forcing functions
(honhomogeneous components) f.

2. Find or look up (Section 3.7.5) the Green’s function G(x) for the operator L.
3. Apply initial conditions and boundary conditions to constrain G.

4. Apply the convolution theorem as u(x) = [ () G(x - 1) dn.
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3.7.5. Green’s Functions

A Green’s function G is the impulse response of a linear differential operator: L [G] = d(x, ©)

In the table, r* = x* + y° (+ z°) in 2D (or 3D).

Telegrapher’s equation

Set — )+ 8(ct + ) + Het — o) { L1o (22) + 2Lop, (22
() ()

(H: step function, I: Bessel functions)
Differential operator L Green’s function G(x, y, [z, t])
ng 1 Inr
2D Poisson equation 2m
Vip _ L
3D Poisson equation Amr
V%D + kz _e—ikr
Schrodinger equation dmr
2 X
_— — T
o Oa? 2 (=120)
1D wave equation
52
or “Vip 9 \/% (t B t)
ey c - c
2D wave equation
10* _,
- 1
dom VP 0 (- 7)
3D wave equation
5 (1 Pow (-2 ) no
t T ankt ) P\ 4k
1D diffusion equation
0 2
- _ kng 1 r
— - t
ot T P g ) HO)
2D diffusion equation
0 3/2
— — kVQ 1 r2
Ot 3D — exp | —— ) H(t)
Akt 4kt
3D diffusion equation "
02 0 0? L
I + 2 — C2— —€
o2 "ot T 9 2

Cc u

[2.2 2
where u =\/c't —r
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3.7.6. Fundamental Lemma of Calculus of Variations
b
If a continuous function fon an open interval (a, b) satisfies | f(x)h(x) dx = 0 for all

a

compactly supported smooth functions % on (a, b), then f(x) = 0.

b
Corollary: if [ f(x)h(x) + g(x)h'(x) dx = 0 then g'(x) = f(x) (same conditions as above).

3.7.7. Euler-Lagrange Equation

A ‘variation’ (or perturbation) f+ 6/ of a function f (x) constrained to satisfy ' (a) =4 and f
(b) = B can be written as g.(x) =f(x) + ¢ n(x) where ¢ is small and 7(x) is a differentiable
function satisfying 5(a) = n(b) = 0.

b
Let S be a functional defined as S[f] = / f(t,x, ) dt

The function ffor which § is stationary i.e. local gradient to small variations is zero,

satisfies the differential equation
of _d (of
Or dt \9i )"

If 7'is explicitly a function of higher derivatives of x, then the equation is

of d [0f 42 [of cd¥Of O\
a_x_&(%)+@(%)_...+<_1>@(W)_O.

Note that x, x’ etc. are considered independent variables.
Common applications:

e Minimum action (Lagrangian / Hamiltonian for mechanical systems, see Section 6.2.12).
e Minimum distance on a curved surface (geodesics)
e Minimum energy configuration of a system
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M4. LINEAR ALGEBRA

4.1. Vector and Matrix Algebra
4.1.1. Properties of Real Matrices
Zero, Ones and Identity Matrices:
e Zero matrix: 0; Ones matrix 1; Identity matrix I, (» x n matrix with 1’s on leading diagonal)
Singular Matrices:
e If |A] = 0then A is singular (non-invertible) and A" does not exist.
Symmetric and Antisymmetric Matrices

e IfA=A" then A is symmetric (4, = 4;) and A" exists.
e If A=—AT then A is antisymmetric (skew-symmetric) (4, = —4,), A" does not exist
and A has zeros on the leading diagonal.

Diagonal, Triangular and Sparse Matrices: special cases of square matrices

If 4,=0foralli#; then A is diagonal.

If 4,= 0 for all i >; then A is upper-triangular.

If 4, =0 for all i <; then A is lower-triangular.

If 4, =0 for ‘most’ i #; then A is sparse (informal definition but computationally useful)

Orthogonal Matrices:

e If AAT=ATA =1 then A is orthogonal (orthonormal), A = AT= A", the rows and columns of
A are orthonormal vectors.

Full-Rank Matrices:
e If rank(A)=min(dim(A)) then A is full-rank.
Defective Matrices:

e If A does not have a full set of eigenvectors then A is defective (non-diagonalisable).
A defective n x n matrix A has at least one eigenvalue with algebraic multiplicity m >

1, with less than m associated eigenvectors.
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Idempotent Matrices: for square matrices A,

e If A=A then A is idempotent.
e All A=1, are idempotent. If A #1, is idempotent, then A is singular.

Positive Definite and Positive Semi-Definite Matrices: for symmetric matrices A = A,

e Ifx'Ax> 0 for all x#0 then A is positive definite (A > 0), and A has all positive eigenvalues.
e If x'Ax> 0 for all x then A is positive semi-definite (A > 0), and A has all nonnegative eigenvalues.

Row Echelon Form and Reduced Row Echelon Form:

e A isin row echelon form if 1) all rows having only zero entries are at the bottom and 2) the
leading entry (the left-most nonzero entry) of every nonzero row (the pivot) is on the right of
the leading entry of every row above.

e A s in reduced row echelon form (RREF) if 1) A is in row echelon form, 2) the leading entry
in each nonzero row is 1 (a ‘leading one’) and 3) each column containing a leading 1 has
zeros in all its other entries.

4.1.2. Properties of Complex Matrices
Normal and Unitary Matrices:
o If AA*=A*A then A is normal.

e If AA*=A*A =1 then A is unitary and A = A* = A”". The matrix can be written as
A = exp(iH) where H is a Hermitian matrix, or diagonalised to A = UDU* where U is
unitary and D is diagonal and unitary.

Hermitian and Anti-Hermitian Matrices:

o IfA=A* A=A")(4,= A_jl_) then A is Hermitian (self-adjoint).

x*Ax is real for all complex vectors x. A has spectral decomposition A = UDU*
where U is unitary and D is diagonal. |A| is real.

o If A=—A* (A=—A"then A is anti-Hermitian (skew-Hermitian) (4, = —Aﬁ).
The entries of A on the leading diagonal have no real part.

For matrix decompositions, see Section 4.3.
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4.1.2. Simple Properties of Matrix Operations

Matrix Multiplication:

e ABC=(AB)C=A(BC) (grouping / associative)
e AB+C)=AB+AC (factorisation / distributive over addition)
e AB#BA (not commutative in general)

Matrix Algebra: identical to scalar algebra, except:

e multiplication is not commutative e.g. (A + B)’ = A+ AB + BA + B> # A> + 2AB + B?
e vectors squared become x'x
e divisions become matrix inverses A™

Determinants, Transpose, Conjugate Transpose, Inverse (if it exists) and Trace:

e tr(A) is the sum of all leading diagonal elements of A.
e A* s the conjugate transpose: element-wise complex conjugate and transpose

AT = A A*[=]A*F AT = A
|AB| = |A||B| (AB)' =B'A" (AB)* = B*A* (AB)"=BA™
ANT=(AH*=(A)"=A
tr(aA + bB) = a tr(A) + b tr(B) tr(AB) = tr(BA) tr(ab’)=b'a

(a and b are column vectors of equal length)

129



All Notes 4.1. Vector and Matrix Algebra

4.1.3. Determinant of a Matrix

The determinant of a matrix A is written |A| or det A.

For a 2 x 2 matrix: a b — ad — be
c d
a b c

For a 3 x 3 matrix: d e fl=a(ei— fh)—>b(di— fg)+ c(dh — eg)
g h 1

In general, the determinant of a larger square matrix is the alternating sum of products of
entries along any row or column with the determinant of the matrix formed by the
remaining entries (not in that row or column). Any row or column can be chosen: in the
above 3 x 3 expression, the top row was used.

Properties of Determinants:

Invariance under transpose and conjugation: |A'|=|A| and |A*| = |A*

Determinant of an inverse: |A7|=|A|”

If A is either diagonal or upper/lower triangular, then |A| is the product of the diagonals.
When a single row or column is multiplied by «a, the determinant is multiplied by a.

When a matrix is multiplied by a, the determinant is multiplied by a”.

Replacing a row/column with itself plus another column does not change the determinant.
Swapping two rows/columns multiplies the determinant by -1.

If an entire row or column is zero, the determinant is zero.

The determinant is distributive over multiplication: |AB| = [A|B.

0. If one row or column is written as a sum, then the determinant can be written as the sum
of two determinants:

SO NOO AN =

ail + o« aiz  ais ai; a1z Qi3 Q@ a1z ais
ag1 + 3 aze as |=| a azx as |+ | B aw as
az1 +7 as2 ass az; 32 33 7 a3z ass

Properties 3-7 are often used to help factorise algebraic determinants, exploiting the
circular permutation symmetry of the symbols, for example:

1 a* be 1 a? be 5 o
1 b cal=|0 b*—a* ca—bc|l= b2:a2 Z(a_ )‘ = (b—a)(c—a) bta :Z
1 2 abl |0 2—a® ab—be| 1©7° (a=c) cta
bra — bt
= (b—a)(c—a) . _Z . _Cb = (b—a)(c—a)(c—b) ‘ ] “ 1C = (b—a)(c—a)(c—b)(a+b+c)
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4.1.4. Inverse Matrix, Transpose and Conjugate Transpose

Inverse of a2 x 2 matrix: A = [a b] LAt [ d —b]
c d ad —be |—¢ a
Inverse of a 3 x 3 matrix: A -1 _ LCT
A

where C is the matrix of cofactors, which is the determinant of the 2 x 2 matrix formed by
the elements not in the corresponding row or column, multiplied by an alternating sign of
+1 or -1 (starting with +1 in the top left).

T
a b c a d g

Transpose: |[d e f| = 1|b e h = (AT)ij =Aj
g h i c [ 1

Conjugate Transpose (Hermitian transpose):

a+pBi y+6i| Ja—Bi e—(i B A
[5+Ci 77+I-€i] _[7—(52' n— Ki = Ay =Aj

Results for complex matrices typically use A* instead of A'. For real matrices, A* = A'.

4.1.5. Outer Product
Outer product: a® b =ab' so that the elements are (a©b),;=a; b, .

Self outer product: If n is a column vector, then n ® n = nn' is a square, symmetric matrix.

ny TL% ning MNq1Mn3
nn’ = |n, [nl No n3} = [niny N3 nong
N3 nin3 Mon3z N3

4.1.6. Cross Product Matrix

The cross product matrix of a vector n is denoted [n]. and has the property [n]. a=n x a for
any vector a € R3. i.e. it represents a cross product as a linear transformation. It is defined as

0 —nN3 D)
[n]y = | ng 0 —m
D) nq 0

The cross product matrix [n]. is always skew-symmetric. The columns of [n]. are the
cross products of n with each unit basis vector {i, j, k}.
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4.1.7. Eigenvalues and Eigenvectors

Definitions: for a square n x n matrix A, the eigenvalues are denoted 4 and eigenvectors are denoted u.

Definition: Au=Au < (A—ADu=0 <« |A — Al| =0 (characteristic equation, degree n)
Non-defective matrix: every A (including repeated) has a unique corresponding u.

Algebraic multiplicity a: the exponent of the factor (A — ) in the characteristic polynomial.
Geometric multiplicity g: the number of linearly independent eigenvectors associated i.e. the
dimension of the null space of A — el.

e FEigenbasis / eigenspace: the space spanned by the eigenvectors. If A is symmetric and the
eigenvectors are normalised, then the eigenbasis is an orthonormal basis.

Geometric interpretation: A : R” — R” is viewed as a linear transformation (Sections 4.2.2. and 4.3).

e The eigenvectors point along the invariant lines under A. These vectors are not rotated (only scaled).
If A =1 then the corresponding line is a line of invariant points under A.
e A repeated eigenvalue represents an invariant plane under A (spanned by the eigenvectors).

Relationships Between Eigenvalues and Eigenvectors:

e Sums and products of eigenvalues: A, + i, +... +A,=tr(A) and AA,... A, = det(A).
Sum of (n-1)-permutations: ;... A, + Ay A F Ak A = MAL A, (M AL+ AT = tr(0)
where C is the matrix of cofactors of A. The Faddeev-LeVerrier algorithm computes the coefficients of
the characteristic polynomial via Vieta’s formulas by applying Newton’s identities to these expressions.

e Linearity: eigenvalues of ¢A are a); eigenvalues of A +al are A + a; eigenvalues of A" are A"
(including n = -1 as the inverse).

e Commutative matrices: if A and B have the same eigenvectors, then AB = BA.

e Polynomial of a matrix: for any polynomial f(x), the eigenvalues of f(A) are /() (with the constant
term taken to be a multiple of I).

e Cayley-Hamilton theorem: a matrix A satisfies its own characteristic equation.

xAx

e Rayleigh’s quotient: if A is Hermitian, then the quantity ¢ = 7, =X AX= x"Ax is bounded by

A < C <, where 1, and 4, are the smallest and largest eigenvalues of A respectively, and x is any
vector. Also, if x = u then C = 4, the (approximate) corresponding eigenvalue to eigenvector u of A.

e Spectral radius: the smallest circle in the complex plane containing all eigenvalues, p(A) = max |1,].
For any integer k£ > 1 and norm (Section 4.1.9), p(A) < ||A¥|"*, with equality in the limit of k — oo.

e Gershgorin circle theorem: every complex eigenvalue of A lies within the union of circles in the
complex plane, centred at the diagonal entries of A, with radii given by the sum of the magnitudes

n
of all off-diagonal entries in thatrowi.e. 1 € {z: U |z — Aiil <y |Aij|}.
i=1 j#i

e Singular values: the singular values ¢ of A are the square roots of the eigenvalues of AA" or A'A.
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4.1.8. Approximations for Eigenvalues and Eigenvectors

Shifted Inverse Power Method
To approximate an eigenvalue of A:
e Choose an initial approximation a to the target eigenvalue of A.
e (Calculate the matrix B= A - al.
e Choose any initial normalised vector r,.
e |terate: starting with » = 0 and incrementing,

o Solve the system Br,,; =r,, typically using efficient LU decomposition.
o Calculate y,.; = r,.1 "1, as an estimate for the shifted eigenvalue.
o Normalise r,, (in-place) and continue.

e Once sufficient convergence is achieved, calculate A = HL + « as the target

e

eigenvalue of A, where u_ is the limiting (converged) value of sequence W . The unit
vector r, has simultaneously converged to the corresponding eigenvector.

Note that if ry happens to be chosen as a different eigenvector of A,
the method will not converge.

An initial estimate for o can often be found using the Gershgorin Circle Theorem
(see Section 4.1.7.), which works best when the matrix is sparse or near-diagonal (most
off-diagonal entries are zero or much smaller than the diagonal entries).

Rayleigh’s quotient (Section 4.1.7) can also be used to approximate the eigenvalue from
an eigenvector approximation, and bounds the eigenvalues.
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4.1.9. Normed Vector Spaces and Matrix Norms
Norms are scalar-valued measures of the ‘typical size’ of an object (vector/function/matrix).

Vector Norms: if x is a vector with elements x;, four common norms are

e 1-norm: x|l =X |xl_| (L; norm / [, norm / Manhattan norm / Taxicab norm)
i
e 2-norm: |1X]|, = A /Z xl,2 (L, norm / I, norm / quadratic norm / Euclidean norm)
i
Inner product form: ||x||,> = x-x (in a Hilbert space)
1/p
e p-norm: Ix||, = (Z |xi|p) (for p>1; 1” norm / Lebesgue norm)
i
e oo-norm: |Ix]]., = max {x;} (infinity norm / supremum norm)

Generalisation to Infinite Dimensions (Banach Spaces)

Discrete or continuous functions f: R — R can be considered infinite-dimensional vectors.

/v
_ P
e [ norm: IxIl, = (Z |x |

1/p
e [, norm: ||f||p = (f |f(x)|p dx) (fdefined in a Lebesgue space L,(Q))
Q

Matrix Norms: if A is a matrix with elements a;, four common norms are

e 1-norm: the maximum absolute column sum, [lAll; = max ZI%‘I
J -
1
e Infinity-norm: the maximum absolute row sum, [[A[|, = max Z'“”l
AL
J
. 2 .
e Euclidean norm: Al g = Z Zla,—;l“ (Frobenius norm)
i
e 2-norm: the largest singular value of A.  (spectral norm)

The condition number of an invertible square matrix A is defined by « = [|A]| ||A™|
evaluated using one of these norms (the same one in both places. If the 2-norm is used,
the condition number is the ratio of the largest to the smallest singular value of A.
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4.2. Transformation Matrices
4.2.1. Rotations, Reflections, Shears and Projections as Transformation Matrices

Rotation Matrices: for a counterclockwise rotation about the origin, angle 6,

9 " 1 0 0 cosf/ 0 sind cosf) -singd 0
{CSDSH o Smg ] 0 cosf -sind 0O 1 0 sind cosf O
S cos 0 sind cosé —sind 0 cosé 0 0 1
2D 3D, about x-axis 3D, about y-axis 3D, about z-axis

The general rotation about line r x n =0 is given by (cos ) I + (sin 6) [n]. + (1 - cos 6) (n @ n).

In 3D, the rotation is considered counterclockwise when viewed inwards from the positive
axis, towards the origin. The eigenvalues are {1, ¢”, ¢'’}. The real eigenvector corresponding
to A = 1 is the axis of rotation. The trace is 1 + 2 cos 6. The determinant is 1.

Reflection Matrices:

cos26  sin26
In 2D, the reflection in the line y = (tan )x is given by sin20 —cos26 |- Determinant is -1.

1— 2n% —2niny —2nins
In 3D, the reflection in the plane rn=0is givenby I-2nmn"= |—2nny 1—2n3 —2nsns

: . —2 —2 1 — 2n2
where n is the unit normal vector of the plane. s 12l i

Shear Matrices: shear factor 1 is givenby I+An[1 1 1]: angle of shear: tan y=1
1+ /\nl )\’I’Ll )\nl
1 A 1 0 )\’I’LQ 1+ )\’I’LQ )\”2

in x-axis  in y-axis general 3D shearinliner xn=0

Orthogonal Projection: the projection matrix of R® onto the plane r-n = 0, where n is the
unit normal vector of the plane, is
1-— nf —ning —NiNns
I-nn' = [-nmny, 1—n2 —nyng
—ning —nsng 1 — n%

This is a singular matrix since it involves a reduction in dimensionality (3 — 2).
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4.2.2. Geometric Interpretation of Invariance, Eigenvalues and Eigenvectors
For all linear transformations, the origin is invariant, which is not considered to ‘count’ here.
In 2D (or higher):

Invariant point: if Ap = p then p is invariant under A (p does not move).
p is an eigenvector of A, with eigenvalue 1.

Line of invariant points: a line r = An for which all points on the line are invariant.
n is an eigenvector of A with eigenvalue 1.

Invariant line: a line r = An for which points on the line are mapped to another point on
the line, so that the line as a whole does not move.
n is an eigenvector of A, with points being scaled by the eigenvalue.

In 3D (or higher):

Plane of invariant points: a plane r = Au + uv for which all points on the plane are invariant.
u and v are eigenvectors with repeated eigenvalue 1.

Invariant plane: a line r =Au + pv for which points on the plane are mapped to another
point on the plane, so that the plane as a whole does not move.
u and v are eigenvectors with the same repeated eigenvalue.

4.2.3. Affine Transformations

An affine transformation represents the combination of a linear transformation followed by a
translation in space. In 3D, they can be represented as 4 x 4 matrices, with space vectors
takingthe form [x y z 1]', known as homogeneous coordinates (with w =1, WLOG).

A 3D affine transformation matrix R has the form

0 0 0 1 000 1 0 0 0 1
trans‘l;tions rotations, shea:“g, projections...

where M, are the entries of a 3 x 3 linear transformation matrix M and (Ax, Ay, Az) are
translations parallel to the coordinate axes.
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4.3. Fundamental Subspaces and Matrix Decompositions

4.3.1. Fundamental Subspaces

For any m x n matrix A of rank r, with y = Ax, (dims = number of dimensions in the space)

Subspace

Form

Dims

Basis

Projection matrix onto

subspace
Row space T T T
Input (domain) CAY) Peol nonzero rows of rref(A) A'(AA)'A
space
@m=n | Nullspace | oy | Ax=0 ie. XA=0" - AT(AAT)'A
(kernel)
Column space Frow columns of A corresponding to TaataT
Output (image; range) c@) columns of rref(A) with leading 1’s A(AA)A
space
(dim=m) | Leftnull space | xm |, . YA=0" ie. Aly=0 I- A(ATA)'AT

(cokernel)

For any matrix A acting as a transformation of space R” into space R”,

Orthogonal complements:

e The row space and the null space are orthogonal.
e The column space and the left null space are orthogonal.

Ranks:
e The column rank is the dimension of the row space. Full column rank: » = n.

Vectors in the row space are mapped to the column space.
Vectors in the null space are mapped to the origin.

No vector is mapped to the left null space.

The eigenvectors span the column space.

4.3.2. The Gram-Schmidt Orthonormalisation Process

The row rank is the dimension of the column space. Full row rank: » = m.
If A has full row rank then a solution x to the system Ax = b exists.
If A has full rank (i.e. square, invertible) then the solution x to Ax =b is unique.

Given a set of vectors a,, the Gram-Schmidt process gives a set of orthonormal vectors q; which

span the same space as a,, by subtracting off components parallel to each q.
i—1

Taking normalised a, as q;, the vector q; is the normalised vector of q,’=a, — ¥ (a;*q) q-

The complete set q; is obtained when the resulting vector is 0.

k=1
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4.3.3. LU Decomposition

For any m x n matrix A,
PA=LU

where P is a permutation matrix (sometimes omitted), L. a square m x m lower triangular
matrix and U an m x n echelon matrix.

Manual computation:

e To compute U, use Gaussian elimination to convert A into row echelon form, using
row operations of the form r;” =r; - a r, where j > i. If using partial pivoting, swap rows
before each elimination such that the pivot (diagonal entry of U) is maximised (by
magnitude), equivalently ensuring that the multiplier (entry in L) has |a| < 1.

e To compute L, let each lower-triangular entry be equal to the coefficient a used in the
Gaussian elimination step to form a zero in the corresponding position in U. The
diagonal entries of L are all 1 and the upper-triangular entries are all 0. If using partial
pivoting, swap entries in L only when they are below the diagonal of the column, and
only in the column in which the swap was performed.

e To compute P, start with I and swap the same rows as done during the process of
computing U. If partial pivoting was not used, then P =1 and can be omitted.

Programming functions:

e MATLAB: [L, U, P] = 1u(A)
e Python: P, L, U= scipy.linalg.lu(A) where A is a NumPy array

Basis of subspaces:

Column space: the columns of L. corresponding to nonzero rows of U
Left nullspace: the nullspace of AT

Row space: the nonzero rows of U

Nullspace: the nullspace of U

To solve a system of equations of the form Ax =b:

e Transform Ax =b into Ux = ¢ where Lc¢ =b can be solved by forward-substitution.
e Set all free variables to zero and find a particular solution x.
e Set the RHS to zero, give each free variable in turn the value 1 while the others are
zero, and solve to find a set of vectors which span the null space of A: n4, n,, etc.
e The general solution is x = x5 + An, + un, +. . ., where 4, u, etc. are arbitrary.
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4.3.4. Cholesky Decomposition
For a Hermitian (if real, then symmetric), positive-definite matrix A,
A=LL* in general, or A=LL" for real matrices
where L is a lower triangular matrix. L* is the conjugate transpose.
Manual computation:

e For each row of L, compute the diagonal entry using this first formula below,
starting with the top left.

e Then compute the remaining entries on that row using the second formula below,
starting from the left and moving right until the diagonal. All other entries are 0.

e Move down to the next row, repeating until all rows of L are filled.

-1 j1
Lj; = (i)d A =D LA, Lj; = d Aj; =Y LikLiy,
k=1 k=1
1 j—1 1 J—1
Lij=7—(4ij = > LigLjx | fori>j. Ly = . (Aw' N ZLML}'Z:«) ford > j.
k=1 k=1

.3 9

for real matrices for complex matrices
Programming functions:

e MATLAB: L
e Python: L

chol(A)
scipy.linalg.cholesky(A) where A is a NumPy array

To solve a system of equations of the form Ax = b:

e Transform Ax = b into L*x = ¢ where Lc¢ = b can be solved by forward-substitution.
e Solve L*x = ¢ by back-substitution.

This method is approximately twice as fast as a solution using LU decomposition.
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4.3.5. QR Decomposition and Least Squares Fitting

For any m x n matrix A,
A=QR

where Q is an orthonormal m x r matrix and R is an invertible upper-triangular » x n matrix,
where r is the rank of A.

Manual computation:

e To compute Q, use the Gram-Schmidt process (Section 4.3.2.) to find an
orthonormal set from the columns of A. These vectors form the columns of Q.

e To compute R, use
R,;=q;ra,  ifi<j otherwise R; =0
where q; is the ith column vector of Q and a; is the jth column vector of A.
Programming functions:

e MATLAB: [Q, R] = qr(A)
e Python: Q, R = scipy.linalg.qr(A) where Ais a NumPy array

To solve a least-squares system Ax* = b: in general, x* = (ATA)" A" b, or more efficiently,

e Find A=QR.
e Solve Rx* = Q'b by back-substitution.
e The solution x = x* satisfies min {x € R": ||Ax - b||,°} =min {x € R": Y, |A;"x - b*}.

Least-squares system in tabulated form: mapping x; to y, (1 <i <n), the coefficients of a
best-fit line y = a + bx or parabola y = a + bx + cx* can be found by solving the systems

an+b2x;—:2y!—
i i
aZx; + be? = Zx;y;
i i i
an+be,+ch _Zy,

Quadratic: y = a + bx + cx? ! Zx,+b2r ""Zx —Zx‘u
aZx;+bZ.r;+chi :Zx;y,-
i i i i

Straight line: y = a + bx 1
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4.3.6. Eigendecomposition (Diagonalisation)

If A is a square n x n matrix with » linearly independent eigenvectors (diagonalisable,
nondefective), then
A=SAS7" and A"=SA"S"

where S has the eigenvectors of A as its columns, and A is a diagonal matrix with the
corresponding eigenvalues along the diagonal. Matrices A and A are said to be similar, so
that they represent the same geometric transformation with a change of basis given by S.

Spectral theorem: If A is Hermitian then A = SAS*
Spectral decomposition: If A is real and symmetric then A = SAS'.
where S the orthonormal matrix of normalised eigenvectors as its columns.

Programming functions (where D < A)

e MATLAB: [S, D] = eig(A).
e Python: D, S = np.linalg.eig(A) # can use eigh(A) if Hermitian

4.3.7. Singular Value Decomposition (SVD)

For any m x n matrix A,
A= Q1EQ2T

e Q, is an m x m orthonormal matrix with the normalised eigenvectors of AAT as its columns.

e Q,is an n x n orthonormal matrix with the normalised eigenvectors of A'A as its columns.

e X is an m x n diagonal matrix containing the r singular values, arranged in descending order
on the leading diagonal, which are the square roots of the non-zero eigenvalues of both
AAT and ATA, where r is the rank of A.

Programming functions:

e MATLAB: [Q1, S, Q2]
e Python: Q1, S, Q2T

svd(A)
np.linalg.svd(A) where Ais a NumPy array

Basis of subspaces of A:

Column space: the first » columns of Q;
Left nullspace: the last m — r columns of Q;
Row space: the first » columns of Q,
Nullspace: the last n — r columns of Q,
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4.3.8. Other Matrix Decompositions
Schur Decomposition: for any square matrix A,
A =UTU*

where U is unitary, and T is upper-triangular with the eigenvalues of A along its diagonal.
If A is normal then T is diagonal and the Schur form matches the spectral decomposition.

Polar Decomposition: for any square matrix A,
A=UP

where U is unitary and P is positive semi-definite and Hermitian. P is unique with P? = AA*,
If P has spectral decomposition P =VDV* and W = UV then the SVD is A = WDV*,

Toeplitz decomposition: for any square matrix A,
A=H+G

where H is Hermitian and G is skew-Hermitian, with H= (A + A*) /2 and G = (A — A*) /2.

4.3.9. Matrix Exponentials
For a square m x m matrix A, the matrix exponential exp(A) is defined as

A" 1
n=0 )

To compute exp(A) from its eigenvalues and eigenvectors, let A = SAS™
(eigendecomposition: Section 4.3.6). Then exp(A) = S exp(A) S7.

Properties:

e exp(AN) =exp(A)" and exp(A*)=exp(A)*
e If AB=BAthene*e®=¢cBer=¢*"B
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4.3.10. Statement of a Convex Optimisation Problem
Objective: to find x that minimises fy(x) such that f;(x) <b; and h;(x)=0, where

X =[x}, Xy, ..., x,]" iS an input state vector

fo(x) is the objective function (scalar)

f:(x) < b; are bounds for valid regions (feasible region) of the input x
h;(x) =0 are constraints for valid contour lines (level sets) of the input x

Convex function: f(ax +py)<afi(x)+ffi(y) foralla+p=1,a>0,5>0

In a convex optimisation problem, the objective and inequality constraint functions f, and
f; are convex functions. Convex optimisation problems are guaranteed to have no more
than one local minima: if a minimum exists, then it is the global minimum.

The global minimum solution is denoted x = x*, so that f;(x*)=min {x € R”: f(x)} within
the specified constraints.

Least-Squares Optimisation

Objective: minimise fy(x) =||Ax - b||,? (I,-norm of residual vector)
Constraints: (arbitrary)

The solution is given by x* = A*b (A" =(ATA)'A": Moore-Penrose pseudoinverse).
Linear Programming (LP Problems)

Objective: minimise fy(x) =e¢'x (linear combination of variables)
Constraints: a,’x<b, and x>0

The solution x* is guaranteed to lie on the vertex of the boundary of the constraint region.

Danzig’s simplex algorithm: visualise feasible region as a polytope (n-D polyhedron with
hyperplane faces) in a uniform gradient field V1, = c. Traverse edges of the polytope until
optimum vertex found.

Quadratic Programming

Objective: minimise f(x) = %XTPX +q'x+r (P: positive semi-definite matrix)

Constraints: Gx<h and Ax=b
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4.4. Matrix and Tensor Calculus

4.4.1. Indicial Tensor Notation

Einstein summation notation: repeated indices imply summation over indices.

Component form:
Inner product:
Outer product:
Kronecker delta: 4§, =

y

Permutation symbol:

ab=a; b,

if A=a®b then 4;,=a

a=aq,¢=>),0a;€

b

iYJ

1if i = else ¢, = O; for orthonormal e, then J, = e;*e,.

o ey=1,wheni,j, karein cyclic order
o e =-1,when i,j, k are in anti-cyclic order

[/

o ey =0, when any indices repeat

Triple product contraction:
Gradient field:
Divergence field:

Curl field:

Gauss’ divergence theorem:

Stokes’ curl theorem:

€it€ing = 07,0t — 0j,0%y (epsilon-delta identity)
V¢=(0p/0x)e=¢,e

v .V:Vl,l

VxXv=euv e

E)Aij
a_deV = % Aijnj ds
N
04,
fel]k axp Tll'dS %Apk dxk
N J c
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4.4.2. Differentiation with Respect to Vectors and Matrices

&) o &,
Jy|, Oy dy]; v dy i dy;

Vector-valued function x(y) Multivariable function x(y) Vector field x(y)

Differential of matrix expressions (X, Y: matrix-valued functions)

JA = 0 (A is a constant)
d(aX) = adX
X +Y) = X+0Y
A(Tr(X)) = Tr(oX)
IXY) = (0X)Y +X(9Y)
0XoY) = (0X)oY +Xo (YY)
IXRY) = X)Y +X®(9Y)
oxXh = —xtex)x!
d(det(X)) = Tr(adj(X)oX)
d(det(X)) = det(X)Tr(X '0X)
d(In(det(X))) = Tr(X '9X)
oxT = (ax)T
ox" = (ax)H
Odet(Y _,0Y
Derivative of determinant: # = det(Y)Tr {Y 1—]
ox ox
~1
Derivative of inverse: — Y ! aYY‘1
T ox
Derivative of ei I'iZ’(X)—iT(X)—I
erivative of eigenvalues: -5 » | cig = ax I =
0 ) 0 _
a—XHelg(X) = oxdet(X) = det(X)X r
N . oxTa 0a’x daTXb da’X"h
erivatives of linear forms e o a X ab X ba
T
B
Derivatives of quadratic forms: 8xax * = (B+B)x
; PRSI T T of T 82f T
Gradient and Hessian: if f=x Ax+b'x then V,f= ~=(A+A")x+b; —=A+A
ox OxoxT

dF (x) ITr(F (X))

— (X))
——— then X f(X)

Derivative of trace: if f(x) =
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4.4.3. Quadratic Forms
A quadratic form is a scalar-valued function of the form
f(x)=x'"Ax+b'x, f:R"—>R, A=ATER", b &R

If x =[x, ... x,] then the x"Ax term expands to a weighted sum over all combinations of xx;
and the b'x term expands to a weighted sum over all x..

Iff A > 0 then f'is a strictly convex function.

4.4.4. Block Matrices

A block matrix is a matrix in which the entries can be matrices, vectors or scalars.

1 2 2 7 3 3 4 5
Py = , Py = , Py = , Py = :
" [1 5] - [6 2} ., [3 3} . [6 7}

P [Pn P12].
Py Py

LW W
W W Ul N
o A O N
IS, B CRRN

Block matrix P is said to be (m x n) if it has m row partitions and » column partitions. Its
full dimensions are at least as large as m x n.

e Multiplication: if A is (m x n) and Bis (p x n) then C=AB is (m x n): C,=A,B,
All partitions must be conformable such that # columns in A, = # rows in B,, for all i.
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M5. STATISTICS

5.1. Axioms, Combinatorial Probability and Basic Statistics
5.1.1. Axioms of Probability

Axioms: The probability P is a measure that verifies the following:

e Probability of an event: P(A) €ER, P(A) =20, VAC Q
e Sample space is a certain event: P(Q) =1
e Additivity for disjoint sets: P(AUB)=PA) +PB), fANB=0

Immediate Consequences: these can be demonstrated easily from a Venn diagram.

e Monotonicity: if A< B then P(A) < P(B).
e Empty set: P(©O) = 0.

e Complement: P(Z) =1 — P(4)

e Bound: 0<PA) <1 VAc Q.

5.1.2. Rules of Probability

e Addition: P(A U B) = P(A) + P(B) — P(A n B).
e Sum rule: P(A n B) + P(A N B) = P(A).
« Conditional probability:  P(4 | B) =%(2)3L if P(B) # 0.

e Law of total probability: ~ P(A) = P(A|B) P(B) + P(A | B) P(B).

e Bayes’ rule: P(B |A) = %pm | B) =

P(A|B) P(B)
P(A|B)P(B)+P(A|B)P(B)

5.1.3. Combinatorial (Frequentist) Definition of Probability
Assuming that the event occurs with equal likelihood in all outcomes:

number of outcomes in which A occurs
total number of outcomes

Probability of an event 4 =
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5.1.4. Definitions of Mean and Variance
For a single variable dataset {x,, x,, ..., x,}, the sample mean and variance are

I 1 & ) R
T M )

i=1 i=1

If n — N is large and representative of the population, then the population mean and variance are

wEe Ry (5

n n

The quantities ) X, and ) xi2 are known as summary statistics.
i=1 i=1
Standard deviation: ¢ Coefficient of Variation: CoV = —

i

5.1.5. Data Presentation
For categorical or discrete data:

Pie chart: angle of the pie represents fraction of total frequency.

Bar chart: bar height represents frequency. May have error bars, be grouped and/or stacked.
Frequency table: lists the frequencies explicitly.

Pictogram / tally chart: shows icons representing a given unit frequency.

Choropleth map: colour-coded values or buckets. Often used for geographical data.

For numerical and continuous data:

Histogram: shows frequency density = frequency (area) / bin size, of the intervals

Line chart: shows values as X on the graph, connected. Can also be used for discrete.
Stem and leaf plot: lists of numerical data grouped by the most significant digit.

Box and whisker plot: shows the min, max, quartiles and mean.

Conventionally, outliers are identified as x > UQ + 1.5 x IQR or x < LQ - 1.5 x IQR.
(UQ: upper quartile, LQ: lower quartile, IQR = UQ - LQ: interquartile range)

For bivariate data:

e Scatter graph: shows values as X on the graph, not connected.
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5.1.6. Common Numbers and Operators in Combinatorics

n

e Factorial: n!=[] k=n(n - 1)(n — 2)..2 x 1 for positive integers n, and 0! = 1.
k=1

e Double factorial:

n'=nn — 2)(n — 4)..2 if n even; nll'=nn — 2)(n — 4)..3 if n odd.
1-n 1
nit = 2" (1 if n even; ai= ol )xnnfifnodd.
()
e Asymptotic growth: << nll<< << n” asn— o
n
e Stirling’s approximation: Inn!~ninn—n and n!~-2mn (%) asn— o
2n)!!
e Double factorial ratio: ﬁ ~q/mn asn— o
— n—1
e Rising factorial: A==+ k) =xx+ D+ 2)(x+n—1) = Lo
k=0
n—1 ”
e Falling factorial: (x) k]:[o(x —k)=xx-Dx-2).(x—n+1) = E—
e Derangement (subfactorial): 'n=n!Xx Z LL = round( ) with 10 =1
k=0
|
e Combinations (binomial coefficient): <n> ="c = ';
r T rt(n—r)!
e Permutations: "o _ k"
r (Tl— )' r
e Bell numbers: Bn+1 = ]EO Ck X Bk
o Explicit formula (Dobinski's formula): Bn = %2 i!

=
Il

0
o First few Bell numbers: B,=1,B,=1,B,=2, B;= SB4 15, B5 52, B,=203...

o Exponential generating function: EG(Bn; z) = 2 n—’;zn =e

n=0

n
e Harmonic numbers: H,=Y %

r=1 . )
e Stirling numbers of the 1st kind: coefficients s such that (x)n =Y s(n k)x
k=0

e Stirling numbers of the 2nd kind: S(n, k) = Z - 1)1),1,
e Lah numbers: L(n, k)= x L

Comt X
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5.1.7. Counting Problems of Unordered Sets (Combinations and Partitions)

Consider a set S of n objects, all of which are unique, e.g. S= {@ V@V
A combination is an unordered non-empty subset of S of any length r, e.9. {@® @ .

A partition is a superset of S containing any number k of non-overlapping (mutually disjoint)

combinations of S, e.g. {{@ W}, { ¥}, (@®}}.

A combination may (if specified) include the same element(s) of S multiple times. If this is the case,
we say it has “repeats” or “with replacement”.

|
e Number of r-length combinations without replacement = "Cr = ﬁ
P . - +r—1)!
e Number of 7-length combinations with replacement = """ 1CT = %

e Number of partitions = B, (Bell numbers)

e Number of partitions into £ combinations = S(n, k) (Stirling numbers of the second kind)

5.1.8. Counting Problems of Ordered Sets (Permutations and Derangements)

Consider a set S of n objects, all of which are unique, e.g. 5= {@  V@®V).
A permutation is a linearly ordered non-empty subset of S of any length r, e.g. (@.@. ).
A cyclic permutation is a permutation where left/right shifting is considered an identical permutation.

A derangement is an n-length permutation without replacement of an ordered set S such that no

object remains in its original position, e.g. (@, . ¥.®.9)- ( .©.©.9.9).

A permutation may (if specified) include the same element(s) of S multiple times. If this is the case,
we say it has “repeats” or “with replacement”.

n!

e Number of r-length permutations without replacement = nPr = m

e Number of r-length permutations with replacement = n

e Number of derangements = !n (derangement)

e Number of partitions into k cyclic permutations = s(n, k) (Stirling numbers of the 1st kind)

e Number of partitions into £ permutations = L(n, k) (Lah numbers / Stirling numbers of the 3rd kind)

If the set contains items considered to be identical e.g. S= {(@@® WY V@@ W, where each item
@®. . ©... appears n,, n,, ns... times respectively (n, + n, + n; + ... = n):

|
e Number of n-length multiset permutations without replacement = +
Tll. TL2. Tl3.
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5.1.9. Common Counting Problems

Coupon Collector Problem: each box contains one coupon. Each coupon can come in n
different kinds, uniformly distributed. Let 7 be the number of boxes opened once at least
one of each coupon kind has been found, where 7'> n.

n—l
t nrltl

e Probability distribution: P(T = t) =25t — L, n— ) =n" ' 3 "€ (- 1)
n r=0

! i n—i [ i\t
e Cumulative distribution: P(T < t) = 28(t, n) = ¥ "C.(- 1) (—)
n i=0 "
(S: Stirling numbers of the 2nd kind)

e Expected number of boxes required: E[T] = nH (H,: harmonic numbers)

n
e Variance in number of boxes required: Var[T] = n’ ( > = 1 —nH,

rlr

e Expected remaining number of boxes required given m < n already found: E[T | =nH

n—-m

e Asymptotic limit for large n: E[T]~nlnn+yn+ % + O™ (y=0.5772...: Euler-Mascheroni constant)

Hat Check Problem: a group of » men put their » unique hats into a box. Afterwards, the men
then randomly take back one hat each from the box without replacement. Let M be the
number of men who correctly retrieved their own hat, where 0 <M <n.

nCm X !l(n—m)

e Probability distribution: P(M = m) = —
e Probability all incorrect: P(M = 0) = % with lim P(M = 0) = %

n— oo

('n: derangement)

e Probability all correct: P(M = n) = %

e Expected number of correct hats: E[M] = 1
e Variance in number of correct hats: Var[M] = 1

Birthday Problem: in a room of n people, find the probability that any two share a birthday.

365

e P(at least two shared birthdays) = 1 —

365"
e For two groups (@ men and » women, with a + b = n)'
i+j—1
P(a man shares a birthday with a woman) =

11]1

Intersection of Random Sets: let S, = {1, 2, ... M} and S, = {1, 2, ... N}. Without replacement,
uniform randomly and independently, choose a elements from Sy and b elements from S,, and
put them in sets X and Y respectively.

e The count of common elements has distribution P(|1X N Y| = z) =
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5.2. Probability Distributions and Random Variables

5.2.1. Discrete Probability Distributions

Distribution P(X=r) E(X) Var(X) Gy(z) H(X)
PMF expectation variance PGF differential entropy
Bernoulli prql—r
r <€ {0, 1} P pq q+pz | -qlogg+tplogp
X ~ Ber(p) g=1-p
Discrete Uniform 1 2 b4l
< fa, ... b} n S n —1 zZ-z log n
X~U(a, b) n=b-a+l 12 n(1-2)
Binomial loq /2
n r n—-r men
re {0,1,2,...,n} Crp q np npq (q + pz)n g 1_7161
X~B(n, p) + O(n”)
Negative Binomial it ng n
r€{0,1,2, ..} e p'd 19 —L ( p ) i
X~NB(n, p) P P L
Beta-Binomial 1w oo inrip) | na nap(otB+n)
re{0,1,2,...,n} r n 2 - -
X ~ BetaBin(n, a, ) Bl B) ath (@+B) (otp+1)
Geometric ;
re{1,2,3, ...} d 'p p! ap”’ Tﬁ"? =L log g - log p
X~ Geo(p)
Hypergeometric Nk e .
r € {max(0, n+K-N) ¢, G, nk nK(N—K)(N—n) " )
.., min(n, K)} “c. N N*(N-1) JFy(n, K
X~HG(N, K, n) N-K-n+1; 2)
Negative r+n—1_, N—-n—-r
Hypergeometric C, Cyy nkK nK(N+1)(N—K+1—n) ) )
re {0, ..., K} Ne N-K+1 N—-K+2
X~NHG(, K, n) .
Poisson g
FE{0,1,2,..) e r'7‘ A A '“™Y | log2mer + 007
X ~ Po(%) '
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5.2.2. Continuous Probability Distributions

T . Julx) E(X) Var(X) M(s) H(X)
Distribution PDF expectation variance MGF differential entropy
Rectangular 2 bs  as
1 atb (b—a) e —e
x & [a, b] a—b 2 T m |Og(b - a)
X ~Rect(a, b)
Normal 2
_i( x H) 2 1 22 1
reR 1 2\ o 1 o hotzos — (1 +log(2na?))
X~N(u, 0% Zm
Student’s ¢ v 1 v v
R F(%li (1 s )_Z(V+1) 0 v (undefined for 5 ( ( H) (2 ))
Xt Jm F(%) v v—2 tail ranges of /) | 4 og(v'2 (% %)
Exponential
1
x>0 re ™ % — )\is 1 -log A
X ~ Exp(}) A
Rayleigh %
-2 2 4 —
x>0 e o o - 1+—2L+|og%
X ~ Rayleigh(o) o
log B(a, f)
Beta 1
xe(0,1] | =Bl ur gyt | 2 o s e | @ Dv
X~ Beta(, p) | [ ©OT® B | (a+B) (atp+D) §1(lj s)k— -B-DwB+
! o (@+p-2) pla+p)

For the multivariate Normal distribution, see Section 5.4.1.
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5.2.3. Typical Modelling Cases for Probability Distributions

Urn Model (With Replacements / Repeats): Consider an urn (container) of balls, of
which a proportion p are (success) and the rest (1 - p) are red (failure). Suppose that
balls are sampled with replacement (each ball is returned before taking the next ball).

. . A total of » balls are sampled.
Binomial T
The number of balls sampled is distributed as X~ B(n, p).
Samples are drawn until the first ball is sampled.
Geometric The total number of balls sampled (including the ) is distributed as
X ~ Geo(p). The number of red balls sampled is then X - 1.
Negative Samples are drawn until the first n balls are sampled.
Binomial The number of red balls sampled is distributed as X ~ NB(#, p).
A fixed number of balls are drawn. It is observed that o - 1 are
Beta and that S - 1 are red. The prior for the number of balls is uniform.
The (posterior) probability of drawing is distributed as p ~ Beta(a, f).
A total of n balls are sampled. The probability p of drawing is
Beta Binomial | unknown and is distributed as p ~ Beta(a, §).
The number of balls sampled is distributed as X ~ BetaBin(x, a, f).

Urn Model (Without Replacement / Repeats): Consider an urn of N balls, of which K are
and the rest (V - K) are red. Suppose that balls are sampled without replacement
(the combination of balls is taken at once, so the sample must contain unique balls).

A total of »n balls are sampled.
Hypergeometric | The number of balls sampled is distributed as X~ HG(NV, K, n).
If n << N — oo then X~ B(n, K/ N) (K = pN).

Samples are drawn until the first » red balls are sampled.
The number of balls sampled is distributed as X~ NHG(¥, K, n).

If n << N — oo then X~ BetaBin(K, n, N-K-n+ 1) (K =%andN—K=Tin).

Negative
Hypergeometric

Event Model: Consider a period over which point events can occur at an average rate 1 events
per unit interval (often time, sometimes distance or number of transitions).

Poisson The number of events per unit interval is distributed as X~ Po(1).

Exponential The interval between two consecutive events is distributed as X ~ Exp(1).

154



All Notes 5.2. Probability Distributions and Random Variables

5.2.4. Sampling From Normal Distributions

If X is Normally distributed as X ~ N(y, 02), then:

X—p . ..
e The standard score Z = S E is distributed as Z ~ N(O, 1).

For a random sample of n observations X, from X with sample standard deviation s:

2

— — 2 —
e The sample mean X is distributed as X ~ N(y, GT). (Var(X) = Gr’l‘ for any iid sample)
S_o X >
e The sample mean standard score Z = 2y ™ is distributed as Z ~ t .-
S n

o |If nis sufficiently large (n > 30) then s =~ ¢ and Z~ N(O, 1).

5.2.5. Central Limit Theorem
For a set of n independent random variables X;, X,, ..., X,, each having means and

variances (us, 61%), (4o, 659, .., (i, 0,°), the CLT states that

n
e The random variable Sn =) X is approximately Normally distributed (weak CLT),
i=1

n n
e lim S ~N|Y u, X 02, i.e. the approximation is exact as n — .
n—ow =1 " =1
. . , S, — T
If all .X; are i.i.d. with mean x and variance ¢ then — - N(0, 1) asn — .
o\n

These results hold regardless of the distribution of .X.

The Berry-Esseen Theorem (improved by Shevtsova, 2010) bounds the error in the weak
CLT Normal approximation by the value of its CDF (z is the value of standardised S,):

n z |3
Do (Xi — ) 1 ey max {£(X:7)}

P <z — e dz| < 0.56 x 3
> i1 07 V2T J o ) V- max {3}

Vv . o~ N 4
exact CDF at 2 approximate CDF at z

~
upper bound for error

Therefore error ~ n”2, Practically, the CLT is ‘good’ when the sample size is n > 30.
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5.2.6. Expectation from Probability Density Function

Expectation (mean) of a random variable given PMF or PDF:

Discrete: E[X] = Y xPX =x) = q Continuous: E[X] = [ xf (¥)dx = u

Tail formula for nonnegative random variables (X > 0):

Discrete: E[X] = Y} P(X = x) Continuous: E[X] = f(l - FX(x)) dx
x=0 0
Law of the Unconscious Statistician (LOTUS theorem): if Y= g(X) then

Discrete: E[Y] = ; gx)P(X = x) Continuous: E[Y] = Ofo gx) fX(x) dx

X=—00
Variance of a random variable given PMF or PDF and mean (2nd central moment):

Discrete: Var[X] = ; (x — p.)z P(X = x) Continuous: Var[X] = ofo(x - u)z fX(x) dx

X=—00
5.2.7. Moments of Distributions

Moments of a random variable X are defined as:

e nth raw moment: w'=E [X"]
n
e nth central moment: no= E[(X — u)n] = Y (- l)r nCr ur u'n—r
r=0
H, E[(X—w"
e nth central moment, standardised: = [( “2) n]/z
o E[X-w]
Some important moment-related measures are:
¢ Mean: u=E[X] = ul' (central tendency)
e Variance: o = Var[X] = E[XZ] - E[X]2 = I, (spread about the mean)
e Skewness: Y = Skew[X] = i, / o (asymmetry)

y > 0: smaller values more likely
y < 0: larger values more likely

e Kurtosis: k = Kurt[X] = i, / o (tailedness / outlier frequency)
e Excess Kurtosis: k= k — 3 mesokurtic: k= 0 (Gaussian)
(Fisher kurtosis) leptokurtic: k> 0 (tail-heavy)

platykurtic: k< 0 (tail-light)
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5.2.8. Generating Functions

For a discrete random variable X:

e Probability generating function (PGF): GX(z) = E[zX] = Y PX=k) Z

k=—o
For any variable X, the PGF is a polynomial in z where the coefficients give the PMF.
The PGF is the Z-transform (discretised Mellin transform) of the PMF P(X = k).

For a continuous random variable X:
e Moment generating function (MGF): M (s) = Ele"] = f £, e dx

The MGF is the bilateral Laplace transform of fi(x) (or ordinary LT |thas support X > 0).
The PGF and MGF definitions are related by z = e°.

e Characteristic function (CF): ¢ () = E[e f f, (x) e

The CF is the Fourier transform of f(x) (signs reversed; using ¢ as the Fourier “frequency’).
The MGF and CF definitions are related by s = it so that MX(t) = ch(— it).

Identities with Generating Functions: manipulating random variables

e Shift and scale: Y=aX+b = M(s) = e M, (as)
e Sum of RVs: Y =X +X, = G6(2) = le(z) GXZ(Z); M (s) = Mxl(s) MXz(S)

: . — v _ — 1. - _
e Difference of RVs: Y = X —-X = Gy(z) = le(z) GXz( ~); My(s) = MXl(S) MXZ( s)

sX+tY

o JOiNtGFofX.Y: G _(zw)=E[Zw] M (s t)=E[e" ]
e Marginal GF: GX(z) = ny(z, 0); MX(s) = MXy(s, 0)

Important Quantities (Moments) from the PGF and MGF: see Section 5.2.7 for definitions
The coefficient of z* in the expansion of the PGF G,(z) is the PMF of X i.e. P(X = k).
The coefficient of s in the expansion of the MGF M ,(s) is proportional to the nth raw moment of X:

o g un' _ o
MX(s) = nﬁzjo 7 since p ' = M, (s)
Expectation: E[X] =M, (0)= Gy’ (1) since E[X"]=M{"(0) =G, (1)
Variance: Var[X] = E[X?] — E[X]?

= M, (0) = My’ (O
= G (1) + Gy (1) = (G (D)2
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5.2.10. Inverse Transform Sampling

Let U be a uniformly distributed random variable on 0 < U< 1. If X' is a random variable
with cdf or cmf F(x), then X = F,/'(U). This can be used to generate samples with a given
pdf or cdf, given a system to generate uniformly distributed random numbers.

To generate RVs with a truncated distribution a < X< b, let F(a) < U< F(b) and X = Fy'(U).

5.2.11. Inequalities for the Expectation of Random Variables

E[X]

a

e Markov’s Inequality: PX>a)< for nonnegative Xi.e. X>0

e Jensen’s Inequality: E[g(X)] >g(E[X])  for convex functions gi.e. g”(x) >0
e Chebyshev’s Inequality: P(|X — E[X]|>a) < Mgﬂ‘ fora>0

a
e Minkowski’s Inequality:  (E[|X+ Y')"” < (E[IXFD"" + (E[|Y]])'? forp>1

e Hadlder’s Inequality: E[IXY]] < (B[IXPD™ (B[|Y|D"™  for p, g > 1 with % + % =1

158



All Notes 5.2. Probability Distributions and Random Variables

5.2.12. Distributions of Functions of Random Variables

To find the PDF of Y, fi(y), write down F\(y) =P(Y <y) and let Y = g (X). Solve the resulting

dF X
inequality for X to write F(y) in terms of F(y). Finally, use fy(y) = d—yy and FX(x) = fX(x) dx.
Common functions:

o If Y =aX +b then f,() = £, (25%) where a>0
) + £ (=)

2.y
o It Y=xthen £,0) =5 ¥ £,

2
o If ¥ =+X then f,(») =2y f, (")
o If Y =min(X, a) then F.) =F,(») if y<a else 1 (fy(y) contains a delta function)

o If Y =X then f (y) =

o If Y =max(X, a) then F.) =F,») if y>a else 0 (fy(y) contains a delta function)

For a multivariable function e.g. two RVs, Y=g (X, X,), use (for the CDF):
Fy(y) = // fx.x,(x1, 22) drydxs, where S = {((El,IQ) c R?: g(x1,19) < y}
S

Common functions:

o IfY = max{X , X, ... X } then F)=F,WMF, O . F, 1) (parallel system)

o IfY = min{Xl, % g Xn} then Fy(y) = (1 —-F, (y))(l —-F, (y))... (1 —-F, (y))

(series system: models ‘weakest link’ failure)
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5.2.13. Manipulating Independent Random Variables and their Distributions
Let X, and X, be independent random variables. Then:

Linear Transformations (green: also valid when X, and X, are not independent.)

Transform E[Y] Var[Y] ) M(s)
Scale a E[X] @’ Var[X] % fX(-aL) M, (as)
Y=aX

d Shift b 2 Lr(2=b sb
bl B @ Varlx] () | My
Sum E[Xl] + E[XZ] Var[Xl] + Var[Xz] (fX *fX)(y) MX (s) MX (s)
Y:AX'I +X2 1 2 1 2

Nonlinear Transformations (all the below require independence)
e Product: if Y= X, X, then

E[Y] = E[X | E[X ]

Var[Y] = Var[X | Var[X ] + Var[X | E[X,]" + Var[X ] E[X.]"

The new distributionis £, () = Ofo f,0Of, (—V—) L dx

) Tl (product distribution)
e Ratio: if Y=X, /X, then
2 1

E[Y] can be found by LOTUS, and Var([Y] = E[X *| E[=5] — E[X ]’ E[5-] -

2 2

The new distributionis  f (») = [ |x|f, (xy) f, (x) dx

(ratio distribution)

Combinations of Common Distributions: for independent random variables,

If X; ~N(uy, 6,%) and X, ~ N(w,, 6,%) then X, + X, ~ N(u, + 1, 1> + 6,%).
If X, ~Po(4,) and X, ~ Po(/,) then X, + X, ~ Po(/, + 4,).

If X, ~B(n, p) and X, ~ B(n,, p) then X, + X, ~ B(n, + n,, p).

If X~B(N, p) and N ~ Po(2) then X ~ Po(pA).

If X; ~N(0, ¢°) and X, ~ N(0, ¢*) then X;> + X,> ~ Exp( 212 )-
(o)

N

e IfX,~N(0, 1)then ) Xl,2 ~ x 2y (Chi-Square distribution with N degrees of freedom).
i=1

o If.X,~N(0, @) and X, ~N(0, &) then /X * + X * ~ Rayleigh(c).

Reciprocal Normal Distribution: if X ~ N(u, 0*) and Y = 1/X then f (y) =

1
\2moy
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5.2.14. Multivariable Probability: Joint and Marginal Distributions

For jointly distributed random variables (X, Y), let p(x, y) = fy(x, y) denote the joint pmf if (X, ¥)
are discrete, or the joint pdf if (X, Y) are jointly continuous. p(x) = f(x) is the marginal pmf/pdf
of X. p(x | y) = fux(x | ) is the pmf/pdf of X, conditioned on some value of Y =y.

db
Definition of joint density: P(a<X<b N ¢c<Y<d)=[[p(x, y)dxdy

ca

. _ a° .
Definition from joint CDF: p(x, y) = - % F (v (also written f(x, v))
Conditional PMF / PDF:  p(x|y) = %‘yfl p(y) # 0 (also written fy(x | )
Bayes’ rule: p(x|y) = P10 p) __p([0)p@) (p(x): prior distribution)
r(¥)
X)) px|y)
Independence between random variables X = {X,, X, ...}: (X is a random vector)
Conditional independence: px, x| y)=pkx, | y) p(x21y), p(y)#0
Pairwise independence: p(x;, x;) = p(x;) p(x;) for every pair i, j
(Mutual) independence: p(union of all x;) = product of all p(x;) (stronger than pairwise)
Conditional expectation: E[X|Y]=X, xp(x|y) (= E[X] if independent)
Linearity of conditionals: E[(aX+0bY)|Z]=a E[X| Z] + b E[Y| Z]

Quantification of dependence and association:

Covariance: Cov[X, Y] =E[(X - E[X])(Y - E[Y])] = E[XY] - E[X] E[Y]
Law of total probability: px)=3, px,»)
Law of total expectation: E[X]=E[E[X] Y]]
Law of total variance: Var[X] = E[Var[Y | X]] + Var[E[Y | X]]
Law of total covariance: Cov[X, Y] = E[Cov[X, Y| Z]] + Cov[E[X| Z], E[Y | Z]]
Linearity of covariance: Cov[aX, Y] = Cov[X, aY]=a Cov[X, Y], and

Cov[X+Y, Z] =Cov[X, Z] + Cov[Y, Z]

Cov(X,Y) _ Cov(X,Y)

Pearson Correlation Coefficient: p,, = Corr[X, Y] = (PMCCQC)

WVar(X)Var(Y) 9,0,
General variance of sums: Var[aX = bY + c] = a* Var[X] + b* Var[Y] = 2ab Cov[X, Y]
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5.2.15. Standard Normal Distribution: Critical Values (; table and its Inverse)

The table gives the values of P(Z <z) for a given z, with Z~N(0, 1). These are left tail probabilities.

Table entry
Table entry
z F4
0 0
Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 4 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

-34 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003  .0002 00 5000 5040 .5080 .5120 .5160 .5199 5239 .5279 5319  .5359
-33 0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 0.1 5398 5438 .5478 .5517 5557 5506 .5636 .5675 .5714 5753
-32 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 .0005  .0005 02 5793 5832 .5871 .5010 .5948 .5987 .6026 .6064 .6103  .6141
-31 0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007  .0007 03 6179 6217 .6255 6203 .6331 .6368 .6406 .6443 6480 6517
-30 0013 .0013 0013 0012 .0012 .00i1 .00i1 .0011 .0010  .0010 04 6554 6501 .6628 .6664 .6700 .6736 .6772 .6808  .6844  .6879
29 0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014  .0014 05 6915 6950 .6985 7019 7054 7088 7123 7157 7190 7224
-28 0026 .0025 .0024 0023 .0023 .0022 .0021 .0021 .0020  .0019 06 7257 7291 7324 7357 7389 7422 7454 7486 7517 7549
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 07 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
-2.6 .0047 .0045 .0044  .0043 .0041 .0040 .0039 .0038 .0037  .0036 0.8 7881 7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106  .8133
-25 0062 .0060 .0059  .0057 .0055 .0054 .0052 .0051 .0049  .0048 09 8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365  .8389
-24 .0082 .0080 .0078 0075 .0073 .0071 .0069 .0068  .0066 .0064 1.0 8413 8438 .8461 8485 .8508 .8531 .8554 .8577  .8599 8621
-23 0107 0104 0102  .0099 .0096 .0094 .0091 .0089 .0087  .0084 11 8643 8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810  .8830
-2.2 0139 .0136 .0132 0129 0125 .0122 .0119 .0116 .0113 .0110 1.2 8849  .8869 .8888 .8907 8925 8944 .8962 .8980 8997 9015
=21 .0179 .0174 0170 0166 .0162 .0158 .0154 .0150 .0146 .0143 13 9032 9049 .9066 .9082 9099 9115 9131 9147 9162 9177
-20 0228 0222 0217 .0212 .0207 0202 .0197 .0192 .0i88  .0183 14 0192 0207 0222 0236 0251 0265 9279 9292 .9306  .9319
L7 0 {12 g 2 g 2% G R 02 R 17 O = 15 9332 9345 9357 9370 9382 9304 9406 .9418 9429 9441
-1.8 0359 .0351 .0344 033 .0329 032 .0314 .0307 .0301 .0294 16 9450 0463 0474 0484 0495 9505 0515 0525 0535 0545
e O S 7 /31 0 1 {0 0 (5 6] 17 9554 954 9573 9582 9591 9599 9608 9616 9625  .9633
-16 .0548 0537 0526 .0516 .0505 .0495 .0485 .0475 .0465  .0455

18 9641 9649 9656 9664 0671 9678 .9686 9693 .9699  .9706
-15 0668 .0655 0643 0630 .0618 .0606 .0594 .0582 0571  .0559

19 9713 9719 9726 9732 9738 9744 9750 9756 9761  .9767
-14 0808 .0793 0778 .0764 .0749 0735 .0721 .0708 .0694  .0681

20 9772 9778 9783 9788 .9793 9798 .9803 .9808 9812  .9817
-13 098 .0951 .0934 0918 .0901 .0885 .0869 .0853 .0838 .0823 21 o821 082 9830 9834 0638 9842 9346 0850 9454 9657
-12 151 1131 1112  .1093 .1075 .1056 .1038 .1020 .1003  .0985 — . . . y y y . : -

22 9861 9864 .9868 9871 .9875 .9878 .9881 .9884 .9887  .9890
-11 1357 1335 1314 1292 1271 4251 1230 1210 .1190 .1170 o
1.0 1587 1562 1539  .I515 .1492 .1460 .1446 .1423 1401  .1379 EE e GO i O S
09 1841 1814 1788 1762 1736 1711 1685 1660 1635 1611 24 9918 9920 .9922 .9925 9927 9929 9931 .9932 .9934  .9936
08 2119 .2090 2061 2033 .2005 1977 1949 .1922 1894  .1867 25 9938 .9940 9941 9943 9945 9946 9948 9949 9951 9952
07 2420 2380 2358 237 2206 2266 2236 2206 2177 2148 26 9953 9955 .9956 .9957 9959 .9960 .9961 .9962 .9963  .9964
06 2743 2709 2676 2643 .2611 2578 2546 .2514 2483  .2451 27 .99%5 .9966 .99%67 .99%8 .99%69 9970 .9971 9972 9973  .9974
-0.5 3085 .3050 .3015 2081 .2046 2912 .2877 2843 2810 2776 28 9974 9975 9976 9977 9977 9978 9979 .9979 .9980  .9981
04 3446 3409 3372 3336 3300 3264 3228 .3192 3156 3121 29 9981 9982 .9982 .9983 9984 9984 9985 9985 9986  .9986
03 3820 3783 3745 3707 3669 3632 3594 3557 3520 3483 3.0 9987 .9987 .9987 9988 .9988 9989 .9989 .9989 .9990  .9990
0.2 4207 4168 4129 4090 .4052 4013 3974 3936 3897  .3859 31 9990 9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993  .9993
0.1 4602 4562 4522 4483 4443 4404 4364 4325 4286  .4247 3.2 9993 9993 .9994 .9994 9994 9994 .9994 .9995 9995  .9995
-0.0 .5000 4960 4920  .4880 .4840 4801 4761 4721 4681  .4641 33 9995 9995 .9995 .9996 .9996 9996 .9996 .9996 9996  .9997

34 9997 9997 .9997 9997 .9997 9997 .9997 .9997 9997  .9998

-1
Inverse z Table: z =& (P(Z < 2))
P(Z<z) 0.001 0.005 0.01 0.05 0.1 0.5
z -3.090232 | -2.575829 | -2.326347 | -1.644854 | -1.281552 0
P(Z<z2) 0.9 0.9995 0.95 0.99 0.995 0.999
z 1.281552 3.290527 1.644854 2.326347 2.575829 3.090232
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5.2.16. Student’s r-Distribution: Critical Values (Inverse ¢ table)

The table gives the values of x satisfying P(X < x) =p, where X'is a
random variable having the ¢ distribution with v degrees of freedom.

p 0.9 0.95 0.975 0.99 0.995 p 0.9 0.95 0.975 0.99 0.995
v v

1 3.078 6.314 12.706 31.821 63.657 29 1311 1.699 2.045 2.462 2.756
2 1.886 2.920 4.303 6.965 9.925 30 1.310 1.697 2.042 2.457 2.750
3 1.638 2.353 3.182 4.541 5.841 31 1.309 1.696 2.040 2.453 2.744
4 1.533 2132 2776 3.747 4.604 32 1.309 1.694 2.037 2.449 2.738
5 1.476 2.015 2.571 3.365 4.032 33 1.308 1.692 2.035 2.445 2.733
6 1.440 1.943 2.447 3.143 3.707 34 1.307 1.691 2.032 2.441 2.728
Fi 1.415 1.895 2.365 2.998 3.499 35 1.306 1.690 2.030 2.438 2.724
8 1.397 1.860 2.306 2.896 3.355 36 1.306 1.688 2.028 2.434 2719
9 1.383 1.833 2.262 2.821 3.250 37 1.305 1.687 2.026 2.431 2715
10 1.372 1.812 2228 2.764 3.169 38 1.304 1.686 2.024 2.429 2712
11 1.363 1.796 2.201 2718 3.106 39 1.304 1.685 2.023 2.426 2.708
12 1.356 1.782 2179 2.681 3.055 40 1.303 1.684 2.021 2423 2.704
13 1.350 1.771 2.160 2.650 3.012 45 1.301 1.679 2.014 2412 2.690
1 4 1.345 1.761 2.145 2.624 2.977 50 1.299 1.676 2.009 2403 2678
15 1.341 1.753 2131 2.602 2.947 55 1.297 1673 2.004 2.396 2.668
16 1.337 1.746 2121 2.583 2.921 60 1.296 1.671 2.000 2.390 2.660
17 1.333 1.740 2110 2.567 2.898 65 1.295 1.669 1.997 2.385 2.654
13 1.330 1.734 2101 2.552 2.878 T0 1.294 1.667 1.994 2.381 2.648
19 1.328 1.729 2.093 2539 2.861 75 1.293 1.665 1.992 2.377 2643
20 1.325 1.725 2.086 2.528 2.845 80 1.292 1.664 1.990 2.374 2.639
21 1.323 1.721 2.080 2.518 2.831 85 1.292 1.663 1.998 2.371 2.635
22 1.321 1.717 2.074 2.508 2.819 90 1.291 1.662 1.987 2.368 2.632
23 1.319 1.714 2.069 2.500 2.807 95 1.291 1.661 1.985 2.366 2.629
24 1.318 1.71 2.064 2.492 2.797 100 1.290 1.660 1.984 2.364 2.626
25 1.316 1.708 2.060 2.485 2.787 125 1.288 1.657 1979 2.357 2616
26 1.315 1.706 2.056 2479 2.779 150 1.287 1.655 1.976 2.351 2.609
27 1.314 1.703 2.052 2473 2771 200 1.286 1.653 1972 2.345 2.601
28 1.313 1.701 2.048 2 467 2.763 oo 1.282 1.645 1.960 2.326 2.576

r (V_l) 22\~ vt
PDF of the r-distribution:  f;(7;v) = 2 1+ —
vrl (%) v
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5.2.17. Chi-Squared (?) Distribution: Critical Values (Inverse Chi square table)

The table gives the values of x satisfying P(X < x) =p, where X'is a
random variable having the 2 distribution with v degrees of freedom.

p 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995 P
v v
1 0.00004 0.0002 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 1
2 0.010 0.020 0.051 0.103 0.211 4,605 5.991 7.378 9.210 10.597 2
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 3
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 4
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750 5
[ 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548 6
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278 7
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 8
9 1735 2.088 2.700 3.325 4.168 14,684 16.919 19.023 21.666 23.589 9
10 2.156 2.558 3.247 3.940 4.865 15.087 18.307 20.483 23.209 25.188 10
11 2603 3.053 3.816 4.575 5578 17.275 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 12
13 3.565 4107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 13
14 4075 4,660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 14
15 4601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 15
16 5.142 5812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35718 17
18 6.265 7.015 8.231 9.380 10.865 25989 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 20
21 8.034 8.897 10.283 11.591 13.240 29615 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.001 14.848 32.007 35172 38.076 41,638 44.181 23
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45,559 24
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45,642 48.290 26
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49,645 27
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993 28
29 13.121 14.256 16.047 17.708 19.768 39.087 42 557 45722 49.588 52.336 29
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 30
31 14.458 15.655 17.539 19.281 21.434 41422 44.985 48.232 52.191 55.003 31
32 15.134 16.362 18.291 20.072 22271 42585 46.194 49.480 53.486 56.328 32
33 15.815 17.074 19.047 20.867 23.110 43.745 47.400 50.725 54.776 57.648 33
34 16.501 17.789 19.806 21.664 23.952 44.903 48602 51.996 56.061 58.964 34
35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.203 57.342 60.275 35
36 17.887 19.223 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581 36
37 18.586 19.960 22.106 24.075 26.492 48.363 52.192 55.668 59.892 62.883 37
38 19.289 20.691 22.878 24,884 27.343 49.513 53.384 56.896 61.162 64.181 38
39 19.996 21.426 23 654 25.695 28.196 50.660 54 572 58.120 62.428 65.476 39
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766 40
45 2431 25.901 28.366 30.612 33.350 57.505 61.656 65.410 69.957 73.166 45
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490 50
55 31.735 33.570 36.398 38.958 42.060 68.796 73.311 77.380 82.292 85.749 55
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.208 88.379 91.952 60
65 39.383 41.444 44 603 47.450 50.883 79.973 84.821 89.177 94.422 98.105 65
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215 70
75 47.206 49.475 52.942 56.054 59.795 91.061 96.217 100.839 106.393 110.286 75
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321 80
85 55.170 57.634 61.389 64.749 68.777 102.079 107.522 112.393 118.236 122.325 85
90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299 920
95 63.250 65.898 69.925 73.520 77.818 113.038 118.752 123.858 129.973 134.247 95
100 | s67.328 70.065 74.222 77.929 82.358 118.498 124.342 129561 135.807 140169 | 100
PDF of the Chi-Square distribution: Zv/2-1e—x/2

fo(xQV) =
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5.2. Probability Distributions and Random Variables

5.3.18. F-Distribution: Critical Values (Inverse F table)

The table gives the values of x satisfying P(X> x) = p,

where X is a random variable having the F distribution

/v p
1 . .
formed by X = ———=, where x, and x, are 2*-distributed
2
with v, and v, degrees of freedom respectively. 0 X
degrees of freedom in the numerator, V4
K 1 2 3 4 5 L 7 2 9 10
oo 3986 4950 5159 55.83 57.24 58.20 58.91 50.44 5086 60,19
50 16145 19950 AL | 22458 230016 23399 234.77 238 88 240.54 241,88
1 25 &47.79 79950 6416 89058 Q21.85 937.11 94822 956,66 96328 Q68.63
A0 40522 49095 54034 6246 57636 Sa59.0 59284 5981.1 60225 &055.8
KU 405284 S00000 540379 562500 E76405 S85917 BO2873 598144 602284 ai5621
oo 8.53 Q.00 Q.14 Q.24 9.29 9.33 Q.35 Q.37 Q.38 9.39
50 18.51 1900 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
[ 2 25 35.51 3900 3917 3925 39.30 39.33 3938 3937 3939 39.40
- A0 95.50 Q900 9017 9025 99.30 09.33 9938 90.37 90,39 9940
KU 90550 90000 99017 Q9025 Q99,30 909.33 90036 990 37 990 39 Q99 40
-
— oo 5.54 546 539 534 53 5.28 5.27 525 524 523
E 50 10,13 955 Q.25 Q.12 2.01 5.94 8.89 &.85 881 a.79
o 3 25 1744 1604 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42
— A0 412 082 20 44 2871 2324 R 27.67 27.49 2735 2723
E KU 167.03 14850 141.11 137.10 13458 13285 131.58 130.62 120 86 12925
o oo 4.54 4.32 4.19 4.11 4.05 4.01 398 3195 104 392
c ik 7.7 6.94 6.59 6.39 6.26 6.16 b.09 6.04 6.00 596
] 4 25 12.22 1045 Q.98 Q.60 9.36 9.20 .07 £98 B.90 284
e il 2120 1800 16.69 1598 1552 1521 14.98 14.80 14.66 14.55
@ KU T4.14 61.25 56.18 5144 51.71 50.53 40,66 49.00 4847 4805
-
= oo 4.06 378 162 52 345 340 337 134 3132 3.30
— 50 661 579 541 519 505 4.95 488 4.82 4.77 4.74
— s 25 1001 843 7.76 7.39 718 6.98 b.85 6.76 B.68 662
E A0 16.26 13.27 12.06 11.39 10,97 10,67 1046 10.29 10.18 10,05
o KU 47.18 it.a2 3320 31.09 2978 25.83 2516 2765 27.24 2692
E oo 378 L] i1 118 in 3.05 LRI 298 294 294
@ 50 5.99 5.14 4.74 4.53 4.39 4.28 4.2 4.15 4.10 4.0
frol & 25 8.81 7.26 f.60 623 599 5.82 5.70 B8 5.52 546
H— A0 13.75 1092 Q.78 Q.15 475 8.47 826 &10 T.08 T.47
"'6 KU 3551 27.00 2370 2192 20020 20,03 1946 19.03 18.49 12.41
wy oo 359 326 107 294 288 233 278 275 272 270
(i }] A0S0 5.59 474 4.35 4.12 397 387 379 373 .68 364
1 }] 7 25 8.07 6.54 E.89 EE2 529 5.12 4.99 4.90 4.82 4.76
= A0 12.25 955 845 7.85 T46 7.19 699 6.84 6.72 662
g KU 2025 2169 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08
o 100 346 311 292 2.81 2.73 267 262 259 256 254
2050 5.32 448 4.07 3.84 3.69 3158 3.50 3.44 3.39 335
3 025 7.57 6.08 5.42 5.08 4.82 4.65 453 4.43 4.36 430
010 1126 865 7.59 T.01 663 6.37 618 6.03 591 581
20 2541 18.49 15.83 14.39 13428 1286 12.40 12.05 11.77 11.54
100 33s iam 281 269 261 255 251 247 244 2,42
050 5.12 4.26 .86 363 3.48 1.37 329 3.23 318 114
9 025 7.21 571 508 472 448 432 420 4.10 4.03 396
R 1056 802 6.99 642 606 E.BD 561 547 5.358 576
00 2286 16.39 1390 1256 1.7 11.13 10,70 1037 1011 989
100 3.29 202 273 261 2.52 248 241 2.38 2.3% 232
2050 496 4.10 371 348 333 322 314 307 302 298
10 028 6.94 5.46 4.83 447 4.24 4.07 3.95 3.85 378 3172
010 10004 7.56 655 5.99 5.64 539 520 5.06 4.94 485
20 2104 14.91 1255 11.28 1042 Q.93 9.52 9.20 8296 2.7%
. . . . v +v
PDF of the F-distribution: 1 U\ V1/2 U e
1 v1/2-1 1
. J— 1
fr(x; v, 1) = B \ o x 1+ —=x 165
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5.2.19. Product Moment Correlation Coefficient (PMCC): Critical Values (Inverse rho table)

The table gives the critical values, for different significance levels, of the Pearson’s
product moment correlation coefficient (PMCC), p, for varying sample sizes, n.

One tail 10% 5% 2.5% 1% 0.5% One tail
Two tail 20% 10% 5% 2% 1% Two tail
H n
4 0.8000 0.9000 0.9500 0.9800 0.9900 4
5 0.6870 0.8054 0.8783 0.9343 0.9587 5
5 0.6084 0.7293 0.8114 0.8822 0.9172 6
7 0.5509 0.6694 0.7545 0.8329 0.8745 7
8 0.5067 0.6215 0.7067 0.7887 0.8343 8
9 0.4716 0.5822 0.6664 0.7498 0.7977 9
10 0.4428 0.5494 0.6319 0.7155 0.7646 10
11 0.4187 0.5214 0.6021 0.6851 0.7348 11
12 0.3981 0.4973 0.5760 0.6581 0.7079 12
13 0.3802 0.4762 0.5529 0.6339 0.6835 13
14 0.3646 0.4575 0.5324 0.6120 0.6614 14
15 0.3507 0.4409 0.5140 0.5923 0.6411 15
16 0.3383 0.4259 0.4973 0.5742 0.6226 16
17 0.3271 0.4124 0.4821 0.5577 0.6055 17
18 0.3170 0.4000 0.4683 0.5425 0.5897 18
19 0.3077 0.3887 0.4555 0.5285 0.5751 19
20 0.2992 0.3783 0.4438 0.5155 0.5614 20
21 0.2914 0.3687 0.4329 0.5034 0.5487 21
22 0.2841 0.3598 0.4227 0.4921 0.5368 22
23 0.2774 0.3515 0.4132 0.4815 0.5256 23
24 0271 0.3438 0.4044 0.4716 0.5151 24
25 0.2653 0.3365 0.3961 0.4622 0.5052 25
26 0.2598 0.3297 0.3882 0.4534 0.4958 26
27 0.2546 0.3233 0.3809 0.4451 0.4869 27
28 0.2497 0.3172 0.3739 0.4372 0.4785 28
29 0.2451 03115 0.3673 0.4297 0.4705 29
30 0.2407 0.3061 0.3610 0.4226 0.4629 30
31 0.2366 0.3009 0.3550 0.4158 0.4556 3
32 0.2327 0.2960 0.3494 0.4093 0.4487 32
33 0.2289 0.2913 0.3440 0.4032 0.4421 33
34 0.2254 0.2869 0.3388 0.3972 0.4357 34
35 0.2220 0.2826 0.3338 0.3916 0.4296 35
36 0.2187 0.2785 0.3291 0.3862 0.4238 36
37 0.2156 0.2746 0.3246 0.3810 0.4182 37
38 0.2126 0.2709 0.3202 0.3760 04128 38
39 0.2097 0.2673 0.3160 0.3712 0.4076 39
40 0.2070 0.2638 0.3120 0.3665 0.4026 40
41 0.2043 0.2605 0.3081 0.3621 0.3978 41
42 0.2018 0.2573 0.3044 0.3578 0.3932 42
43 0.1993 0.2542 0.3008 0.3536 0.3887 43
44 0.1970 0.2512 0.2973 0.3496 0.3843 44
45 0.1947 0.2483 0.2940 0.3457 0.3801 45
46 0.1925 0.2455 0.2907 0.3420 0.3761 46
47 0.1903 0.2429 0.2876 0.3384 0.3721 47
48 0.1883 0.2403 0.2845 0.3348 0.3683 48
49 0.1863 0.2377 0.2816 0.3314 0.3646 49
50 0.1843 0.2353 0.2787 0.3281 0.3610 50
60 0.1678 0.2144 0.2542 0.2997 0.3301 60
70 0.1550 0.1982 0.2352 0.2776 0.3060 70
80 0.1448 0.1852 0.2199 0.2597 0.2864 80
90 0.1364 0.1745 0.2072 0.2449 0.2702 90
100 0.1292 0.1654 0.1966 0.2324 0.2565 100
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5.3. Hypothesis Testing
5.3.1. Decision and Estimation Theory
Definitions:

e For a set of i iid observations x =[x, x,, ..., x;] of arandom variable X = [X|, X,, ..., X]],
the distribution of each X; depends on x and some unknown parameter(s) 6.

e The estimate (decision) for 6 is a function of the observations: é(x).

e The estimator (decision rule) for a parameter 6 is given by .© = é(X)

5.3.2. Bayesian Statistics

In Bayesian statistics, the unknown parameter 0 is viewed as the value of a random
variable ©. The distribution of the sample is then interpreted as the conditional
distribution fx e(x | 6).

e Prior function: fo(0) (prior to any measurements)
e Likelihood function: Sxje(x]0).
e Posterior function: Jox(0]x) (after the measurements)

5.3.3. Estimator Metrics

Maximum likelihood estimator (ML): éML(X) = arggnax fxje(x(0)

Maximum a posteriori estimator (MAP): fy;4p(x) = argmax fox (0]x)

Minimum mean squared error (MMSE): éMMSE(X) — E[@|X — x] — /9 fe|x(9|X) dé
which minimises the value of E[(§ — 0)*X = x].

The posterior function is obtained from Bayes’ rule (see Section 5.2.9) as

fox(0]x) = fxle (3;}’(9()}(')]‘1@(0) |

Note that if f(0) = constant (i.e. ©® is uniformly distributed) then O = Oniap.
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5.3.4. Principles of Hypothesis Testing

Hypothesis testing involves assessing the probability of observing a given dataset, given
the assumption of a particular null hypothesis (H).

Alternative hypothesis (H,): a potential alternative statement to explain a dataset,
attributed to an external effect influencing the data.

e p-value (p): the probability of obtaining a result at least as extreme as the given
data, under the assumption that H, is true.

e p=P(data or further from H, | Hy). The p-value is not the probability of H,.

e Significance level (a): if p < a, the result is unlikely to happen under H, so we reject
H, and the result is said to be statistically significant.

Analysis of a Hypothesis Test

If H, is of the form 6 # a, the p-value must be found on the basis of a two-tailed test in
which the critical region is central to the distribution of 8 under H, i.e. use an effective
significance level of /2 in each tail.

The diagram illustrates the conditional distributions fo(8 | Hy) and f5(6 | H)).

Ho Hy

§ o
Type II error Type I error

e Type I error: falsely rejecting H, when in reality, H, is true (o = P(reject Hy | Hy))
e Type II error: falsely accepting H, when in reality, H, is true (8 =P(accept H, | H,))

e Ciritical (rejection) region under H,: 9 > 6* such that P(§ > 6* | H;) < «
e Powerofatest=1-p
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5.3.5. Specified Distribution Hypothesis Tests

After sampling a random variable X, a test can be performed to investigate whether the sample is
expected under a particular null hypothesis distribution. Commonly used for Binomial, Normal...

Assumptions: all assumptions made by the underlying distribution being proposed.
The p-value is the probability of observing the sample or more extreme given the null hypothesis.

Example (Binomial): a coin is flipped 16 times and lands tails 11 times. Investigate at 5% significance
whether the coin is fair or biassed. Find the power of the test if the true probability of tails is 0.6.

e Assume that the number of tails X is binomially distributed as X~ B(16, p) (independent
trials, binary outcomes, constant probability of success p).

H,: p = 0.5 (the coin is unbiased / fair).

H;: p # 0.5 (the coin is biassed / unfair) (two-tailed test).

Under Hy, X~ B(16, 0.5). The test statistic is X = 11.

P(X>11]|Hy) =0.1051 (p-value).

Since 0.1051 > 0.025 (half the significance level), we accept H,.

There is insufficient evidence to suggest that the coin is biassed.

Critical region: X> 13 and X < 3, Acceptance region: 4 < X < 12. Critical values: 3 and 13.
P(Type 1 error) = 0.05 (significance level).

P(Type 11 error | true p = 0.6) = P(accept Hy | p=0.6) =P(4 <X <12 | p=0.6) = 0.9339.
Power of the test =1 - 0.9339 = 0.0661.

Example (Normal): a particular make and model of car is known to have an average fuel mileage of 25.0
miles per gallon (mpg) with variance 6.1 mpg?. When a new additive is added to the fuel of 35 cars, their
mean mileage rises to 25.9 mpg. Test at 5% significance whether the additive increased the mean
mileage, and construct a 99% confidence interval for the population mean mileage with the additive.

Assume that the mileage X is Normally distributed as X~ N(u, 6.1).
Hy: 1 = 25 (the mileage has not increased).
Hy: 1 > 25 (the mileage has increased).

Under Hy, X ~ N(25, 6.1) and therefore the sample mean X ~ N(25, %) =N(25, 0.1743).

p=P(X>259|H,)=0.0156 (or using z-statistic: z = %% = 2.1557 — p=1 - ®(z) = 0.0156)

Since 0.0156 < 0.05 (significance level), we reject H,,.

e There is sufficient evidence to suggest the population mean mileage has increased.

e Critical region: z > @(0.95) — z > 1.6449 — X > 25 + 1.6449 x +/0. 1743 — X > 25.6867.
Acceptance region: X < 25.6867. Critical value: 25.6867.

e P(Type I error) = 0.05 (significance level).

99% confidence interval for new mean: z = ®(0.995) = 2.5758

— U E (25.9 — 2.5758+0.1743, 25.9 + 2.57584/0. 1743) — 1 € (24.8246, 26.9754).
This interval captures the true mean mileage with fuel additives with 99% confidence.
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5.3.6. Chi-Square Tests
Chi-Square Test for Goodness of Fit or Association

A Chi-Square (x°) test can be performed to investigate whether a discrete categorical random
variable X obeys a particular distribution, or for association between two categorical variables X
and Y (a non-parametric test).

Hy: there is no association between X'and Y
H,: there is an association between X and Y

Degrees of freedom for an a x b observed contingency table O: v = (a — 1)(b — 1)

(row total)i X (column total)],

Expected value under H, (no association): E =
ij grand total

L 2 0 —E)
Test statistic: X =X —5—
ij i
Critical value, 4., found from the table in Section 5.2.12.
If ¥* < 2. then we accept H, (evidence to suggest independence)

If ¥* > 2. then we reject H, (evidence to suggest association)
Modifications to the test methodology include:
e Pooling: if observed frequencies are less than 5, rows / columns should be combined.

e Yates’ continuity correction: if the contingency table is 2 x 2 (1 degree of freedom) and at least
one frequency is less than 5 (and so cannot be pooled), the test statistic is
, (10, E |- 05)’

X Yates Z E.
i,j ij

Yates’ correction is not universally accepted. Applying it decreases the test
statistic, increases the p-value and increases the probability of a type II error.

Software implementations:

Python: scipy.stats.chisquare(f_obs, f_exp=None)
R: chisqg.test(data) # " correct=False’ to disable Yates
Excel: =CHITEST(obs_range, exp_range)

Chi-Square Test for Variance

After sampling a random variable X, a Chi-Square (x?) test can be performed to investigate
whether X has a given population variance.

Hy: 0’y =a’
Hy: ¢’y # &’ (two tailed test) or ¢*y < a* or ¢°, > @’ (one tailed test).
2
. N-—-1 .
Test statistic: X2 = % (s*: sample variance)
a

Critical value, 42, found from the table in Section 5.2.12.
If ¥* < %, then we accept H; If ¥* > 4%, then we reject H,
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5.3.7. Inferential Parametric Tests: r-Tests and Analysis of Variance (ANOVA)

One-Sample r-Test for the Mean of a Normal Distribution
One sample, Normal distribution, unknown variance. Hy: 4 = a; Hjy: u # a (if two-tail).

X—a
S/n
The test statistic has a #-distribution with v = n — 1 degrees of freedom.
Critical values in table in Section 5.2.16.

Test statistic: t = (x: sample mean, S: sample std.dev, n: sample size)

Student’s Two-Sample ¢-Test for Independent Means of Homoscedastic Normal Distributions
Two samples 4 and B, Normal distributions, equal variance. Hy: us = ug; Hi: pa # g (if two-tail)

X, -x, Zx, S, —x)" + 20— x)’
(x, = ——: sample mean of 4, §* = - :

N S A

Test statistic: t = : pooled sample variance)

nA+nB—2

The test statistic has a r-distribution with v = n,+n,— 2 degrees of freedom.

Critical values in table in Section 5.2.16.

Welch’s Two-Sample r-Test for Independent Means of Heteroscedastic Normal Distributions
Two samples 4 and B, Normal distributions, unequal variance. Hy: us = ug; Hy: ua # up (if two-tail)

2 2 2
S/l SE
an
. The test statistic has a ¢-distribution with v = = = dof.
s 2 s 2 A B
nAA TZ nAz(nE -1) nﬁz(nA -1)

Critical values in table in Section 5.2.16.

X —X
A B

Test statistic: t =

Fisher’s ANOVA Test for Independent Means of Homoscedastic Normal Distributions
N variables{X}, (ith observation of X, 1 <j < N), Normal distributions, equal variance. H: all ; equal;
H;: not all i, equal.

Szb 2 by (Yj_})z 2 XX (X, _)71)2
. . _ etween — [ = -Jl—
Test statistic: F = = (S between ) S within o1 )

-N

within Z n,
I J

The test statistic has an F-distribution with v, = (Z nj) — N and v,=N-1 degrees of freedom.
J
Critical values in table in Section 5.2.18. Post-hoc analysis: Tukey’s range test.

Welch’s ANOVA Test for Independent Means of Heteroscedastic Normal Distributions
N variables{X}, (ith observation of X}, 1 < < N), Normal distributions, unequal variance. H: all x; equal;
H;: not all &, equal.

Test statistic: F = — between N—1 within
within

| ( ZJZX])
R P
2 .S J i
S etween 2 s E:? 2 2(N—-2 1 / S;
b_(g = ) S :1+ﬁ'r’ T:Zn_—l\l_ ) )
j J

N —1

3T
Critical values in table in Section 5.2.18. Post-hoc analysis: Games-Howell test.

The test statistic has an F-distribution withv. = N — 1andv, = degrees of freedom.
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5.3.8. Other Inferential Hypothesis Tests

Mann-Whitney U-Test (Wilcoxon Rank Sum Test)

Two samples 4 and B, unknown distributions. H,: 4 and B from same distributions; H;: 4 and B
from different distributions.

Kruskal-Wallis H-Test (Non-Parametric One-Way ANOVA)

N variables{X}}, (ith observation of X}, 1 < < N), unknown distributions. Hy: all distributions equal; H;:
not all distributions equal. Post-hoc analysis: Dunn’s test or Conover-Iman test.

Shapiro-Wilk Test for Normality

One sample X, unknown distribution. Hy: X has a Normal distribution, H,: X does not have a Normal
distribution.

Pearson’s Test for Linear Correlation
Paired (bivariate) dataset X = {X, Y}, Normal joint distribution. H,: X and Y are uncorrelated, H;: Xand Y

are correlated. M (i — )y — )
Test statistic: Pearson’s PMCC: Tay = — , rel < 1.
Critical values in table in Section 5.2.19. \/Z?:l(ml —I)? \/Z?:l (i —7)?

Spearman’s Rank-Order Test for Monotonic Correlation

Paired (bivariate) dataset X = {X, Y}, unknown distributions. H,: X and Y are uncorrelated, H,: Xand Y
are correlated.

" , 63 d2 . o
Test statistic: Spearman’s rho, p=1— —=—"_ (d:: rank difference of observation i)
Similar alternative: Kendall’s Tau Test. n(n2 - 1) rank is the index in the ordered list.

Levene’s Test for Homoscedasticity (Equal Variances)

N variables{X}, (ith observation of X}, 1 <;j < N), unknown distributions. Hy: all distributions equal; H;:
not all distributions equal. Post-hoc analysis: Dunn’s test or Conover-Iman test.
Similar alternative: Brown-Forsythe test.

Cohen’s d Statistic for Mean Effect Size
The d metric is related to the ¢-statistic in testing for independent means by d = . /NL + NL X t.

It is typically used in the context of quantifying the effect size of a test group against a control group.

Egger’s Regression Test for Intervention Effects

For a collection of univariate datasets, a funnel plot is made of standard error o,/ VN against a
measure of effect size: depending on context, this may be a raw mean value, a correlation
coefficient, odds ratio, or Cohen’s d metric. One point is made per dataset. H,: funnel plot
regression line is vertical (implies no bias), H,: funnel plot regression line is sloped (implies bias).
Egger’s test is commonly used in meta-analyses to test for publication bias.

172



All Notes 5.3. Inference and Hypothesis Testing

5.3.9. Common Fallacies in Statistical Inference, Interpretation and Discourse
Interpretation of Statistical Tests: issues arising when concluding and communicating.

Texas Sharpshooter: the cherry-picking of a cluster of data to fit a conclusion, or asserting that a
pattern has an underlying cause other than randomness. A related concept in data misuse is
‘p-hacking’, in which the same (or slightly modified) tests are conducted on the same dataset until
statistical significance is found (the multiple comparisons problem).

False Cause: asserting that correlation implies causation, rather than randomness or a common cause.
Gambler’s Fallacy: assuming that the outcome of an event occuring after a series of the event has
already been observed is lower than observing the event in general, when in fact they are independent.
Prosecutor’s Fallacy: assuming that the probability of observing an outcome given some evidence is
the same as the probability of observing the evidence given the outcome.

Composition Fallacy: assuming that the properties of the parts of a system completely determine
those of the whole system, when they may be different (e.g. interaction effects, ‘emergent properties’.)
Slippery Slope: asserting that if one event happens, then a subsequent chain of events will also
happen, without clearly establishing the validity of these links.

Begging the Question: presenting a circular argument; presupposing the conclusion within the premise.
Ambiguity: using language with multiple meanings, from which readers from different target audiences
may interpret in different ways. Can occur when using terms of art.

Confirmation Bias: favouring arguments and evidence which align with a person’s existing beliefs while
downplaying opposing evidence, regardless of its merit.

Post-hoc Rationalisation: constructing (often improvised) arguments to justify behaviour or beliefs that
are otherwise incompatible with one’s beliefs. Often used when one is experiencing ‘cognitive
dissonance’, in which a person simultaneously supports two logically irreconcilable beliefs, sometimes
without being consciously aware of it. Also used to justify hypocrisy.

Methodology of Experiments and Studies: issues arising when conducting a study.

Loaded Question: posing a question with a strong built-in bias towards a known outcome, which can
hamper the validity of the testing methodology.

Survivorship Bias: the sample under study may be self-selecting, making the results unrepresentative.
Observer Effect: subjects under study may alter their behaviour if they know they are under study, in
captivity, or respond differently depending on who is studying them.

Placebo Effect: common in medicine. If subjects are told they can expect to see an effect from taking a
treatment, they may genuinely experience the effect, even if the treatment itself does nothing.
Replication Crisis: the observation that many studies, particularly in the social sciences which

study complex population-level interactions, can often not be reproduced precisely. However, this
does not imply the results are always invalid, rather, if different studies can investigate hypotheses
from different perspectives and come to similar conclusions (triangulation), it implies that there is

a deeper effect at play. Neglecting this nuance and extrapolating it to where it does not apply can

lead to undue public distrust in the scientific method and the body of science as a whole.
Confounding variables: factors which may influence a study but were not controlled for, either
because they were not considered when the study was conducted or the control measures taken

were inadequate to suppress their influence.
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Argumentation and Discourse: |ogical fallacies and rhetorical techniques.

Strawman: misrepresenting a statement in order to make it easier to argue against.

Anecdotes: personal experiences or isolated incidents are statistically meaningless (typically n ~ 1
sample size) but are often far more compelling due to their tangibility or use of emotive language.
Appeal to Authority: claims made by a perceived authority should not be considered valid based solely
on their status of authority, but rather the rigorousness of their investigative methodology and access to
empirical evidence e.g. peer-reviewed scientific literature.

Bandwagon: the validity of a claim is not inherently dependent on how popular the claim is.

False Dichotomy: asserting that there are only two possible outcomes (binary decision), when there
may be more than two. The reverse of this is assuming a middle ground in a true dichotomy.

Non Sequitur: any statement that can be demonstrated to be formally illogical or self-contradictory.
Slander / Libel: public defamation by making false statements aimed at damaging one’s reputation.
Burden of Proof: the burden of proof lies with the individual making the claim against the current
consensus i.e. what is presented without evidence can be dismissed without evidence. This is
sometimes referred to as ‘(dis)proof beyond reasonable doubt’. If there is no current consensus, then all
sides have a burden of proof.

Argumentum Ad Hominem: attempting to discredit an opposing view by attacking irrelevant qualities
of the person (whether true or false) who holds that view, without attacking the view itself.

Gish Gallop: presenting a large number of claims in a short amount of time, making it seem as if one
has an endless list of strong arguments, without allowing time to respond, and without explaining
anything that could reveal that the arguments are not independent and/or strong.

Tu Quoque (Whataboutism): claiming that one’s opponent is a hypocrite because they committed the
same act that one is being accused of, without actually defending oneself against the accusation.
Whataboutism is the general propagandistic tactic of diverting attention to another scenario, without
elaborating on whether such a comparison is valid to make.

Motte and Bailey Fallacy: presenting a more outlandish (less well-supported) claim before falling back
to a more well-established claim once it is criticised, and implying they use the same reasoning.
Socratic Method: the use of open-ended questions and well-defined terminology to promote a
non-confrontational discussion where opinionated people can reflect on their own perspectives. It can
challenge presuppositions and expose unrealised self-contradictions.

Hegel’s Dialectics: presenting an initial idea (thesis), a contradictory idea (antithesis) and a higher-level
resolution that integrates ideas discussed in each (synthesis).
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5.3.10. The Scientific Method

The scientific method is the empirical process of reliably acquiring new knowledge about
the natural world.

1. Question: identify something in the natural world, and ask a question about it.

2. Fact-Finding: consult existing scientific literature to research the topic at hand. Gather
preliminary information that will be useful in studying the topic.

3. Hypothesis: formulate a potential explanation or answer to the question based on initial
knowledge gained.

4. Predictions: before investigations begin, make testable, falsifiable predictions as to what
the expected outcome would be if the hypothesis put forward is correct.

5. Test: design an experiment to investigate the question. Conduct the experiment in a safe,
ethical and reproducible manner to investigate the question and record all observations.

6. Analysis: process the results to obtain useful data. If appropriate, perform statistical tests
to quantify the likelihood of these results under a null and alternative hypothesis.

7. Interpretations: draw conclusions from the data analysis. These conclusions may serve
as the starting point for new investigations.

Writing Scientific Literature:

For experimental work, the paper should outline the ‘story’ of how the topic is introduced:

1) abstract (succinct statement of the problem, approach and results), 2) introduction,

3) materials and methods, 4) results and discussion, 5) conclusions, 6) references (from
existing primary scientific literature, cited in a standard style). Sections are field-dependent.

Submit the work conducted in the form of a paper to a peer-reviewed journal. Designate a
‘corresponding author’ who can be contacted to answer questions about the work. When
in proceedings, respond to suggestions and criticism from peer-reviewers and be open to
assisting others in replicating your work.

Reading Scientific Literature:

An often useful approach when researching a topic comprehensively is to find a ‘review’
paper of the topic via Google Scholar. For papers, read: 1) abstract, 2) look at the figures,
3) conclusions, 4) the rest of the paper, 5) search for author’s discussions of their work in
other sources. If seeking to examine methodology, check for any supplementary materials.
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5.4. Stochastic Processes, Signals and Information Theory

5.4.1. Identities for Random Vectors X={X X, ...}

These identities hold when X, are scalar RVs. If X, are n-vectors, then variances should be
divided by % for population quantities and by L_ for sample quantities (as in Section 5.4.1).

n—1

Covariance matrix (autocovariance): Zxx = Var[X] = Cov[X, X] = E[XX'] - E[X] E[X]"; X, = Cov[X, X]]
Cross-Covariance (joint variance): Xxy = Cov[X, Y] = E[XY'] - E[X] E[Y]"; £; = Cov[X,, Y]]
Autocorrelation and cross-correlation:  Ryx = E[XX']; Rxy = E[XY']; (Ryy);; = Corr[X,, Y]]
Covariance of asum: if Z=X+Y then X,;, =Xy + Zxy + Zyx + Zyy (NOte that Ty, = Zyx")
Covariance of a transformation: if Y =AX +b (A, b: constants) then I,y = AX.A'

5.4.2. Convolution, Cross-Correlation and Autocorrelation on LTI Systems

For discrete signals £, and g,, and continuous signals 7(¢) and g(¢)
(where t=nT and T is the sampling period), and random variables X and Y:

Convolution Cross-Correlation Autocorrelation
f*g f*g f*xf
DISCI’ete Z fm 'gn—m Z fm gn+m Z fm fn+m
m= —oo m= —co m= —oo
Continuous [ f(O) gt — 1)dt [ f(o) gt + 1)dr [ fOft + 1) dr
Stochastic EXY _*] ExXYy, "l ExXXx "l

For the convolution theorem as it applies to discrete signals via the Z-transform and to
continuous signals via the Fourier transform and Laplace transform, see Section 3.4.

5.4.3. Discrete Multidimensional Convolution

Let X be an M x N matrix (x (i, /) = X;) and H be a K x L matrix (h(u, v) = H,).
The convolution Y=H * X (y=x*h)isa(M-K+ 1) x (N - L+ 1) matrix, where

y@ =X X hl Dx(@ -k j—1D,

Typical application: X is a general input, H is the impulse response of a filter, Y is the output.

K-1 L-1

k=0 [=0

for1<i<M-K+1,1<;<N-L+1.




All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.3. Correlation Theorems
Let X(w) and Y(w) be the Fourier transforms of the time-domain signals x(¢) and y(¢).

Cross-Correlation Theorem: the cross-spectral density Sy/(w) = |X(w) Y(w)| of two

signals x(¢) and y(¢), and the cross-correlation of x(¢) and y(¢), form a Fourier inverse pair:

_fm @*y@®e dt =5 () _foo S, (@ & dw = (x * y)(©)

forward transform inverse transform

Wiener-Khinchin Theorem: the power spectral density Sy(w) = |X (oo)|2 of a signal x(¢)
and the autocorrelation of x(#) form a Fourier-inverse pair:
[axn®me’™dt =5 (w) [S, (0" do = (x+ 2
forward transform inverse transform

The Wiener-Khinchin theorem is a special case of the cross-correlation theorem with x

:y.
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5.4.4. FIR and IIR Filters

The pulse function is defined as §,={1ifk=0else 0} ={1,0,0,0, ...}
(Kronecker Delta; discrete version of Dirac Delta function).

A discrete-time system has a transfer function given by the Z-transform of its pulse response.
(Analogous to continuous-time transfer functions as the Laplace transform of the impulse response).

For a discrete-time system (digital filter) with transfer function G(z), input u, and output y;:

Stability criterion: a rational TF G(z) =

G(z) is the Z-transform of g, (the pulse response when u, = 3,).

For a general input, the output is given by y, = (g, * u,) (discrete convolution theorem).
Causal system: if g, = 0 for all £ < 0. All physically realisable systems are causal, in which
k represents a discretisation of real time.

Finite impulse response (FIR): if g, = 0 for all k£ > n for some smallest finite n. Otherwise, it
is an Infinite impulse response (lIR) filter.

Stability: a system is BIBO stable if, for any bounded {u,}, the output {,} is bounded.
(A signal {u,} is bounded such that || < M for some positive M for all £.)

Step response: if u, = 1 for all £ then y, — G(1) as k — « (final value theorem).

Frequency response: if u, = cos k6 then at steady state, y (k) =|G(e'?)| cos(kf + £ G(e'?)).

Causal system transfer function: G(z) = ). gkz_k (For lIR, all poles are at z=0.)
k=0

bz bz"+bz" 4. +b
0 1 m
=— — must have m <n.
n—k Z +alz +...+an

n(z) — k§0
d(z) n
)
k=

[ee]

For such a system, G(z) is stable, all of the roots p, of d(z) satisfy |p| <1 and } |gk| is finite.

k=0

A stable filter has a decaying transient response, so that its steady state is independent of
the initial conditions. Any linear filter can be written as A(z) Y(z) = B(z) U(z) + C(z, y;), where
C accounts for the initial conditions.
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5.4.6. Discrete-Time Markov Chains (DTMCs)

A Markov process is a stochastic process in which the distribution of the next state is a
function of only the current state, and not the previous states: p(X,., | X, X5, ..., X)) = p(X,., | X)),
where p(X) is a row vector of probabilities of the random variable X being in each state.

to

State 1 State 2 State 3

State 1 | P11 P12 P13
from State2 | P21 P22 P23
State 3 | P31 P32 P33

P32

Definitions

State space: the enumeration of the different states i.e. the domain of X, € §

Absorbing state: if p, =1 (on the leading diagonal of M) then state i is an absorbing state.
Recurrent set / Equivalence class: a set of states within which any state can reach any other state
Irreducible chain: if all states are recurrent (i.e. no absorbing states; one equivalence class)
Periodicity: for a chain of period J, the nonzero eigenvalues of M are the dJth roots of unity.
Regular ergodic: an irreducible and aperiodic chain, which has limiting (stationary) distribution.

Probability Relationships

Transition matrix: (M), =p,; =P(X,., =j | X, =1)
Columns of Msumto 1: 3, p, = 1. (right stochastic matrix)
Joint distribution: p(X, =i, X, =1, ..., X, =1i,) = P(X, =1i,) X P, b, D,

01 1

2 n—-1n
State transition probabilities: p(X,.,) =p(X,) M and p(X,.) = p(X,) M
Higher order transition probability: p, = (M""),= >, p." p,™ (Chapman-Kolmogorov equation)
Stationary (ergodic) state: if p(X,) =n then M == (r is an eigenvector of M with eigenvalue 1)

Unconditional probability: P(X, = /) = ¥, p,*’ P(X, = i) = mean value of column j in M"
First Step Transition Analysis / Waiting Time Problems

Transitions between neighbouring states i — i + 1 occur with time 7= Geo(p;;,)), SO E[T] =1/ pjj.s)-
Expected steps required for a transition from i toj: x; = E[min(n > 1: X, =) | Xo=i] =1+ 3, pu tyy-
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5.4.7. Continuous-Time Markov Chains (CTMCs, Discrete State Space)

The Markov matrix Q for a continuous-time process is infinite dimensional: x> =x Q

x,(t) = P,(t) = P(X(¢) = n), x = [x,(), xy(¢), ...] (row vector) and (Q), = a—;zi Entries of x sum to 1.

L

Rows of Q sum to zero: };(Q); =0 (probability mass conserved).
Discrete state space: X(¢) takes discrete values; X € {0, 1, 2, ..., n, ...} (to infinity, in general)
Continuous state space: X(r) takes continuous values (a range); X € S.

Note that in solving xQ = 0 for the stationary state, one equation obtained from the columns
of Q is degenerate, and should be replaced with } ; x; = 1 to give a determinate system.

The Birth-Death Process: the state X(¢) represents the number n of some entity at time ¢

Ao Al A2 An—1 An An+1 -Xo Ao 0 0 0 0 -
N N e N o —Mtm) A0 0 0 -

oRoRoRRO oo BRIt E

LA U W N 0 0 lin 7()\ng+/1,n) )\n
K1 H2 13 Hn Hn+1 fn+4-2

e Birth: transition from state » to state n + 1, occuring at a rate A, per unit time (7, _, .., ~ Exp(A,)).
e Death: transition from state » to state n - 1, occuring at a rate u, per unit time (7, _, ., ~ Exp(i,.)).
e Transitioning to the same state is also possible in general, with rate 1 - A, - », (allowable if &, + w1, # 1).

e Equation: x (t + At) = x (t) (1 — A At — unAt) +x (D (An_lAt) +x 1(t)(un+1At) forn>1.

dx dx
. . H . noo__ — _O e —_
Differential Equation: —= =24 x _+u (An + un)xn forn>1,and —= = WX }\Oxo.

X
n—1 n—1 n+l n+1

Pure birth process (Yule-Furry process): 1, = 0 (no deaths) and /, = nl (proportional growth rate).
. n—1 —Ant A, . . . .
Solution: xn(t) = c e (1 —e ) if x (0) = 1 i.e. given initial state is X(0) = n,.

Tl—TlO

Poisson process: y, =0, 1, = 4 (constant birth rate) and X(0) = 0. Solution: xn(t) = %,L e .

For results of other CTMCs which can be interpreted as FIFO queues, see Section 5.4.8.

180



All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

The Renewal Process: how many observations of an RV in series before a given time ¢

+ X 4 S,
=L

51 - 5 Sy Sy

of ] | l

Sy A A (A il

—h X,
s, = § W,

51

i FADA FA Iw,

n

Let Xt = max{n: (Z Si) < t}, where S is a random variable with known distribution
i=1

(with support S > 0 representing interval times), and S; is the ith i.i.d. observation of S.

e X is arenewal process, a type of generalised Poisson process, representing the number of
observations of S that can be made by time . The values of t where X, changes by 1 are the

‘jlumping times’, J.
t
e Renewal function equation: E[X]=F () + fE[Xt_T] f (D) dt
0

where F(¢) is the CDF of S and /() is the PDF of S.

X
e Strong law of large numbers for limiting observations per unit time:  lim — = _5[151
t—> o
e Central limit theorem: for large 1, X, is asymptotically Gaussian: X, ~ N(—E[ts] | LxYarls] XE‘E;ZS )

e Renewal-reward process: at each observation time J, a ‘reward variable’ 7, is observed, and
X

t

the accumulated reward up to time ¢tis ¥, = ), w. The strong law of large numbers for the
i=1

A . . E[Y] :
limiting reward accumulation rate is  lim —— = —i%/]]- (S and W need not be independent).
t— oo

e Wald equation: E[J ] =
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5.4.8. Queueing Theory

Kendall notation: a queue model is named A/B/c/N/K where:

population
(max size K)

O

queue / buffer service node(s)
(max size N - ¢) (max size ¢)

A: inter-arrival time distribution (M: Markovian (exponential), D: deterministic (constant), G: general)
B: service time distribution (M: Markovian (exponential), D: deterministic (constant), G: general)

c: number of parallel servers (each serves 1 at a time)

N: system size (maximum queue length + ¢) (assumed oo if omitted)

K: population size (absolute maximum system size) (assumed oo if omitted)

(L: number of customers in the system, T: time of a customer in the system,
L,: number of customers in the queue, T,,: time of a customer in the queue,

A
p= e—ff server utilisation (load factor) - the queue is ergodic (a stationary state exists) if p <1.)

mean number in system P }\ E[L] — E[L ] aIWayS

mean service time eff = E[T] E[T 1’

Var[X]/ (E[X])2 for a specified random variable X. If X~ Exp, cv=1.

Little’s law: mean throughput =

Coefficient of variation: (cv)2

M/M/c/N/N Queue: those who leave the service node immediately rejoin the population (closed queue)

— -1
[Z C (cp)" + Z—N o) ] o=, "C (cp)"if0<n<c, else — By

n (N —-n)lclc (N—=n)!c! "
N N
ElLl= ¥ nm, A = %N —nin.
n=0 n=0 "

M/M/c/N Queue: capped system size. Functionally identical to an M/M/c/«/N queue.

N _ -1 n c-n N
T[ =1+ Z (CP) 4 L) (CP) Z pTl c ’ T[ _ {T[ |f 0 <n< c, else 1t %}’ T[N = L}LT[O,
n=1 n=c+1 ’ cle
( P) p Nec /1 -1 - E[L ] _E[L)] . 1
ElLo] = =5 (1= " - (V- )1 - ™), (1m0 =g =3 ELT1 = EITg] +

M/M/c Queue (ErIang-C Model): birth-death process with 1, = A and u, = min{c, n} u.

_1 o
(cp) (cp)’ _ N CON _
[( Z ) “t=p ] ’ P(L = C) - ngc T[n T ocd(l-p) T[O’ E[L]

E[LQ] 1-p

_ B B c n . c ncc—n _
THPLz O, ElL-Ll=cp, m ={m-if0sn<celsem ) A =2

M/M/1 Queue: birth-death process with 1, =1 and u, = u

— - n - -2 — 1 S < R ——p —
mn=1-p m =mp, E[L]_l—p’ E[T]_u—h’ E[LQ]—l_p, E[TQ]_u(l—p)’ ?\eff—l.

M/G/1 Queue: service times are randomly distributed with mean time 4" and variance o2.

b=t mo—1-p E[L]=L0EOW)  prp o MH gy o L EL], E[T] =+ E[T]
W’ ’ Q 21-p) Q 21-p) o’ ol
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5.4.9. Priority Queues and Networks
Service Disciplines

First-in, first-out (FIFO) / first-come, first-served (FCFS): longest waiting served first.

Last-in, first out (LIFO) / stack: shortest waiting served first.

Processor sharing: service capacity is shared equally among customers.

Priority queue: customers are assigned a priority and can jump to the front of the queue on arrival or
even displace a customer being served (preemptive).

Customer Waiting Behaviour

Baulking: customers decide not to join the queue if it is too long, as if an M/M/c/N queue.
Jockeying: when there are multiple queues, customers move to the shortest at any time.
Reneging: customers will leave the queue if they have waited too long.

Queuing Networks

Out

N

A network of queues is represented as m nodes (queue +
service) each with population x; and black-box parameters 0
i.e. M/M/C,, ii(eﬁ), ﬂi'

Transition probability for leaving node i to
enter node j: p; (can also leave system with p)

Overall arrival rate into queue j: )\j =a + Y }\i P, (a;- arrival rate from outside the system)

L
Matrix / vector form: A=(1—P")"a
Utilisation of queue j: P, = Aj / (Cj”j)
The flow of customers through a network at steady-state can often (not always) be thought of
as a fluid flowing through ‘pipes’ (the fluid limit).

Jackson network: an open network of m M/M/c; queues.

m

Joint steady-state distribution product form: =n(x)= [] n(xi) (independence)

i=1
Discrete event simulation (DES) can be used to investigate complex queuing systems, such as the
simpy module in Python, the SimEvents MATLAB add-on or enterprise software.

Simulations of queueing are subject to initialisation bias, in which the initial state can influence the
averaged statistics even after a long time has elapsed. To mitigate this, data collection can be delayed
until a given ‘warm-up period’ has passed. Determining the ideal length of this period may be
challenging, with several methods proposed (e.g. Welch plot). Alternatively, a known/theoretical
average steady state can be set at the start (although this may affect measures of variability).
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5.4.9. Continuous-Time, Continuous State Space Markov Chains

The Wiener Process: continuous random walk (Brownian motion).

Discrete Brownian motion: Let Xn =y Zk where (, € {-0,0} with P({;=-0)=P(,=0d)=1/2.
k=1
The limiting distribution of X asn— o where time t=no as 0 — 0 (so ¢is finite) is p(x, £) ~ N0, 7).
2
In general, the Fokker-Planck equation is % = aa — (ap) (diffusion equation).
X

If p(x,0)=23(x-a) then p(x, t) ~ N(a, 2af). The standard deviation is unbounded: ¢ = +/2at.

The Ornstein-Uhlenbeck Process: continuous analogue of the AR(1) process.

The stochastic differential equationis dx = — Bxdt + \/5 dW (W: Wiener process)

(a: diffusion term, g: drift term)

The Fokker-Planck equation is Z—Iz = aa_x (Bxp) + 6:2 (ap).

If p(x,0)=38(x-a) then p(x, ) ~N(ae™, %(1 - e?)). At steady state, lim p(x, t) ~ N(0, —).

t— o
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5.4.10. Sampling from Unnormalised Distributions

Consider a distribution p(x) = % where f(x) is a known function but C is an unknown

normalising constant. To approximate the drawing of samples from p(x), we can use:

Rejection Sampling: Define a proposal distribution ¢(x) and a constant & such that f(x) < kq(x) for all x.
Draw a candidate sample QO ~ ¢(x), then draw another sample U ~ Uniform(0, kg¢(Q)). If U <f(Q) then we
accept the sample Q; otherwise we reject. The accepted samples approach the distribution of p (x).

Markov Chain Monte Carlo (MCMC): Construct a discrete-time Markov chain in which the states are
the support (non-zero domain) of f(x) and the ‘time’ is the sample number (index). The goal is to find
the transition probabilities M such that the stationary distribution is p(x).

Detailed balance of equilibrium: p(x) p(y | x) = p(¥) p(x | y) equivalently pM = p.

Metropolis-Hastings Algorithm: Define a proposal distribution ¢(x,., | x,,).
Generate samples of x,.; ~ g(x,) and accept them with probability 4(x,., | x,). (Note that /=4 ¢)
)
1 Then A(x,., | x,) = min{l,

AG,1%) () Al faL) A X
| x

)
H . n n+1
Detailed balance: AT CA) X ERNED o) atx, ., 1x) }

Gibbs Sampling: when /= f(x) is a multivariable distribution and sampling from the joint pdf is difficult
but from the conditional pdfs is easier. Choose an initial x,. For each variable x”, sample
x0 .~ p(?,., | x*,) where x*, is either x, or its partly/fully updated entries depending on implementation.
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5.4.13. Wiener Deconvolution Filter

Given y(t) = (h * x)(t) + n(t) (h: impulse response, n: noise), the goal is to find the
MMSE estimate x(t) = (g * y)(t).

S, (w)
Signal-to-Noise ratio: SNR(w) = 1’\(]’2@) (Syd@): power spectrum of x)
H*(w) S, (o) H*(e0) SNR
Frequency spectrum of g: G(w) = XX _ (w) SNR(w)

H@)I’S, (@) + N(@) 1+ |H(w)’ SNR(w)

Therefore /)Z(u)) =G60(w)Y(w) = ;(t) = % Ofo G(w)Y(w) e dw.

5.4.14. Stationary Time Series Analysis: AR, RA and ARMA Models

Gaussian noise: Let 7, be a sequence of random variables such that E(#,) = 0 for all n
and E(W,W)) =cif i=j else 0.

Wide sense stationary (WSS): fixed mean, fixed correlation (independent of ).

The augmented Dickey-Fuller test (ADF test) can be used to test against the null hypothesis
of a unit root (hon-stationarity). Python: statsmodels.tsa.stattools.adfuller(x)

AR Model (Autoregressive Model)

p
AR(p) (order p) process: X =YaX +W

i=1
, . _ k2
Correlation of AR(1): R, (k) = E[X Xn+k] =a o,

MA Model (Moving Average Model)

p
MA(p) (order p) process: X =pu+ YaW, where 1 = E[X].
i=1

ARMA Model (Autoregressive Moving Average Model)

2 q
ARMA(p, q) process: Xn = u+ Wn + ), aan—i + ) bjo

i=1 j=1
Autocorrelation: RXX(k) = E[Xan+k]; Partial autocorrelation: ¢(k) = E[(Xn - Xn)(Xn+k - Xn+k)]
The ARMA process the white noise response of an IIR filter.

Model Fitting: estimating the hyperparameters of an ARMA process to fit observed data.

e The value of p is optimal at the elbow or peak of |p (k)| (PACF).
e The value of ¢ is optimal at the elbow or peak of |R (k)| (ACF, correlogram).
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5.4.15. ARIMA Model (Autoregressive Integrated Moving Average Model)

d
ARIMA(p, d, q) process: y = 1 - L)d X = > de (- 1)k X (L* X, = X,..: lag operator)
k=0
where X, is an ARMA(p, q) process.
The ARIMA process Y, is non-stationary, while the ARMA process X, is stationary.

For time series analysis, the W, (noise) terms are evaluated as the model error, which is
assumed to be Gaussian. A time series can be made stationary by repeatedly
differentiating (differencing) until sufficiently stationary. This is equivalent to removing
polynomial terms from the Taylor series of a smoothed version of the series.

Akaike Information Criterion: AIC = 2k — 2 ln(max{Z}) (can be applied to any model)
(k: number of estimated parameters, L: likelihood function)

Further enhancements include the SARIMAX model (seasonal components and
exogeneous (externally supplied) variables). These are available in Python via the
statsmodels module, with a similar interface to tensorflow.keras models.

5.4.16. Noise Response of an LTI System

Let Hy = x where H: linear time invariant (LTI) system, y: system state, x: system input.
If H has impulse response &, the system response is givenby y = h * x.

If x = X(t) where Xis a WSS stochastic process, then the response y is also WSS.

e Power spectral density (PSD) of y: Syy((o) = |H ((o)|2 SXX((o) (H: FT of h(¢)).
e (Cross-spectral density (CSD): Sxy(w) = SXX(a)) H(w)
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5.4.17. Multivariate Gaussian Distribution

A D-dimensional Gaussian random vector x with mean vector p and covariance matrix X
has a joint pdf given by
1

— exp(—lx—p)'T ' (x— .
ST p(—z(x—p)' T (x—p))

where p is a D-dimensional vector, X is a D x D positive definite symmetric matrix, and ||
its determinant.

N(x;p, L) =

e Distribution notation: writing p(x) =N(x; p, X) is equivalent to x ~ N(p, X).

e If x and y are jointly Gaussian random vectors with marginal pdfs p(x) = N(x; a, A)
and p(y) = N(y; b, B), with cross-covariance matrix C = Cov[x, y], then the joint pdf is

AL =~(GEGLE 5 )

and the conditional pdfis p(x | y) = N(x; a+ CB'(y —b), A— CB'C").
e Linear projection: if p(x)=N(x; p, X) and y=Ax +b then p(y) = M(y; Ap+b, AXA").
e The product of Gaussian densities is an unnormalised Gaussian:
N(x; a, A) N(x; b, B)=Z" N(x; ¢, C)

where C=(A"+B")" ¢=C(A'a+ B'b) and the normalising constant is Gaussian
inbothaandb: Z'=2n)""2|A +B|"? exp(—(a — b)" (A + B)' (a — b) /2).

e The (differential) entropy of a D-dimensional Gaussian random vector X with with
pdf p(x) =N(x; p, X) is
1

h(X) = / plog s dx = ;log((Zire)D|Z|).

e KL (Kullback-Leibler) divergence between Gaussians:

If p(x) =N(x; p, £)) and g(x) = N(x; p,, X,) then

KL(p,q) =fp(X)10g% dx = 3 (log% ~D+u(Z;'Th) + (ul—uz)TZzl(ul—uz))-
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5.4.18. Gaussian Process

Formally, if X : T'x Q — R is a Gaussian process with mean function m and covariance
function K, then for every ¢,, ..., t, € T, the random vector [X(z,), ..., X(¢,)] has a
multivariate normal distribution with mean vector p, = m(#;) and covariance matrix X, = K(z,
)-

(7: set of indices for Gaussian process, Q: sample space of X)

Informally, X can be considered a ‘function’ that returns a distribution N(x; m(¢), K(z, f)) for
any given ¢, i.e. X(¢) has a univariate Normal distribution (with a specified covariance
between any two different 7). Function X(¢) has domain T'and sample space Q, returning a
real-valued probability.

X(¢) ~ GP(m(?), K(¢, t")) where m(x) is the mean function, K(¢, t’) is the covariance function
with another given input x .

It is useful to note that a Gaussian process can also be considered as an infinite-variable
Gaussian distribution, with an infinite-length mean vector and infinity-by-infinity
covariance matrix, since:

e An infinite-dimensional vector can be considered a scalar function of a single variable.
e An infinity-by-infinity matrix can be considered a scalar function of two variables:

N

Regression: let y = X(¢) + ¢o, where X(¢) is a Gaussian process (the model y), ¢ ~N(0, 1)
and o, is the constant standard deviation of the model errors.

Assume a zero-mean Gaussian process prior distribution f(x) | 8 ~ GP(0, K(x, x ")) (¢: model
hyperparameters used to define function K). Then y | 8 ~ GP(0, K(x, x") + Ig,).

t — ¢
20

A common choice of K is K(t,t") = exp ( ) where length-scale ¢ is a hyperparameter.

Prediction: let some given data be y, ~ N(b, B) (finite dimensional) and data to predict
y, ~ N(a, A) (infinite dimensional). The joint distribution of y, and y, (Section 5.4.17) is a
Gaussian process: p(y,, y,) = N([y:; ¥2; [a; b], [[A, C]; [CT, B]]).

p(,y,)
p(,)

Consider p(y, | y,) = =N(y;;a+CB'(y,—b),A—CB'C").
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The predictive mean is E[y, | y,] =a + CB"'(y, — b) = CB'y, (a = b = 0 for zero mean prior),
which is linear in the given data y,. The predictive covariance is Cov[y, | y,] = A — CB'C' i.e.
the uncertainty has been reduced from A (prior uncertainty) by CB'C".
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5.4.19. Information Entropy

For a discrete random variable X with a probability mass function P(x):

Shannon information content (‘surprise’) of an outcome: I (x) =-log P(x)
The entropy of an r.v. X with pmf P is the expected information, E[/(x)]:
ZP log ) = —E[log(P(x))].
The entropy is measured in ‘bits’ if using log base 2, and ‘nats’ if using log base e.

The joint entropy of random variables X;, ..., X, with joint pmf Px X is
-

The conditional entropy of Y given X'is

H(Y|X) ZPX EPY|X y|x)10g

Prx O] = );PX (X)H(Y|X = x).

o~

HY X =)

Note that a similar formula holds if we condition on a collection of random
variables (X, ..., X,) instead of a single random variable X.

Chain rule for entropy: The joint entropy of X, ..., X, can be written as

H(X],Xz...,Xn) :H(X )+H(X2|X1)+H(X3|X2,X1)+...+H(XH|XH,1,...,Xl)
n
Z (Xi|Xi-1,...,X1), where
i=1
H(leXi_l,. . -:Xl) = _les-m,x: PX] _____ X,—(xla e ,x,-) logPXi\Xl,...,X,-,] (x,-\xl, ... ,x,-_l).

The relative entropy or KL divergence between two PMFs P and Q (defined on
the same alphabet) is the information loss by using QO to represent P, given by

D(P||Q) = ) P(x)log P(x)

xe " ()

The differential entropy of a continuous random variable X with pdf p is
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= 1
h(X :/ p(x)log ——dx.
(X) = | _pl)log s
Joint differential entropy, conditional differential entropy, relative entropy/KL
divergence, mutual information, chain rules for continuous random variables are all
defined similarly to the discrete case with integrals replacing sums.
All Notes 5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.20. Mutual Information

The mutual information between random variables X and Y represents the average
reduction in uncertainty about X by knowing Y. For a joint pmf P,,, mutual information is

I(X;Y) =H(X) - H(X[Y)
H(Y)—-H(Y|X)
H(

X)+H(Y)-H(X.Y)
).

= D(Pxy||PxPy
Chain rule for mutual information:
I(Xl,Xz, e .XH,Y) = I(X],Y) +I(X2;Y‘X1) +... +I(Xn;Y|Xn71,. .. ,X])
=Y I(X:Y|Xio1 Xica, ..., X)),

i=1

For maximum coding efficiency (optimal encoding), the mutual information / KL divergence
1(X; Y) = Dxi.(Pyy || PxPy) between an ‘output’ X and an ‘input’ ¥ must be maximised.

5.4.21. Decoding with Information Loss due to Noise
Data Processing Inequality: If X, ¥, Z form a Markov chain, then

IX; Y)>I(X; Z).

Discrete random variables X, Y, Z are said to form a Markov chain if their joint pmf can be
written as Pyy, = PyPyxPyy.

This is analogous to the second law of thermodynamics for statistical entropy (mutual
information never increases with deterministic processing (conditioning)).

Fano’s Inequality: Let X be a random variable taking values in a set y with cardinality
denoted by |y|. Let Y be a random variable jointly distributed with X, and X =f(Y) be any
estimator of X from Y. Then the probability of error P, = P(X # X) satisfies

191



All Notes

1+P,logly|>HX|Y).

5.4. Stochastic Processes, Signal Processing and Information Theory

5.4.22. Maximum Entropy Distributions

The entropy, representing the ‘surprise’ we get when making an observation. A random
variable with a maximum entropy distribution (subject to given constraints) represents the
most efficient coding of the information in the variable.

Constraint type

Constraint definition(s)

Maximum entropy
distribution, 1,(x)

Distribution name

Limited range a<X<h bia Uniform
Nonnegative X e{o0, 1, .., n} W\ L\
integers, limited E[X] = u ne ( ) (1 B ) Binomial
range, fixed mean x x\n n
Positive integers, X €l 23 .} . V! _
fixed mean E[X] = u_ n (1 - “x) Geometric
Nonnegative Xef{o1,2.} " o Poisson
integers, fixed mean E[X] =n_ ~
Nonnegative —x _
’ X Z 0, E X = — eX
fixed mean K] =w, n P N Exponential
2
Fixed mean 2 1 -
' . ’ E X — , X — exp
fixed variance [X] = w, Var[X] =0, — 27 Normal
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5.5. Machine Learning and Computational Statistics

5.5. Machine Learning and Computational Statistics

5.5.1. Data Matrix and Notation for Datasets

The p ‘independent variables’ (features) are {x,, x,, ..

., x,}. The single dependent variable is

y. In a complete dataset, there are n recorded observations of each variable. A data matrix
X & R”? and label column vector y & R” is constructed:

Observation | Feature 1 (x,) | Feature 2 (x,) Feature p (x,) Label (y €
R")
1 Xi1 Xiz Xip 1
2 Xo Koo sz Y2
n Xﬂ )(nZ /an Y

e FEach row of X can be considered a random vector.

X, is the ith
observation of
variable x;.

The goal of an ML
model is to find a

mapping : X —y.

e Each column of X can be considered a set of observations from a random variable X..

e A ‘centred dataset’ contains features whose observations have zero mean: x;” =x, — X .

J

e A ‘standardised dataset’ contains features whose observations have zero mean and unit
standard deviation: x;’ = (x; — Xj) /'s, . The standardised .X; is comparable to (but not

necessarily has) a standard normal (Gaussian) distribution.
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5.5.2. Principal Component Analysis (PCA)

PCA is a method of constructing new features {x,’, x,’, ..., x,’} that retain the information required to
reconstruct y. Mathematically, it is a rotation of the coordinate axes used to specify the data into axes
along which variance is maximised and covariance is minimised.

For a standardised (¢, = 0, 5, = 1) dataset represented with data matrix X € R"? (n > 2):

e Singular value decomposition (SVD, Section 4.3.7): X = ULV’
(U € R™, orthonormal; £ € R”?, non-square diagonal; V € R”?, orthonormal, V' = V')

e Covariance matrix: C=Cov[X, X]= X"X such that C;=Cov[X, X] (C € R”?, symmetric)

n—1

e Eigendecomposition (Section 4.3.6): C = —— VZ2VT oor X'X=VZ?V',

with eigenvalues in 2 /(n - 1) or singular values in  are ordered descending.

Data matrix in PC space: X’ = XV = UX. Each column of X’ is a principal component.
e The V; are the ‘loadings’ of X; (coefficient in the expression for computing PC X”).
e The columns of V are orthonormal vectors. This means that the PCs are independent
i.e. uncorrelated: the new covariance matrix C’ = Cov[X’, X’] = V'CV is diagonal.

e FEigenvalues of C are )\i = ciz/(n — 1), representing the variances of data in each PC.

PCA can be used for model dimensionality reduction by truncating X to retain only the & < p largest
singular values (projection: R” — R¥). The corresponding eigenvectors (rows of V') are the dominant
components. Then, X becomes a n x k£ matrix and V becomes a p x k£ matrix. £k can be chosen by
plotting the eigenvalues in descending order and selecting the ones significantly larger than the rest
(the ‘elbow’ of a ‘scree plot’). For visualisation, k = 2 is often chosen (obtain PC1 and PC2).

For a multivariate distribution of zero-mean Normal variables, the principal components are along the
axes of the p-dimensional hyper-ellipsoid formed by contours of the joint PDF. If the data has
categorical labels, they can be colour-coded, around which 95% confidence ellipses can be drawn.
This can sometimes help separate clusters before a clustering algorithm is applied (Section 5.5.6). A
‘loading plot’ shows the weights of the features (loadings) to a PC. A ‘biplot’ shows each loading as a
vector to the point (PC1, PC2) in PC space, with a circle of radius 1 surrounding them, and the dataset
in PC space optionally superimposed. Example (gene expression):

o Principal component space, projection
Original data space X (first 2 columns of X')

— PC2 = +

Gene 3
L3

n
o
hc:Mu

Point marker Xy
indicates RIS
classification y

PC 1
\// X —-Unv’ /

Gene 1 xr
To PC axis vectors are 1

£ columns of V
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5.5.3. Scaling and Encoding (Pre-Processing)

Data can be normalised to remove potential variation due to physical units or magnitudes.

xX—p
o

e Standard scaling: x' = (sklearn.preprocessing.StandardScaler)

x — min(x)
max(x) — min(x)

e Min-max scaling: x' = (sklearn.preprocessing.MinMaxScaler)

Non-numerical (categorical) data can be encoded into numerical data.

e Ordinal encoding: x'€{0,1, 2 ..} (sklearn.preprocessing.OrdinalEncoder)
e One-hot encoding: x'l_ € {0, 1} (sklearn.preprocessing.OneHotEncoder)

where i is the number of distinct categories. Each one-hot feature is essentially a boolean
for “is X equal to i?”, where feature X takes values i.

5.5.4. Metrics for Evaluating Model Performance

Metrics for Evaluating Regression Models:

1 N2 1 . 1 vi — Ui
MSE:— i — Y; MAE:— i — Y; = — A0
”Zi:(y ¥i) nzi:!y Uil MAPE ng m
Mean Squared Error (MSE) Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE)
T TSS T SSEwithgi=5 Y,(yi—0)?

Coefficient of Determination (R?)

(SSE (sum of squared errors) = RSS (residual sum of squares); SSE with (3; = ;1) =TSS
(total sum of squares))
If the errors can be assumed to have zero mean (symmetric), then the MSE is equivalent

to the variance of ; and the RMSE = +/MSE = std. dev.
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Metrics for Evaluating Classification Models:

Confusion matrix: a contingency table showing frequency of classifications.

Predicted Positive Predicted Negative Total
L PEsie True 7F:fsitive False Negati\ll;c;N(Type 11 Error) P
UED e False PositivFe}:Type 1 Error) True gg{;ative N
Total PP PN P+ N =PP + PN
Accuracy = %; Precision = %; Sensitivity = T—:; Specificity = %; F, Score = Pi,Z_PP

Precision is also known as Positive Predictive Value (PPV).
Sensitivity is also known as True Positive Rate (TPR), Recall, Hit Rate, or Power.
Specificity is also known as True Negative Rate (TNR) or Selectivity.

Metrics for Evaluating Clustering Models:

e Silhouette Score: s, =

b —a.
l l

max{ai, bi} ’

compute for each point; measures separation.

(a;: average distance between i and other points in same cluster; b,: distance
between i and centroid of nearest other cluster)

e Adjusted Rand Index: fraction of pairs of points in the correct same cluster,
adjusted for randomness.

e Adjusted Mutual Information: measured between two given clusters; adjusted for

the entropies of each cluster, see Section 5.5.3.

e (Calinski-Harabasz Index (variance criterion): ratio of within-cluster dispersion to
inter-cluster dispersion.

Many of these metrics are available in scikit-1learn.
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5.5.5. Traditional (Non Neural Network Based) Supervised Classification Algorithms
Naive Bayes Classifier

A Bayes classifier assumes conditional independence between each x given y. Classification
labels §; are chosen to maximise the MAP, given by p(y) [1; p(x; | v) where p(y) = 1/ (# labels) is the
prior relative frequency of y and p(y | x,) is calculated from a given distribution e.g. Gaussian.

Python (scikit-learn): from sklearn.naive_bayes import GaussianNB

Random Forest Classifier

A supervised classification method in which binary decision trees are created and
optimised on their decision rule to minimise a loss function (often Gini impurity).

Python (scikit-learn): from sklearn.ensemble import RandomForestClassifier

XGBoost (extreme gradient boosting) is a powerful tree-based model implemented in C++.

Support Vector Classifier
max{0,e — g}, ify>0

For maximum margin classification, use a hinge loss: L(y,y) = {max (0, + g} ity <0

Python (scikit-learn): from sklearn.svm import SVC

K Nearest Neighbours

A simple classification algorithm in which data points are classified according to the most
common label among that of the K nearest training data points (majority voting).

KD tree algorithm: constructs a binary tree in which each node represents a decision on
the point coordinates (typically “above/below the median feature value?”), and the leaves
of the tree are all the points within a class under these decision rules.

Python (scikit-learn): from sklearn.neighbors import KNeighborsClassifier
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5.5.6. Clustering Algorithms (Unsupervised)
K Means Clustering

For a dataset of n observations x = {x;, x,, ... x,}, centroidal points J; (0 <,/ < K) are chosen
such that »; dist(x;, 37010565“,»))2 is minimised, where closest(i) returns the centroidal point
index which is closest to x.. This is a nonlinear and non-smooth optimisation problem. The
clusters are then given by §; = {x;: closest(i) = J,}.

Main limitation: cannot produce cluster boundaries whose centroids are necessarily far
from any of their points (e.g. concentric rings).

Python (scikit-learn): from sklearn.cluster import KMeans
DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) groups points of
similar densities, without reference to any centroids. Can produce more complex cluster
boundary topologies, including shapes with holes (annuli).

A modification is HDBSCAN (hierarchical DBSCAN) which has easier hyperparameter tuning.

Python (scikit-learn): from sklearn.cluster import DBSCAN
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5.5.7. Generalised Linear Regression (Regression, Supervised)

N
Linear regression model: y(x) = w'x + wy = wyx; + wox, + ... + w,x, + wj. (linear combination of features)

The values of w and b are chosen to minimise a particular cost function: w*, wy* = argmin C(w, w).

n N2
Ordinary least squares (OLS): C(w)= Y. (yl_ — yl_) (SSE: sum of squared errors)
i=1
n A~ 2 p
LASSO regression: C(w)= Y. (yl, - yi) + A ) |Wj| (' norm regularisation)
i=1 j=1
n 2 P,
Ridge regression: C(w)= Y. (yi — yi) + A ) w, (12 norm regularisation)
i=1 ji=1

n ~ P
Support vector regression (SVR): C(w, b)=21 Y, max{o, |yi — yi| — s} + % 3 sz (hinge loss)

i=1 j=1

(n: number of observations, p: number of features; X € R”?; and 1, ¢ are hyperparameters.)

Regularisation terms penalise large components in w, ensuring weight decay to prevent overfitting.

For polynomial regression up to order k, extend X with new features given by

n
o a (08 o . .
X T, XX forall0<a,<ksuchthat2 < ) o = k, then apply linear regression as

i=1

usual. E.g. for k=2 and n = 3 (original features: X = {x, y, z}), extend with {xy, yz, xz, x*, ), 2°}.

Python (scikit-learn):

from sklearn.linear_model import LinearRegression # also: Ridge / Lasso / sklearn.svm.SVM

from sklearn.preprocessing import PolynomialFeatures

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_absolute percentage_error

poly features = PolynomialFeatures(degree=3, include _bias=False).fit_transform(X_data)

X_train, X_test, y train, y_test = train_test split(poly features, y data,
test_size=0.2)

poly model = LinearRegression(fit _intercept=True).fit(X train, y train)

y_pred = poly model.predict(X_test) # use the model to estimate y(X test)

mpe = mean_absolute_percentage_error(y_test, y_pred) # quantify accuracy
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5.5.8. Gaussian Process Regression (Uncertainty Regression, Supervised)

Gaussian process regression allows quantification of the uncertainty associated with a regression
model about a mean predicted value. GPR is a useful form of nonlinear regression in which the
computational complexity is independent of the form of the data: input x may be a scalar, a vector, a
string, a graph, etc. It is suited when only a small training dataset is available.

For a given training dataset {(x,, y;)}~," such that all y, are centralised (zero mean), the aim of the
model is to produce predictive distributions on test points {(x;*, y*)}-.".
Assume noisy observations of a Gaussian process (Section 5.4.18) £, i.e. y; = f(x;) + &, Where ¢, ~ N(0, ¢,%).
Notation: X = training data matrix, X* = testing data matrix, y = training labels, f= f(X), f* = f(X*).
Kernel function (autocovariance): Kyx where element (i, /) is a function K : {R? x R’} — R evaluated as
K(x,, x;). A common choice of kernel for numeric x is the radial basis function (RBF),
K(x, x| T) =41 exp[-|x - x| /20] where T = {A: output correlation scale, ¢: input correlation scale} are
hyperparameters. Kernel functions can be combined additively (and approximately, not formally,
multiplicatively) to produce better fits to observed data. Kyyx«, Kx«x and Kx.x- are defined similarly. Note
that Ky.x = Kxx«' by the property in Section 5.4.17.
Assume that y and f* together form a joint (n + m)-dimensional normal distribution:

[gﬁ} N <[8} | E{{;i II{{;;;]) where Kxx = Kxx + | (block matrices).
The training dataset provides a marginalisation (conditioning) of one observation from this distribution,
from which the distribution of the testing set can be inferred.

The posterior distribution is then f* | X*, X, y ~ N(n, X) where

pe = Kxox Kik y, 3¢ = Kxox— Kxox Kk Kxx

Individual posterior output distributions for y have 1D normal distributions with mean given by an entry
in pe and variance given by the corresponding diagonal entry in X.
Hyperparameter selection: choose 0 = {¢,?, T} such that 8* = argmax log p(y | X, 0) (maximum
log-likelihood prior). By algebra, 6* = arg max log p(y|X, 0) = arg maxlog NV (y|0, Kxx)

0 0

This is a differentiable function, allowing gradient-based optimisation techniques.
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Python: (scikit-learn)

Gaussian process regression on a noisy dataset

Gaussian process regression with one feature using the RBF

4o f(x) = xsin(x)
12.5
kernel, showing the function f(x) (mean) and +2¢ range (95% Mean prediction
. 10.04 95% confidence interval
Confldence CI). i Observations
7.5

import numpy as np 501 j?
import matplotlib.pyplot as plt ' ]
from sklearn.gaussian_process import GaussianProcessRegressor 2.5
from sklearn.gaussian_process.kernels import RBF

f(x)
.

0.04 &

e
o

=
==

X = np.linspace(start=0, stop=10, num=1_000).reshape(-1, 1) -2.5 '_ £

y = np.squeeze(X * np.sin(X)) 50 im,f

training_indices = np.random.choice(np.arange(y.size), 0 5 a 8 s 10
size=10, replace=False) X

X_train, y_train = X[training_indices], y[training_indices]
NOISE_STD = ©0.75 # measurement noise ¢
y_train_noisy = y_train + np.random.normal(loc=0.9,
scale=noise_std, size=y_ train.shape)
kernel = 1 * RBF(length_scale=1.0, length_scale bounds=(1le-2, 1e2)) # kernel function K
gaussian_process = GaussianProcessRegressor(kernel=kernel, alpha=NOISE_STD**2,
n_restarts_optimizer=9)
gaussian_process.fit(X_train, y_train) # fit to observed data
print(gaussian_process.kernel ) # K multiplied by optimal 1
mean_prediction, std_prediction = gaussian_process.predict(X, return_std=True)

plt.plot(X, y, label=r"$f(x) = x \sin(x)$", linestyle="dotted")

plt.errorbar(X_train, y_train_noisy, NOISE_STD, linestyle="None", color="tab:blue",
marker=".", markersize=10, label="Observations")

plt.plot(X, mean_prediction, label="Mean prediction")

plt.fill between(X.ravel(), mean_prediction - 1.96 * std prediction,
mean_prediction + 1.96 * std_prediction, color="tab:orange",
alpha=0.5, label=r"95% confidence interval")

plt.legend(); plt.xlabel("$x$"); plt.ylabel("$f(x)$")

plt.title("Gaussian process regression on a noisy dataset")
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5.5.9. Logistic Regression (Classification, Supervised)

output of neuron y

i
i 7
T
4t

i

activity of neuron
b 05
bias 1 ,
weights W1 y
1 X2 D
inputs to neuron
Schematic of a single neuron Sigmoid: nonlinear Output for a binary
activation function classification task (p=2)
Activity (weighted sum): u=wx +wx + .. +twx + b
. _ _ 1 . _— -
Output: z = o(u) = Tromn) (sigmoid: logistic curve)

The output of the network can be written as y =f(x; w). This can be interpreted as a (posterior)
probability between 0 and 1 i.e. y=p(z=1 | x, w) for a known label z.
The goodness-of-fit is measured by the log-likelihood objective function evaluated over N data

points in a batch:
N

Gw)=—Y zZ%1log y? +(1-z")log (1-y") (binary cross-entropy)
i=1
For multi-class classification i.e. y =p(z = 1 | x, w), the softmax activation is applied before
computing the loss (the categorical cross-entropy). (Note that if errors are Normally distributed i.e.

in a regression / estimation problem, the ideal objective function is the mean-squared error (MSE):
G(w) =7 = (- )))

The aim of training is to find w such that G(w) is minimised i.e. w* = argmin G(w). This is done by
gradient descentie. w—w-5y VG i.e. w,«—w;-75 g—vf (: learning rate)

Common improvements to the gradient descent method are:
e Stochastic gradient descent (SGD): compute V G over a smaller sample (mini-batch).
e Adaptive step: allow 5 to vary e.g. AdaGrad, RMSProp, Adam)
e Regularisation: add a E(w) =% a w'w to objective function, penalises extreme weights,
preventing overfitting. a controls trade-off.

Single layer perceptrons generate linear decision regions, and can only be generalised by 1) manual
‘feature engineering’ or 2) adding more layers (MLPs, Section 5.5.10) to learn the feature transforms.
The hidden layer activations represent the new features in latent space.

Python (scikit-learn):

from sklearn.linear_model import LogisticRegression
ans = LogisticRegression(penalty='12", C=1.0).fit(X_train) # C = 1/alpha
y_pred = ans.predict(X_test)
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5.5.10. Multilayer Perceptron (Feedforward / Fully Connected Neural Networks)

An MLP is a neural network which uses multiple neurons to allow multiple output dimensions.
There are often ‘hidden layers’ of neurons which help in hierarchical pattern matching in the data.

. hidden layers
mput
layer

@v@v® o @ g activation of neuron j in layer L of the network.
e\\tﬁ/‘é&v’g’/@}}y’?{’/%\v o w, (i4 — j,): weight from neuron i in layer L - 1 to neuron
'/ AVAVAWA| AVAVAWA X
vivive
SAV/AVAY

jinlayer L.
e /" indicates the bias of neuron in layer L.

These are typically compressed into vectors
a®, b and matrices W for each layer.

e Weighted sum: 2D =W® a&b + p®  (in batch normalisation, a is standard scaled)
e Feedforward activation: a® = (z") (f: nonlinear function e.g. sigmoid, ReLU, tanh)
e Output cost: CE, Y ="%2: (Ji-y)
Nonlinear Functions: fx) f’(x) or Jacobian element
e Sigmoid: o(x)=(1+e%", o'(x)=e*(1+e%)?
e RelU (rectified linear unit): ReLU(x) = max{0, x}, ReLU’(x) =1,,. (x#0)
e Softmax: Px)=e /3, (g_P) = p(yoy-)
g

Backpropagation: derivatives on computational graphs use the chain rule (... — 4, , — i, —j,)
To compute the gradient of C with respect to a weight in the final layer w, \*:

l oc _ oc a0z

wih gl pl) o~ 0aP " 9 gu®
g5t J —— ~—— e ——
\J’(m Cave”  @ew) e et

N

To compute the gradient of C with respect to a weight in a further layer w, ",

,[,(L) sum over all final layer contributions when computing 6C / da“:
Yi 4 oc ”Z oc o 0 o oc oc aaV oxtY
\l oal" "V = a9 dalY owl gl 9V gl
deeper ( ) _, . 7 (L) (L) component deeper f,( (L—l)) (L-2)
layer @ Y5) f (Zj ) Wi of VC layer Zi ap,

Gradient Descent: update weights by AWELﬁ)l = _HVWEL“C . (C averaged over whole training set.)
Python Typical Implementation (TensorFlow with the Keras API):

from tensorflow.keras import Input, layers, models

model = models.Sequential(); model.add(Input(num_inputs, ...))
model.add(layers.Dense(num_neurons, ...)) # add as many hidden layers as desired
model.compile(optimizer=..., loss=..., metrics=...)

model.fit(X, y, epochs=..., batch_size=...) # training

model.evaluate(...); # check loss; model.predict(...) # testing
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5.5.11. Techniques for Training Deep Neural Networks
Optimisations of the gradient descent algorithm:

e Stochastic gradient descent (SGD): compute V C per training example, rather than averaging
over the whole training set (i.e. use batch size = 1). Decrease 7 over time to allow convergence.

e Adam (adaptive moment estimation): combines AdaGrad and RMSProp by keeping track of an
exponentially decaying average (EMA) of past gradients and their squares.

Problems faced by deep neural networks and their solutions:

e Unstable gradient problem (vanishing gradient / exploding gradient): layers further from the
output are harder to train in backpropagation. Resolved by using non-saturating activation
functions (gradients do not fall to zero as x — +x, e.g. leaky RelLU), using batch normalisation (a"
is standard scaled over a batch of values before evaluating the sum), and layer normalisation (or
batch) can also be used in which a" is standard scaled over the neurons in the layer.

e Overfitting: a model may perform well on training data but bad in unseen test data. Resolved by
using a regularisation term in the loss function to prevent large weights from forming; using a
recurrent dilution / dropout to randomly temporarily shrink / exclude neurons in training to force the
network to generalise to wider patterns; and using pruning to drop unimportant weights, all of
which reduce model complexity.

e Internal covariate shift: the erratic change in the distribution of neuron activations due to
fluctuating data inputs and hence sharp changes to the weights. Mitigated by batch normalisation
(a’" is standard scaled over a mini-batch of values before evaluating the sum).

Metric evaluation:

e K-fold cross-validation: Shuffle the data. Allocate a fixed proportion as the test data. Split the
remaining data into K equal groups (folds). For each fold i in the folds, allocate fold i as the
validation set and the remaining data as the training set, and train the data, and find performance
on the validation set. Python: from sklearn.model_selection import KFold

e Leave-one-out cross-validation (LOOCV): K-fold CV but with K= number of data points in
training set i.e. use every data point once as the validation ‘set’.

Hyperparameter optimisation: in Python, can use the keras-tuner library for TensorFlow models.

e Grid search: train models with all combinations of hyperparameters within a search space.

e Random search: train models with randomly chosen hyperparameters and locate good clusters.

e Gradient-based optimisation (hypernetworks): use gradient descent to find the optimal
hyperparameters in the same way as a regular neural network finds its optimal weights.

e Bayesian optimisation: a probabilistic approach to estimate the optimal hyperparameters.

e Evolutionary algorithm: use a fitness function (e.g. CV) to rank performance, then select the best for
crossover and mutation of (encoded) hyperparameters, run until desired performance is observed.
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5.5.12. Convolutional Neural Networks (CNNs, ConvNets)

A CNN uses hidden layers consisting of convolution cells. CNNs are often used for computer
vision, with each weight kernel representing a filter to identify a particular feature e.g. edges /
blobs in early layers, more complex features in later layers. Each kernel is convolved against the
input (Section 5.4.3) then adds an array-wide bias to produce a set of N activation maps, which
are stacked into a 3 dimensional array and then subject to a pointwise nonlinear function.

The hyperparameters for a convolutional layer are the number of filters N (number of neurons),
the dimension of the filters K x K (kernel size), the stride S (step size) and the padding P (extend
with zeros).

A convolutional layer takes an input array of dimension W, x H, x D, and produces an output of
Wl—K+2P Hl—K+2P

W, x H, x D,, where w, = 5 + 1, H, = 5 + 1 and D,=N. An optional

pooling layer (using an operation such as max pooling or average pooling) reduces the output
size by subdividing the output into square arrays (per layer) and choosing the maximum or
mean value. The stride for a pooling layer is usually equal to the pool size, so that there is no
overlap between subarrays. With parameter sharing, it introduces a total of (KD, + 1)N
parameters (weights + biases) per layer.

CNNSs can be represented visually as transforming an array into different dimensions as blocks:

12

32 28 24
CONYV, CONV, .
RelLU RelU Max Pooling
6 filters 10 filters 2x2 pool size
5x5x3 size 5x5x6 size Stride = 2
Stride = 1 Stride =1
Padding = 0 Padding = 0
32 28 24 12
3 6 10 10
Input: Layer 1: Layer 2: Layer 3:
32 x 32 image 28 x 28 feature maps 24 x 24 feature maps 12 x 12 feature maps
3 colour channels from 6 filters from 10 filters
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Another common notation is to label each layer symbolically:

C1[5x5]
P2[3x3@2]

(9}
i<
ai
x
K]

e C5[5x5]
PA[3x3@72] [ PB[3x3@2]

64x4x4

1
I

_n
~
@
B

FB[;LU

input
ave

& &

c‘
;

(EEEEEEES);

1l
L — — —

w
~
X
w
N

32x8x8

(NMEEEEEEE)

CIEEEEEE )

| ——

w

32x16x16 32x16x16 6dExs
32x32x32

(Cnlaxb@s]: convolutional layer #n using axb kernel and stride s, Pn[axb@s]: pooling layer #n
(max / average) using axb subsampling and stride s, Fu[N]: fully connected layer #n with N
neurons, /: RelU activation, dashed border: applies dropout. The number of neurons is
inferred from the last dimension D = K. Zero padding is assumed unless otherwise specified.)

The last layer of a convolutional neural network for classification is typically a fully connected
(FC, dense) layer, with softmax activation, which takes in the flattened output array and
produces a vector representing the classification probabilities.

1D convolutions can be used for short-term time series forecasting, for which they are
faster to train than LSTMs, but are less capable of detecting longer term patterns. Hybrid
CNN-LSTMs can be used to combine the strengths of both, and are useful for e.g.
anomaly detection.

Data augmentation (image manipulation e.g. cropping, reflecting) can be used to
artificially enlarge an image dataset to generate more images. This can also be used in
the testing stage, where the testing set is augmented and predictions are based on the
modification with the maximum output.

Python (Keras, TensorFlow): convolutional layers are added separately to pooling layers, e.g.

# for 32x32 pixel input RGB (3 dimensions) images
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
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5.5.13. Recurrent Neural Networks

RNNs make predictions based on a sequence of inputs (typically in time) rather than a
single input. Each input sequence can be represented by a data matrix X (¢ variables x
n observations; transpose of convention used in Section 5.5.6). A batch of inputs can be
represented as a rank 3 tensor (data matrices stacked along a third dimension:

d variables x n observations x b sequences):

£ ORSORNRC)
RO ORI ()

X=" 1 1 B=[0X OX ... OX]
L

Each recurrent cell takes both an input observation
x" as well as the output of the previous cell (as its
‘hidden state’) h¥ = yi" to produce an output y?,
giving the network an ability to recall previous
values: y? = o(W, x? + W, y¥V + b) = o(W X?)

(W,: weight matrix for input, W,: weight matrix for
hidden input, b: bias vector, all identical over )

Backpropagation Through Time (BPTT): unroll the network through time (as shown
above), then use regular NN backpropagation. The cost function is based on the 7'most
recent outputs (where T is a hyperparameter in truncated BPTT).

Layer Normalisation: standardise inputs to (or outputs from) &(.) by learning an offset
(mean) and scale (std.dev) for each observation.

Long Short Term Memory (LSTM): memory cells can recall further back.

-
Forget gate
X

? Layer outputs are: f, g, i, 0 = o(W,x + W,h + b)
| for different weights in each FC.

@
— -1 . —
mpugai/ \I‘O | Then ¢ = ¢V e f” + g @ i and y" = 0 © tanh ¢.
Element-wise

(FC: fully-connected (dense) layer, f: forget gate controller,
@: ™ g, i input gate controllers, o: output gate controllers,
LoTM el wasic | ¢! Cell state, h =y: hidden state (output),
! == " o: Hadamard (simple elementwise) matrix product)

Gated Recurrent Unit (GRU): a simplified LSTM which maintains similar performance.
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5.5.14. Transformer Networks
Embeddings

Each token i is assigned an embedding vector e, based on a lookup table. The token position is
encoded by adding an orthogonal set of sinusoids.

Single Head Self Attention Mechanism: updates embeddings

e Compute the queries Q = W,E, keys K= W,E and values V=W,E.
e Compute the attention pattern, A = softmax(QK' / d,).
(input may be ‘masked’ setting all entries below the leading diagonal to -«, Q: matrix of
q;, K: matrix of k;, d;: dimension of query/key space, softmax is computed columnwise.)
e Compute the attention output AE = AV. The new embedding is then E’=E + AE.

The value weights W, is a low rank transformation matrix, implemented in non-square
factorised form as W, =W,VW V.

The attention pattern matrix size is O(N?) where N is the context size, making this a
bottleneck in transformer architectures. Recent modifications have allowed for more
scalable models (e.g. sparse attention mechanisms, blockwise attention, ring attention...).

Cross Attention: the key and query matrices act on embeddings of two different token sets.

Multi Head Attention (MHA): run parallel single-head attentions, each with different parameters.
Each head produces a change AE"” which contributes to the overall change in E. The
computation AE = AV is performed using only W, in each head, then concatenating all

W, (output matrix) to compute the summed AE.

Outpaut
Probatilities

Transformer Architecture:

The encoder block is an unmasked MHA followed by an MLP layer.

:
The decoder block is a masked MHA, then an unmasked MHA also
accepting inputs from the encoder block output, and an MLP layer. =
The transformer as a whole consists of a series of encoder-decoder TR,
. . Forward [
blocks in series. ‘_%,
Add & MNorm e,
M Agd & Norm Masked
If the encoder is fed inputs, the decoder is fed outputs, and the Mt e Mut-Hiead
decoder unmasked MHA takes the concatenation of the output MHA (L~ | (Y
and encoder output (shown right), the transformer will be trained to .5 (06 o0 coni

predict the next token in the input (trained on shifted examples). | - [ S

—

Inputs Culputs
[shitted right)
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5.6.15. Modern Machine Learning Techniques

Large Datasets: used for Training in Machine Learning in Computer Vision

MNIST: 70,000 28x28 grayscale images of 10 handwritten numerical digits (0-9).

CIFAR-10: 60,000 32x32 RGB images of 10 object classes. (Also: CIFAR-100, 100 classes)
ImageNet: 14 million images of 20,000 classes. (Also: ILSVRC 2012 subset for classification).
COCO: 330,000 images of scenes segmented to 91 classes.

Labelled faces in the wild (LFW): 13,000 images of labelled faces, for face recognition.

Successful Architectures in Computer Vision

VGG-16: CNN, small kernels, frequent max pooling to reduce the number of parameters.
AlexNet: 8-layer CNN, trained on ILSVRC 2012 on GPU.

ResNet: deep CNN, residual blocks (identity layer/skip connections), trained on ILSVRC 2012.
Fully convolutional network (FCN): replaces FC layers with 1x1 convolutional layers.

Used for semantic segmentation (using interpolation, each pixel gets a prediction).

YOLO: uses ResNet for instance segmentation (object detection). Can be run fast enough
for real-time segmentation from live video on mid-range mobile GPUs.

Siamese network: same weights applied to image pairs, trained with triplet/contrastive loss.
U-net: downsampling (pooling) and upsampling (transposed convolution), extendable with
e.g. spatial attention, skip connections in between. Used in biomedical image segmentation.
FaceNet: face recognition, trained on LFW, generates embeddings per face, triplet loss.
Variational autoencoder: input to encoder, output of decoder (with transposed

convolution to scale up image). Uses ‘evidence lower bound’ (ELBO) loss function.

VIT (vision transformer). Uses a transformer network with patches as tokens.

Some of these models are available pretrained in tensorflow.keras, others are open source
elsewhere, trained on a particular dataset.

Successful Models in Natural Language Processing (NLP, LLMs) and Generative Al:

BERT: first modern transformer used for various NLP purposes. Relatively hard to fine-tune.
GPT: decoder-only transformer for text prediction. GPT-3 is single mode (text — text), while
GPT-4 is multimodal (text/image — text). Has found commercial success (ChatGPT).
Gemini: encoder-decoder transformer for (text — text), considered to outperform GPT-4.
DALL-E / Stable Diffusion / Midjourney: generative Al using prompts (text — image).

These models are typically called from an API client side (MaaS: model as a service) rather than
being embedded locally, as they contain billions to trillions of parameters (large file sizes).
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Other notable leaps in Al technology have occurred in protein folding prediction (AlphaFold 3)
and computational fluid dynamics. Generative models for (text — audio) and (text — video,
e.g. Sora) have also emerged, with some debate as to their safety and practical usefulness,
especially regarding the risks of distributing misleading or false content (e.g. deepfakes,
misinformation, LLM hallucinations).

Adversarial Attacks: exploiting backpropagation (fast gradient sign method) to find the
smallest possible change to an input image that would result in misclassification due to
crossing decision boundaries in latent space. This is a serious concern for high dimensional
networks (‘the curse of dimensionality’).

Transfer Learning: using a pretrained high-performing model as part of the architecture for
another neural network with a different task, by freezing its weights and only training the
additional layers. The base model acts as a feature extractor from which the additional layers
complete the task. Fine tuning is achieved by unfreezing the base model weights.

Few-Shot Learning: learning with only a very small training dataset (few / one / zero per class).

Self-Supervised Learning (SSL): a method of training that can be applied to transformers
(e.g. ViT). Models learn useful representations from unlabeled data by predicting parts of the
data from other parts (e.g. predicting image patches or masked tokens in NLP).

Reinforcement Learning from Human Feedback (RLHF): the model learns a reward policy
based on ranking feedback from human annotators, as a way to improve Al safety or content
moderation.
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5.5.16. Reinforcement Learning (RL, Unsupervised Learning)

An agent makes decisions (actions) 4 based on the state of the environment S, using a
decision rule (policy) n : S~ 4 (the function p.(a, | s,)). Each action results in a transition to
a new state with probability p(s,., | s,, a,), and a reward signal r,(s,, a,)-

[ee]

Discounted return: G = ¥ yr_nRrJr1 where 0 <y < 1 is the discount rate.

r=n

State-value function: V(s)=EG|S =s]
Action-value function: Qﬁ(sn, an) = E[Gn | Sn =5, An = an]
TD(0) update rule at time n + 1: V(s )« V(s ) + a(rn+1 +yVis ) - V(sn))

e-greedy policy: choose optimal (greedy) a, = argmax O(s,, a,) with probability ¢ and
choose a random (exploratory) a, € A with probability 1 - .
QO-learning (off-policy TD): find = & II such that Qn(so, ao) is maximised (optimal policy n*)

Q(sn’ an) < Q(sn’ an) + O((Tn+1 + ymaxa {Q(sn+1' an+1)} - Q(Sn' an))

n+

Deep Reinforcement Learning / Deep Q Networks (DQN): parameterise /(s,; 0)
and/or Q(s,, a,; ) where 0 are the weights and biases of a neural network used to
estimate the value functions given the state and action, instead of calculating explicitly,
which is infeasible for large search spaces.

Reward r ‘

Take action a Environment

Observe state s

Experience replay: store the agent’s observations of (s, =s, a,, ,, 5,.1 =5’) in a
replay buffer until a given batch size. Train a copy of the network by sampling from
the buffer using the original action-values as the truth.

Gradient of loss function with respect to parameter 6, :

VoL(0) ~Buure |(r+7mx OF.a's0;) = 0(5:0) ) V0 Qs )
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5.5.17. Evolutionary (Genetic) Algorithms for Optimisation

Evolutionary algorithms (EAs) mimic the biological concept of ‘natural selection’ in order
to optimise an objective function of the state x. They are useful when this objective is a
‘black box’ function of a high-dimensional x.

e Individual: a particular candidate solution x to the optimisation problem
e Population: a set of individuals
e Genes: encodes the state x of an individual

Topology Optimisation

Evolutionary algorithms have been applied to topology optimisation in engineering design
of load-efficient structures, using e.g. the solid isotropic material with penalisation (SIMP).
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5.5.18. Python Examples of Various Machine Learning Tasks

For exploratory data analysis (EDA), Jupyter Notebooks (. ipynb files) can be used to
execute one cell block of code at a time, view results step by step, and annotate code.

Loading and Cleaning a Dataset: in this example, from an Excel workbook (. x1sx file)

import pandas as pd

X = pd.read_excel('path/to/dataset.xlsx', sheet name='InputData')

y = pd.read_excel('path/to/dataset.xlsx"', sheet_name='OutputData')

null indices = y[y.isnull().any(axis=1)].index # get rows with null values
X.drop(null _indices, inplace=True) # X: pd.DataFrame

y.drop(null_indices, inplace=True) # y: pd.DataFrame

Exploratory Data Analysis: display a report showing various useful metrics.

from ydata_profiling import ProfileReport
ProfileReport(df)

Standard Scaling and Exploratory Principal Component Analysis: show a scree plot.

from matplotlib import pyplot as plt

import numpy as np

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

X_std = StandardScaler().fit_transform(X)

pca = PCA(n_components=None)

df pca = pd.DataFrame(pca.fit_transform(X_ std))

explained_variance = pca.explained_variance_ratio_

plt.plot(range(1l, len(explained_variance) + 1), explained_variance,
label="Explained Variance")

plt.plot(range(l, len(explained variance) + 1),

np.cumsum(explained_variance), label='Cumulative Explained Variance')

plt.xlabel('Number of Components \n ($n$th largest eigenvalue, descending)')

plt.ylabel('Explained Variance \n (proportion of total variance)')

plt.legend()

plt.title('Principal Component Analysis: Scree plot')

plt.show()
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Pipelines for Regression Algorithms: train models for 1) linear regression and 2) support
vector regression including PCA and polynomial regression with regularisation (lasso).
K-fold cross-validation is used and grid search is used for hyperparameter optimisation.
The models are evaluated on various error metrics and then saved/loaded to/from the disk.

from sklearn.model selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.decomposition import PCA

from sklearn.linear_model import Lasso

from sklearn.pipeline import Pipeline

from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.svm import SVR

from sklearn.multioutput import MultiOutputRegressor

import joblib

pipeline lasso = Pipeline([('scaler', StandardScaler()),
('pca', PCA(n_components=5)), ('poly', PolynomialFeatures(degree=2)),
('lasso', Lasso())])

pipeline_svr = Pipeline([('scaler', StandardScaler()),
("svr', MultiOutputRegressor(SVR()))])

param_grid_lasso = {'lasso__alpha': [©.001, ©.005, 0.01, ©.05, 0.1, 0.5, 1.0]}
param_grid svr = {'svr__estimator C': [©.001, ©0.01, 0.1],
'svr__estimator__epsilon': [0.001, ©.01, 0.1]}

def train_model(X: np.ndarray, y: np.ndarray, pipeline: Pipeline,

param_grid: dict[str: list], model_name: str = "',
test size: float = 0.2, cv: int = 10,
scoring: str = 'neg mean_squared _error') -> Pipeline:

mae = lambda y_test, y pred: mean_absolute_error(y_test, y_pred)
rmse = lambda y test, y pred: mean_squared_error(y_test, y pred, squared=False)

X_train, X_test, y_train, y test = train_test_split(X, y, test_size=test_size)

search = GridSearchCV(estimator=pipeline, param_grid=param_grid, cv=cv,
scoring=scoring)

search.fit(X_train, y_train)

best _model = search.best _estimator_

y_pred = best_model.predict(X_test)

print(f'{model_name} - Best hyperparameters: {search.best_params_}")

print(f'MAE: {mae(y_test, y pred)}, RMSE: {rmse(y_test, y pred)}')

return best_model

lasso model = train_model(X, y, pipeline lasso, param_grid lasso, model name='Lasso')
svr_model = train_model(X, y, pipeline_svr, param_grid svr, model name='SVR")
joblib.dump(lasso_model, 'path/to/output/lasso_model.joblib")

lasso model = joblib.load('path/to/output/lasso_model.joblib")
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Pipelines for Neural Networks: train a CNN for multi-class image classification with one-hot encoding
with pooling, dropout and batch normalisation layers, a validation set, and hyperparameter optimisation.
Training neural networks can be computationally intensive, so it can help to use cloud computing (e.g.
Google Colab/Cloud Platform, AWS) with access to hardware accelerators (GPUs and TPUs).

from matplotlib import pyplot as plt

import numpy as np; import pandas as pd; import cv2; import os

from sklearn.model_selection import train_test_split

from tensorflow.keras.models import Sequential, load_model

from tensorflow.keras.layers import Input, MaxPooling2D, \
Reshape, Flatten, Dense, Dropout, Conv2D, BatchNormalization

from tensorflow.keras.callbacks import TensorBoard

from keras_tuner.tuners import BayesianOptimization

from keras_tuner.engine.hyperparameters import HyperParameters

tensorboard_callback = TensorBoard(log_dir='model_logs/fit', histogram_freg=1,
write_graph=True, update_freq="epoch')
df_X = pd.DataFrame(columns=["'img', 'gender'], index=None)
folder_names = ['imgs/men', 'imgs/women']
for folder_name in folder_names:
for file in os.listdir(folder_name):
img_arr = cv2.imread(os.path.join(folder_name, file), cv2.IMREAD_GRAYSCALE)
img_arr = cv2.resize(img_arr, (96, 96))
row = pd.DataFrame({'img': [img_arr], 'gender': [folder_name.split('/"')[-1]1})
df_X = pd.concat([df_X, row], ignore_index=True)
pd.get_dummies(df_X[ 'gender'])
rop('gender', axis=1, inplace=True)
np.array(df_X['img'].tolist()), df_y.values.astype(np.float32)
ain, X_test, y_train, y_test = train_test_split(X, y, test_size=1/10)
rain, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=1/9)

f_
.F

nan

y
X.
y
_tr
t
def build_convnet_model(hp: HyperParameters) -> Sequential:

model_cnn = Sequential()

model_cnn.add(Input(shape=(96, 96)))

model_cnn.add(Reshape( (96, 96, 1)))

model_cnn.add(Conv2D(hp.Int('filters_1"', min_value=64, max_value=256, step=32),

kernel_size=hp.Int('size_1', min_value=2, max_value=4, step=1), activation='relu'))

model_cnn.add(BatchNormalization())

model_cnn.add(MaxPooling2D(pool_size=(2, 2)))

model_cnn.add(Dropout(0.25))

model_cnn.add(Conv2D(hp.Int('filters_2"', min_value=8, max_value=32, step=8),

kernel_size=hp.Int('size_2', min_value=4, max_value=8, step=2), activation='relu'))

model_cnn.add(BatchNormalization())

model_cnn.add(MaxPooling2D(pool_size=(2, 2)))

model_cnn.add(Dropout(0.25))

model_cnn.add(Flatten())

model_cnn.add(Dense(hp.Int('nodes_fc', min_value=32, max_value=96, step=32), activation='relu'))

model_cnn.add(Dense(2, activation='softmax"'))

model_cnn.compile(optimizer="adam', loss='categorical_crossentropy', metrics=['accuracy'])

return model_cnn

tuner = BayesianOptimization(build_convnet_model, objective='val loss', max_trials=10,
directory="'tuner_dir', project_name='model_tuner")

tuner.search(X_train, y_train, epochs=100, validation_data=(X_val, y_val))

best_model = tuner.get_best_models(num_models=1)[0]

best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]

best_hist = best_model.fit(X_train, y_train, epochs=200, batch_size=128,
validation_data=(X_val, y_val), callbacks=[tensorboard_callback])

plt.plot(best_hist.history['loss'], label='Training Loss"')

plt.plot(best_hist.history['val_loss'], label='Validation Loss")

plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.yscale('log'); plt.legend(loc="upper right'); plt.show()

best_loss = best_model.evaluate(X_test, y_test)

print(f'{best_hyperparameters.values}, loss: {best_loss}')

best_model.save('path/to/output/image_classifier.keras")

best_model = load_model( 'path/to/output/image classifier.keras"')
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Pipelines for Neural Networks: train a hybrid CNN-LSTM for one-step-ahead multivariate time series
forecasting, with pooling/dropout layers, a validation set, and hyperparameter optimisation.

import numpy as np; from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler; from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, MaxPoolinglD, TimeDistributed,
Reshape, Flatten, Dense, Dropout, LSTM, Convi1D
from tensorflow.keras.callbacks import TensorBoard
from keras_tuner.tuners import BayesianOptimization; from keras_tuner.engine.hyperparameters import HyperParameters

tensorboard_callback = TensorBoard(log_dir='model_logs/fit', histogram_freqg=1,
write_graph=True, update_freq='epoch')
df = pd.read_excel('time_series_data.xlsx', sheet_name='Daily")
LOOKBACK, FEATURES = 30, 2 # predict the 31st value of a given subsequence with 2 features
scaler = StandardScaler() # df: pd.DataFrame with features in columns
df_scaled = scaler.fit_transform(df[['adj_close returns', 'volume_change']].values.reshape(-1, FEATURES))
# generate sliding window arrays (subsequences) from time series data
X = np.lib.stride_tricks.sliding window_view(df_scaled, (LOOKBACK, FEATURES))
X = X.reshape((X.shape[0], X.shape[2], FEATURES)); y = X[1:, -1, :]; X = X[:-1, :, :]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/10) # train:val:test = 80:10:10
X_train, X_val, y_train, y val = train_test_split(X_train, y_train, test_size=1/9)

def build_model(hp: HyperParameters) -> Sequential:

model = Sequential()

model.add(Input(shape=(LOOKBACK, FEATURES)))

model.add(Reshape((-1, LOOKBACK, FEATURES)))

model.add(TimeDistributed(ConviD(filters=hp.Int('filters_1', min_value=64, max_value=256, step=32),
kernel_size=hp.Choice('kernel_1', values=[3, 5]), activation='relu')))

model.add(TimeDistributed(ConvlD(filters=hp.Int('filters_2', min_value=32, max_value=128, step=32),
kernel_size=hp.Choice('kernel_2', values=[3, 5]), activation='relu')))

model.add(TimeDistributed(MaxPoolinglD(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(units=hp.Int('units_1', min_value=32, max_value=128, step=32), activation='relu',
return_sequences=True))

model.add(Dropout(rate=hp.Float( 'dropout_1', min_value=0.1, max_value=0.5, step=0.1)))

model.add(LSTM(units=hp.Int('units_2', min_value=16, max_value=64, step=16), activation='relu'))

model.add(Dropout(rate=hp.Float( 'dropout_2', min_value=0.1, max_value=0.5, step=0.1)))

model.add(Dense(units=FEATURES, activation='linear'))

model.compile(optimizer="adam', loss='mse")

return model

tuner = BayesianOptimization(build_model, objective='val_loss', max_trials=10,
directory="tuner_dir', project_name='model tuner')
tuner.search(X_train, y_train, epochs=100, validation_data=(X_val, y_val))
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_hist = best_model.fit(X_train, y_train, epochs=200, batch_size=128, validation_data=(X_val, y val),
callbacks=[tensorboard_callback])
plt.plot(best_history.history['loss'], label='Training Loss')
plt.plot(best_history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch'); plt.ylabel('Loss'); plt.yscale('log'); plt.legend(loc="upper right'); plt.show()
best_loss = best_model.evaluate(X_test, y test)
print(f'{best_hyperparameters.values}, MSE: {best_loss}"')
best_model.save('path/to/output/time_series_forecasting.keras")
best_model = load_model( 'path/to/output/time_series_forecasting.keras")
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5.6. Computer Vision and Computer Graphics
5.6.1. Representation and Processing of Digital Images

An image can be represented as aw X h X c array (w: width in pixels, /: height in pixels,

¢: number of colour channels e.g. 3 for RGB, 1 for grayscale or monochrome). Each entry in the
array is a binary number representing the intensity of the indicated pixel colour. The number of bits
used per component channel is the ‘bit depth’.

Common standard image dimensions are 640x480 (VGA), 1280x720 (HD), 4096x2160 (4K).

Common colour spaces are RGB(A) (red, , blue, ( )), HSV (h e, saturation, value), CMYK
( , , magenta, key/black), L*a*b* (lightness, green-red, blue-yellow), YUV / YCbCr.

Gamma correction: adjusts displayed intensities to account for the perceived nonlinearity of the
different colour channels over the range of displayable colours (the gamut).

bit depth [b]

8 xcxhxwx10° (+ storage of metadata, no coding/compression)

Image size [MB] =

Conversion of the 3D World to a 2D Image: information is inevitably lost.

The intensity of a pixel I(x, y) is dependent on the position/orientation of the camera, the geometry of
the scene, the nature and distribution of light sources, the reflectance spectra of the surfaces (specular
or diffuse/Lambertian), and the properties of the lens and CCD. Occlusion may obscure features of
specific objects in a scene. In most practical situations, these factors do not affect the desired
outcome, so data processing is required to prepare images with features independent of this ‘noise’.

Image Processing in the Fourier Domain: useful for analysing filtering operations

Operations can be represented as convolution with a kernel, or multiplication in the Fourier domain.

22
1 ko

. 207 - . . . 1
1D Gaussian kernel: ga(x) = 1@ e = Gc(k) =e (unnormalised Gaussian with std.dev —G)
O\ 4Tt
X+ zyZ B (kXZJrkyz) o
2D Gaussian kernel: g (x, y) = - L_e¢ ¥ o ¢ (k, ky) =e * , discretised: (-n, -n) < (x, y) < (n, n)
(o} To o

2D discrete convolution: (w * D(x, y) = Y X w(, DI(x — i,y — ) (W:(2n+1)x (2n+ 1) kernel array)
i=—nj=-n

O(r?) 2D convolution as repeated O(n) 1D convolution: (w * N(x, ¥) = w(x) * (w(y) * I(x, y))

Differentiation as a convolution: g—i= S(x“’”z_ SEY = S§(x, y) * [%, 0, _Tl]

Directional derivative: VS-n = D, S(x) = S,(x) = S(x + n) — S(x).

Gradient of a convolution: V's (x, y) = V'G_(x, y) * I(x, )

Laplacian is approximately a Difference of Gaussians (DoG): gkc(x, y) — gc(x, y) = (k — 1)02 X Vzgc(x, y)

Smoothing (low pass filter): S(x, y) = (g(y *D, y) =Y X gc(i, NDIx —i,y —J)

i=—nj=-n
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5.6.2. Feature Detection
Edge Detection: edges represent regions of sharp change in intensity (max gradient).

Canny edge detection algorithm: 1) smooth: s, =g, * I, 2) gradient: Vs,, 3) non-maximal
suppression: place ‘edgels’ where |Vs,| exceeds neighbours in directions +Vs,, 4) threshold by
Vs,

Marr-Hildreth detection algorithm: 1) Laplacian: V2g, * I by DoG approximation, 2) find zeroes.

The motion of an edge cannot be inferred by looking at edges along (the aperture problem).

Corner Detection: corners have discontinuity in two separate directions (cross correlation)

T 2
Cn(x,y) _ n TAn A = [ <ST> <Sr§y> ] /\1 S Cn(xay) S )\2
n’'n (S:5y)  (S3)
Smoothed directional derivative where (S)=s,=g,*1I (44, 4,): eigenvalues of A
of I(x, y) in the direction of n and S, = dS/ox, etc.

Harris-Stephens corner detection algorithm: 1) cross-correlation: A(x, y), 2) find 1,4, = det A
and A, + 1, =tr A, 3) threshold by 1,4, — x(}; + 1,)? for some small parameter «.

If the eigenvalues are both large and distinct, then a corner is likely present.

Blob Detection: round regions enclosed by edges, indicative of keypoints

l* V2s,(x, y)| acts as a normalised ‘blob detector’
for features at length scale ¢ (it is a band pass filter).
L The circular blob diameter with maximum response
01 =200 s g = 2\[20.
2. Apply different Gaussian blurs |
. }) SIFT Feature Detection: 1) create copies at sizes
n.1 = n;/ 2 by subsampling (i: octave number), 2)
owput: Feau descrirs | gpply sequential blurs in each octave, g;., = 2" o,

(gradient histograms)

n;

I 1. Create octaves of differently scaled copies I Niy1 = 2

Input Image E -:|:|-L E 1

|3 Compute DoG within each oclave I :g:’:ﬁr}:lll;n (J index Wlthln OCtave)’ 3) flnd Sj*‘I B Sj in eaCh
\ 3 %3 +.mer7|aneuxiy codinabs| - octave (represents o< VZ%; due to DoG approx), 4)
Blur 1 . . .
: bos / Tk it threshold to identify keypoints, 5) sample
Blur 2

SNT7T et =iy Gaussian-weighted 16x16 patch at correct scale
ﬁ \Y:‘%F around keypoint, 6) histogram of oriented
m% :f;;;gfggftgf;‘ | gradients (HoG) in 4x4 subcells, 7) concat to a
- vector, 8) normalise, truncate outliers (>0.2 — 0.2),
renormalise. The output is a 128-vector per patch.

The SIFT descriptors for a given keypoint feature can be compared (for recognition tasks) by & nearest
neighbours on a k-D tree (Section 5.5.16) or passed to a neural network for classification.
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Optical
centre

Y, !
coordinates

Image texture can be characterised by a repeated feature patch (textons).
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5.6.3. Planar Perspective Projection

A planar perspective projection of a 3D object in the world is the enlargement about an optical
centre point onto an image plane. Assumptions: pinhole camera, no nonlinear distortion.

Optical
axis

% World point

z (X..0,Z,)

Optical centre X
f \ (3/ Image

World X f Optical axis
coordinates /4
Focal length

Real image in a Image plane
pin-hole camera

Camera-centered

f
7 X

c

X.=X,Y,Z), x=(x,yatz=f Images are projected through O,: x =

Homogeneous Coordinates: point X = (X, Y, Z) represented as X = [sX, sY, sZ,s]". (WLOG s = 1).
If X = [X,, X, X3, X,]" then X = (X, /Xy, X,/ Xy, Xo/X).
If X, =0 then X is the point at infinity in direction [X;, X,, X;]".

Ter Tay Tz la
1. Rotation in Homogeneous Coordinates: X, = :y”” ;yy ::yz iy X
where X =[X, 7,2 1]"and X, =[X,, Y., Z, 1]". (Z)l (Z)y SZ
(R: 3 x 3 rotation matrix, T: 3 x 1 translation vector; affine rotation: PT:[RE?

in Cartesian, X,=RX + T.)

f000] fX, 1X./Z
2. Projection in Homogeneous Coordinates: x= [0 f 0 0| X.= | fY.| - x= { fYC f ZC]
for perspective projection, 3D — 2D. 0010 Z e

. . . ﬁ_/
(f: focal length for perspective projection) P,: projection
]{?u 0 U

3. CCD Imaging in Homogeneous Coordinates: w= |0 k, vo|X
where w =[u, v, 1]"and x =[x, y, 1] 0 0 1
((k,, k,): pixel length scales, (u,, v,): optical centre offset) m

Overall, w = PL.PpP,)N(. Intrinsic camera calibration matrix is K= P P,. Matrix P, = [R|T] is extrinsic.
Then, w =K[R|T]X =P, X where P, is the camera projection matrix (3 x 4, 10 dof).
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A general ‘projective camera model’ refers to any 3 x 4 matrix P,,, which can have 11 dof
(constrain by either enforcing ||P|| = 1 or setting Py, = 1.)
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Geometry in Homogeneous Coordinates

e Point inimage: w=[u, v]" — W = [u, v, 1]", with reconstructed ray in camera coordinates
X.=0+AW — r=2Au, v, 1]" (from the optical centre through the point in image plane)

e Lineinimage:I'w =0 — lu+Lv+1,=0.
e Intersection of two image lines ,'w =0 and ,'w = 0 occurs at w =1, x L,.

e Vanishing point (VP) of a line: lim X =a+ A[a, b, c]" projects to w =P, [a, b, ¢, 0]".
A— o0

e Horizon of a plane X =a+ A[a, b, c]" + u[d, e, f]" projects to the line connecting the
vanishing points W, =P,J[a, b, ¢, 0]" and W, =P,[d, e, f, 0], equivalently I = W, x W,.

e Parallel world lines have the same vanishing point.
e Parallel world planes have the same horizon.

Camera Calibration: find 3 x 4 projective camera matrix w = P, X (11 dof) from a known set {w, X},

Points w, = [su,, sv;,, s]" and X, = [X,, Y, Z, 1]" are given. The equations to solve are

u = su,o p11Xi + plZYi + p13Zi + Py and v = i _ p21Xi + pZZYi + p23Zi + Py
¢ s p31Xi + p32Yi + pSBZi + p34— ¢ s p31Xi + p32Yi + pSBZi + p34—
[ p11 ]| < n points yields the linear system
P12 of equations Ap = 0. Solve by
vz ¥ v 2 b1z orthogonal least squares (p =
1 1 1 0 0 0 0 —-wmXps —-wYr —-wZ1 -—w P14 ; T ;
igenvector of A'A corr nding t
0 0 0 X1 Y1 Zl 1 —’U1X1 —U1Y1 —’UlZ1 —V1 P21 e ge ec o ° co espo_ d g o
. o o . ~ _ . Do 0 smallest eigenvalue, found via SVD:
: : : : : pes | last column of Vin A =UZV")
Y. Z, 1 0 0 0 0 —unXn —unYn —uUnZn —Un P24
0 0 0 Xo Yo Zn 1 —vnXn —0nYn —0nZn —vn p31 If using the constraint P,, = 1, can
P32 write in the form Ap = b and solve
P33 . . .
| pas | by (psuedo)inverse (i.e. ordinary

least squares) p = (ATA)"'Ab.
N ) N ) A
Refine p to optimise the reprojection errors: P, = argmin{ ; (u; — ui)2 + (v, — vi)z} where [sul,, sV, s]"= P, X.
i=1
The ‘RQ’ decomposition of top-left 3 x 3 submatrix of P,, yields KR, and T =K [P,,, Py, Ps,]".
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Image Mosaicing: any two images of a general scene with the same camera centre are related by a planar
projective transformation (homography) given by w ’= KRK'w (K: camera calibration matrix, R: rotation
between views).

Given key points in an image (e.g. by SIFT), the RANSAC (random sample consensus) algorithm robustly
fits keypoints to compute the homography.
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5.6.4. Affine Projection

Weak Perspective Projection: when the whole scene has a similar Z,, orthographic projection
is a good approximation of perspective projection.

f 00 O
The weak perspective projectionis x= |0 f 0 0 | X. where Z,, is the average scene Z..
0 0 0 Zg

Pou: Weak‘;erspective
N » P11 P12 P13 P14
The overall image is then w =P.P,,P.X =P,X, where Puj;=|pa p2 ps pu| isthe

affine camera projection matrix (8 dof). 00 0 pz

Planar Weak Perspective Projection: if Z, is exactly constant across the scene, then the
projection matrix can be simplified further. The third column can be removed, giving 6 dof.

Cross-Ratio (Section 2.2.10): for four ordered collinear points {4, B, C, D} — {a, b, ¢, d},

|AD[|BC|  |ad]|bc|
|BD||AC]| |bd||ac|
For five coplanar points {4, B, C, D, E} — {a, b, ¢, d, e}, two conserved cross-ratios exist using
specially constructed points: if ¥ =AB N CD, G =BCN AD, E, = EF N AG, E, = AF N EG, then

the cross-ratios of {4, E,, B, F} and {4, E,, D, G} are conserved under any perspective

projection. (Notation: AB N CD is the intersection of lines AB and CD.)

The cross ratio of {4, B, C, D} is conserved under any perspective projection:

Another way to form projective invariant quantities is by ‘canonical views’, by
constructing a canonical frame curve given two views of an object in perspective
projection. A calibration operation aims to map four key points onto the corners of a
unit square, giving an ‘invariant signature’.
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All Notes 5.6. Computer Vision and Computer Graphics

5.6.5. Stereoscopic Vision (Stereo Vision)
Epipolar Geometry: relation between projections onto different image planes

Viewing a point X from two angles in perspective projection allows for triangulation of the
point in 3D, by the intersection of the corresponding rays. Epipolar lines constrain the
positions of a projected point in each image.

X world point Epipolar plane IT X X

//
e

) o' [ J

R ‘ ‘\ s v
R Left epipole” ~/ /, Right epipole 0 N e o

Left epipolarnné'J \Righwpipolar line ~N %
X from two views — x and x’ Epipolar plane IT contains As X moves, the epipoles are

Coords relate by X,"=RX,.+ T X and the optical centres. invariant and II rotates about 0OO".

X ispy, Xcisp;

For two correspondences (1 and 2) of one world point X (as a projected ray in camera coordinates
p=X =[x, f]) related by a homography (linear transformation R, translation T),

e Epipolar constraint (ray coordinates): p:'Ep, =0
(E = T.R: essential matrix, T.: cross product matrix of T, Section 4.1.6)
The epipoles lie in the nullspace of E (Ee =0 and E'e’ = 0; and of F").

In the limit of parallel cameras, the epipoles approach infinity, allowing depth perception:
if T=1[-d,0,0]"and R=1then Z. =df/(x - x’).

e Epipolar constraint (pixel coordinates): w,'Fw,=0
(F = (K, )'EK,": fundamental matrix, w = Kp: imaged ray, K: camera intrinsics.
The equation of the epipolar line in the right image is I'' ' = 0 where I’ = Fw.

Other constraints to identify correspondences are uniqueness and ordering (for opaque surfaces).
The metric structure information (R, T) up to a scale can be computed from the SVD of E.

Match corners using epipolar and other constraints

Fully calibrated _ ———u

cameras - ™
// Work with rays p ™

= = : il Triangulate . — —
» s - ~
— Metric 3D structure )
AN — 3 ,«/
———— ——
Left

5. Compute EfromRand T /
Image pair with detected corers / h—
- " Right
2 £ 4
¢

R E=T,

T
() Ep=0 Unknown intrinsic
parameters K —

Match corners using epipolar and other constraints //\ Projective 3D structure \,

\/" " Work with pixels W ™~

( Compute F from —
\__ correspondences

\ /"' “Recoverraysp ™\ Triangulate __ —
/ \ P ~
Calculate E from F and K ( Metric 3D struclure)

Not fully —
calibrated cameras PP \ Decompose E into T, 3“9 — -
N
Bf =0 — -

Known intrinsic -
parameters K E =K' FK
find R, T by QR of E

OLS by SVD of B


https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bx%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bl%7D%7D'%5E%5Ctop%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D'%20%3D%200%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctilde%7B%5Cmathbf%7Bl%7D%7D'%20%3D%20%5Cmathbf%7BF%7D%20%5Ctilde%7B%5Cmathbf%7Bw%7D%7D%20#0

ok o0N =

© N o

o~

o

All Notes 5.6. Computer Vision and Computer Graphics

Summary

Camera Calibration: robust method using RANSAC and nonlinear optimisation

Randomly sample 6 out of N image points and world points to form a set of {w, 5(,} (1<i<6)

Using w = PX, write a system of 12 equations: Ap=0 (A: 12 x 12, p: 12 x 1)
Calculate the SVD decomposition and take p = [last row of V'] where A = UZV'
Calculate |Ap| for the full set of N points and count the ‘inliers’ (sufficiently close to zero)

Iterate from step 1 until the count of inliers is maximised. Use this P as a seed for Step 6.
N N N N N

Minimise the reprojection errors: P = argmin{ Y’ (1, — ul,)2 + (v, — vi)z} where [su, sv, s]"=PX..
i=1

The ‘RQ’ decomposition of top-left 3 x 3 submatrix of P yields KR.

Calculate T=K" [ps pu pu]" — P=K[R[T].

Stereoscopic Correspondences: recover 3D structure from two calibrated cameras

Given two images related by an unknown homography, identify keypoints.
Use SIFT to register invariant features x; € R and x’; € R"®in a -D tree.
Find nearest neighbour correspondence estimates {x, x;’} from the images.
Refine the correspondence estimates using the RANSAC algorithm:
a. Randomly sample 8 pairs of correspondences {w, wW,’}.
b. Using wFw = 0, write a system of 8 equations: Af=0 (A: 8 x 9, f: 9 x 1), solve
with SVD as before to find 3 x 3 fundamental matrix F with F;;=f,=1.
c. Find w’TFw using this estimate for F on the whole dataset. Count the number of
correspondences for which this value is sufficiently close to zero.
d. lterate, finding new F’s until the count of inliers is maximised. Take this as F.
Enforce rank 2 constraint in F by setting its smallest singular value to zero.
Compute E = K "FK.
Calculate the SVD decomposition E = UXV'. Then R=UYV" and T = [last column of U],
where Y =[O0, -1, 0]; [1, 0, 0]; [0, 0, 1]] = {rotation about V. by 90° anticlockwise}
There are 4 possible solutions for using T and {R, R"}: resolve ambiguity by ensuring all
visible points lie in front of both cameras. Then P’=K’[R|T]and P=K[I | 0].

To compute 5(, solve w’=P’X and w =PX (4 equations in 3 unknowns: least squares).
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5.6.6. Hough Transform and Radon Transform

Hough Transform: detects lines in 2D images.

Straight lines in images can be parameterised by (7, 6), the polar coordinates of the closest point

on the line to the origin of the image coordinate system. The equation of the line is then

r=xcosf+ysinf (Hough transform in (r, 8) space: Hesse normal form).

A given (x, y) point corresponds to a sinusoid in (r, #) space. Sinusoids are superposed for each
pixel to build the transformed image in Hough (7, 6) space. The intersections of these sinusoids

(represented as maxima in total amplitude) occur at values of (v, §) where a line with these
parameters exists in the original image.

The intersections are thresholded and returned as detected lines in the image.
Radon Transform:

An image f(x, y) can be mapped to (r, 8) directly using the Radon transform:

Rf(r, 0) = Ofo Ofo f(x, y)6(r — xcos® — ysin0)dxdy

—00 —00

This is mathematically equivalent to the Hough transform in the continuous infinite size limit.

The inverse Radon transform is useful in tomography (reconstructing solid 3D objects from a
stack of 2D image slices through), widely used in biomedical imaging (e.g. CT scans) to
reconstruct from X-ray transmission intensity data. It is computed using the filtered
backprojection formula.
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5.7. Accounting, Finance and Business

5.7.1. Basics of Accounting for Businesses

Types of Entities

Non-Business Organisation: exists to meet a societal need where making profit is not the goal.
Business Organisation: exists to sell goods and/or services where making profit is a goal.
Sole Trader / Proprietorship: owned by one person, the same legal entity.
Limited Company (LTD): owned by one person, a different legal entity.
Partnership: owned by two or more associated people.
Corporation: owned by one or more shareholders.

m Publicly Accountable Enterprise: sells shares on the stock exchange (after IPO).

m Private Enterprise: shares owned by a group of associated people.

e Limited Liability (LLC): shareholders are not personally responsible for debts.

o O O O

Types of Accounting:

Financial Accounting: reports the breakdown of financial decisions of a company, aimed at
informing external stakeholders. Standardised according to GAAP / IFRS, enforced depending
on locality (US: FASB, elsewhere: IASB).

Managerial Accounting: reports the internal performance of the company, aimed at informing
managers about decisions on projects and employees.

Tax Accounting: reports the overall profits made by a company to facilitate collection of tax
revenue by the government (US: IRS, UK: HMRC)

Incentives: actors may be incentivised to bias a report e.g. managers aim to minimise reported profits
for a tax return (to pay less tax), but maximise profits when presenting to investors. This also applies for
external bodies e.g. consultants, auditors and credit rating agencies which are paid by the company for
evaluation, though these entities are typically more reputable as third parties.

Key Actors in Accounting

Financial Accountants: hired by the firm to prepare their financial reports. Supervised by the Chief
Financial Officer (CFO).
Auditors: external agents hired by the firm to assess and verify the financial reporting quality of the firm.
Typically works for an accounting firm (the ‘Big 4’: Deloitte, KPMG, EY, PwC). Auditors use statistical
methods to determine the risk of a significant deviation from accounting standards.
Forensic Accountants: investigates fraud and financial irregularities, and advises on financial disputes.
Investors: sources of finance for developing companies, especially at the entrepreneurial stage.
Seed funding may be received from angel investors, venture capitalists and banks (investment
bankers) can provide sources of funding as well as advice on decision making, though VCs typically
require a position on the company board (equity stake) for their services.
Standards Setters: the entities making and enforcing the rules on accounting.
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5.7.2. Financial Statements (Books)

Stakeholders may make major investment decisions based on financial reports:

Income Statement: shows the breakdown of revenue and expenses, as summed flows over time.
Balance Sheet: shows the total assets, liabilities and equity, at a point in time.

Cash Flow Statement: shows the total sum of transactions of the company.

Environmental, Social and Governance (ESG Data): currently being formalised, but is not yet
universally mandatory as audit quality varies. Used to inform policymakers.

The ‘aggregation exercise’ is performed in each accounting cycle: ongoing accruals are recorded in a
journal, noting the date, account debited and credited. To prepare the accounts, T-accounts are drawn
up, grouping transactions by account. The balance for each account is found by summing and the
necessary financial books are written.

Double Entry Bookkeeping: any one transaction affects two variables in the accounting equation,
Assets = Liabilities + Equity. Financial statements are structured using ‘T-accounts’ to reflect this:

Ledger General Ledger Temporary Ledger
Assets Liabilities Equity (Shares) Revenue Expense
Account Type Debits | Credits Debits | Credits Debits | Credits Debits | Credits Debits | Credits

Increase or
Decrease

Debits (Dr) increase the assets. For the temp ledger, credits (Cr) increase the equity (which decreases the
assets). The temporary ledger balance (revenue - expense) is realised as ‘retained earnings’ in Equity.

Company Name Company Name
Income Statement Statement of Cash Flow
For the month or year ended xx/xx/xxxx For the month or year ended xx/xx/xxxx

Cash flow from operating activities:

Sales Revenue or Service Revenue Net Income

E.Ubl of (JOUd.b Seld (COGS) Adjust for non-cash items from the Income Statement:

sross Margin P S

e.g. +depreciation/amortisation expense

e.g. -gain/+loss from disposal of long-term assets

e.g. + bad debt expense

Adjust for changes in non-cash current assets and current liabilities:
e.g. — increase in non-cash current assets

e.g. + increase in current liabilities

Total Cash flow from operating activities

Operating Expenses

e.g. Depreciation Expense

e.g. Selling, General and Administrative Expense (SG&A)
e.g. Research and Development Expense (R&D)
Operating Income or Loss

Other Revenues or Expenses
e.g. Gain or Loss from disposal of long-term assets Cash flow from investing activities:
e.g. Impairment Loss Cash used to purchase long-term assets

Earnings Before Interest and Tax (EBIT) Cash received from disposal of long-term assets

Interest Expense Total cash flow from investing activities
Tax Expense
Net Income or Loss Cash flow from financial activities:

Cash payment of long-term liabilities
Acquisition of long-term liabilities for cash

Company Name Cash repurchase of share capital
Balancé Sheet Issuance of new shares for cash
As at X0/ XX/ XXXX Cash payment of dividends
Total cash flow from financing activities

Assets Liabilities and Shareholders® Equity
Current Assets Liabilities Net Increase (Decrease) in cash
e.g. Cash Current liabilities . L.
e.g. Inventory e.g. Accounts Payable (A/P) Cash Balance at the beginning of the year
e.g. Accounts Receivable (A/R) e.g. Salaries Payable Cash Balance at the end of the year
Non-Current Assets e.g. Interests Payable
¢.g. Property, plant and equipment (PPE) Non-Current liabilities
e.g. Research and Development e.g. Bank Loans
e.g. Goodwill Total Liabilities

Total Assets
Shareholders’ Equities
e.g. Share Capital
e.g. Retained Earnings
Total Equity

Total Liability and Shareholders” Equity 227
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5.7.3. Simple Metrics in Financial Accounting

Metrics of profitability:

e Gross Profit Ratio = Gross Profit / Sales Revenue
e Profit Margin Ratio = Net Income / Sales Revenue
e Return on Assets = Net Income / Total Assets

Metrics of liquidity:

e Working Capital = Current Assets - Current Liabilities
e Current Ratio = Current Assets / Current Liabilities.

Negative numbers on books are recorded in parentheses e.g. (100) is $ -100.

Quantitative easing: a monetary policy in which a central bank buys government bonds,
increasing the assets of commercial banks, stimulating economic activity. First used to mitigate
the 2008 financial crisis.

5.7.4. Revenue Recognition and Bad Debt

Revenue is earned when a product or service has been delivered and accepted by the customer.

When money is received before a service is delivered, record the revenue as ‘deferred revenue’ (a
liability) until the service is delivered, since the company owes a refund until this time.

When a service is delivered before money is received, record the value as ‘accounts receivable’
(A/R, an asset) until the bill/invoice is fully paid. In B2B, many companies offer credit to customers
when they make sales.

If the customer seems unable to pay off their debt, the reported A/R value is now inaccurate, and
an estimate of the loss is recorded in ‘allowances for bad debt’ (AFDA), a contra-asset valuation
account). If the firm gives up on recovering this bad debit, it is written off, balancing the AFDA and
crediting from the A/R account.

To compute the bad debt expense, statistical methods based on an ageing schedule (arrears) are
used. The longer the account remains overdue, the higher the probability it will default. Established
firms have long histories of data to estimate probability of defaulting by lateness of the payment.
Increment to ending AFDA = A/R amount due x Probability of default (summed over arrears buckets).

228



All Notes 5.7. Accounting, Finance and Business

5.7.5. Statement of Cash Flows and Fraud in Accounting

The balance sheet and income statement are not sufficient to assess a company’s
financial health. Without cash, a company cannot operate and goes bankrupt (even if it
owns assets). To predict this, financial analysts look at the cash inflows and outflows over
a period, described in the cash flow statement.

The cash flow statement’s net change in cash in year ¢ gives the increase in balance sheet
cash between years ¢ - 1 and .

Cash Flow Statement: divided into three sections

e Cash flow from operations: from income statement/balance sheet changes, also paying off
interest on debts (as of US-GAAP ASC 230).

e Cash flow from investing: from investments and long-term assets.

e Cash flow from financing: obtaining long-term debt (borrowing), paying off principal of debt,
issuing equity, paying dividends.

Operating cash flow is usually computed indirectly, subtracting non-cash operations
from ‘net income’ on the income statement.

Gains and Losses are increases and decreases in equity (net assets), except those that
result from revenues or investments by owners.

Fraud in Accounting: exploiting grey areas of accounting to misrepresent cash flow data.

e Channel stuffing: selling more products to distributors than they are capable of selling to the
end customers in order to inflate sales.

e Underestimating default probabilities for a bad debt expense account to inflate net A/R income.
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5.7.6. Financial Interest and the Time Value of Money

Interest: accrual of money per unit time

Simple interest: A=P1+rt) (interest =4 — P = Pri)
Compound interest: A =P+ %)nt
Continuous compound interest: A = P e’

] __ interest [$] + fees [§] 365 [days] .
Annual percentage rate (APR):  APR = rincipal 5] Toan term [days] (effective interest rate)
Return on investment (Rol) = % increase in P = A;P = pmlflts (x 100%)

(4: accrued amount; future value FV, P: premium (present value PV), r: interest rate (as Ll%]-) per year,

t: time (years), n: number of compounding periods per year e.g. weekly — n =52, monthly — n=12.
When working with  as an inflation rate, 4 in the future has the same purchasing power as P now.)

Time Value of Money: a unit of money is generally ‘more valuable’ now than in the future.

Cash amounts are only comparable when referring to the same point in time.

e Future Value (FV) = Present Value (PV) x (1 + r)" (where r>0 — FV > PV)

Future Value (FV)
a+n"

e Present Value (PV) =

If the net present value (NPV) of an investment is negative, it is likely not worthwhile, as the
discounting exceeds the interest.

Perpetuities and Annuities: cash flows vary between times due to interest and inflation

[00]

C
e Perpetuity: stream of constant cash flows. PV = ) a ¢ 7 = 71
n=1 +7r
: : ey o Larn)™ g
e Growing perpetuity: stream of rising cash flows. PV = ) a L") =—— (C=Cy(1 +1p)
n=1 +r g
N
e Annuity: stream of N cash flows. PV = Y, ¢ — = < (1 -1 N)
n=1 +1) r (1+7)
_ _ . Noca+ry™ c, { 1+r \N
e Growing annuity: stream of N rising cash flows. PV = ) I— = - |
- 1+7) r—rg\ 1+r

(r: discount rate / hurdle rate / (opportunity) cost of capital, r,: long-term growth rate)
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5.7.7. Valuation of Stocks and Shares

Types of shares:

e Growth shares: investors expect to benefit from capital gains (future growth of earnings)
e Income shares: investors seek cash dividends

Metrics of share valuation:

value of common equity on balance sheet

number of shares outstanding
net income — dividends to preferred shares

number of shares outstanding

e Book equity per share (BVPS) =

e FEarnings per share (EPS) =

e Return on equit (ROE) _ net income __EPS __ mnetincome — dividends to preferred shares
quity shareholders' equity ~—  BVPS ~ wvalue of common equity on balance sheet
. dividends
e Payout ratio = —&ps

e Plowback / Retention ratio, » = 1 - Payout ratio
market value per share (share price)
EPS

e Price per earning (P/E ratio) =

Valuation of Shares: common shares can be paid out as either dividends or capital gains.

D
(D: dividends, P: share price, discount rate: r = P—l + Ty growth rate: r, = b (plowback) x RoE.)

[oe]

P +D D
DCF share price is the sum of discounted future dividends (PV): P, =—; +r1 = a - o
n=1 +r

_ ® p+r) D, D

Gordon-Shapiro growth model: D, = Dy(1 + r,)" then P,= Y. — = andso P =——.
g 1 a +r)" rer, n r-rT,
. . PN N Dn
For nonlinear growth then linear, use P = i + X 75 (where Py=Dy(1+71,)/(r-rp)).
n=1

Valuation of Straight Bonds: investor (lender) buys the bond to receive fixed returns (like a loan)

e Maturity date: bond expiry date, issuer returns the face value amount to the lender
e Face value F'/ Par value: the amount promised to pay the investor on the maturity date
e Coupon C: periodic interest paid while the bond is held (before maturity):

Coupon, C [$] = Face Value, F [$] x Coupon rate, 7. [%]

Yield to maturity ryrv (YTM): annual expected return for the investor.
e Current yield: annual coupon divided by price
N
Fair value of bond is the sum of discounted debt cash flows: P0 = ;N + ) —

Q1+ n=1 A+ "

YT™M ) YTM )

Investors are at risks e.g. default risk, liquidity risk, regulatory risk, interest rate risk.
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5.7.8. Cash Flow Analysis

The net present value (NPV) concept can be used to check feasibility of an investment (e.g. for a project):

N

Cc
Net Present Value (NPV) = ( D a +" )n) — P0 (PV of returns - Py initial investment / cash outlay)
n=1 T

Considerations in conducting a cash flow analysis:

e Use incremental cash flows: differences between revenue with and without the project.

e Account for side effects on other cash flows e.g. erosion (decrease) or synergy (increase).
e Ignore sunk costs: costs in the past cannot influence future decisions.

e Consider potential revenues excluded by the project as opportunity costs.

e Allocated cost should be included entirely when budgeting (as opposed to in accounting).

Free cash flow to the firm (FCFF) method: typical tabular layout

e EBIT (earnings before interest and tax) = (sales revenue — costs) — depreciation [on income statement]
e NOPDAT (net operating profit after tax) = EBIT x (1 — ry,)
e CFO = NOPDAT + depreciation + amortisation
e Depreciation = Initial Outlay / Project Length (using ‘straight line’ depreciation method)
Year O Year 1 Year 2 ... Year N
Cash flow from operations (CFO) 0 CFO CFO CFO
Capital investment (CapEx) (|n|t|?_lvc;l)1tlay) 0 0 0
Investment in working capital (ANWC) (WC) 0 0 we
(-ve) (+ve)
Free cash flow [sum down columns] Co C, G, Cy
Discounted cash flow (DCF) Co C,/(1+7) Cy/(1+r)f Cy/(1+r)V
Net Present Value (NPV) = sum of DCFs

If NPV > 0 then the project is expected to be profitable. If NPV < 0 then the project is unprofitable.

5.7.9. Break-even Analysis

Internal rate of return (IRR): the discount rate r such that a cash flow analysis returns NPV = 0.
If IRR > 7,equirea then the project is profitable. If IRR < 7,44 then the project is unprofitable.

e If the function NPV(r) has multiple zeros, this method may be invalid (need to graph curve).
e When comparing two projects, higher IRR does not always imply higher NPV.

NPV [at fixed ]
initial investment

Profitability Index =

ANPV d(NPV)
or :

Sensitivity analysis: study how NPV varies with inputs e.g. e o
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5.7.10. International Business

An international business conducts some aspect of their business across borders e.g. products
and services, capital (trading), people (employees) and information (digital companies).

Incentives for internationalisation of business:

Market seeking: economic growth, infrastructure, less competition

Efficiency seeking: regulatory arbitrage, lower labour costs, lower taxes / tax avoidance
Innovation seeking: access to talent and specialist workforce

Resource seeking: critical materials

Barriers to internationalisation of businesses:

Trade tensions: politicians may legislate against trade with some countries
Armed conflict: international business is deprioritised in times of war
Disruptions: (e.g. Houthi attacks on ships in the Red Sea/Suez canal in 2024).
Climate Change: shortages or failures of land-based raw materials

Strategy of internationalisation: experience or experimentation?

e Deliberate: top-down, global strategy with careful planning.
e Emergent: bottom-up, local strategy embracing learning the new cultural norms.

Modes of entry: resource commitment usually starts low and increases over time (Uppsala model).

e Non-equity modes: import/export, outsourcing, licensing, franchising.
e Joint venture / partial acquisition. Can help with gaining local knowledge.
e Equity modes: green field / full acquisition.

Increasing global supply chain resilience (reconfiguration):

Shorter supply chains: onshoring / near-shoring

Political alignment: friend-shoring

Diversification: dual/multi-sourcing e.g. ‘China Plus One’ strategy for the West
Bifurcations: separate supply chains for different markets

Examples of Internationalisation in Tech and Energy Industries

e Tesla expands into China in 2014: to take advantage of the EV market,
manufacturing in China is necessary to avoid high tariffs.

e Many tech companies (Arm, Nvidia, etc) set up in high-talent areas e.g. Silicon
Valley (California) or Cambridge.

e LG Chem builds a factory in the US in 2024 to take advantage of the IRA tax
credits for making EV battery cathodes.
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Factors affecting International Business for Energy and Tech Industry

e US-China Trade War (President Trump, 2019): nationalist protectionism increasing barriers
to trade between the USA and China.

e US Inflation Reduction Act (President Biden, 2022): promotes US decarbonisation by
subsidising domestic clean energy production with tax credits.

e Critical minerals: top producers (mining and refining) include China (Sb, Co, Ga, graphite,
In, Mg, REE oxides, Si, Te, Sn, W, V), Vietnam (Bi), Australia (Li), DR Congo (Ta), South Africa
(P1), Brazil (Nb).

e Artificial intelligence: potential rise of LLMs and AGlI in the near-to-medium future may
force a restructuring of the software workforce.

e Fragility in Semiconductor Industry: impacts all technology and associated supply chains.

o

o

US firms design chips using software relying on IP licences from Europe.

Manufacturing equipment developed in the US, Japan and Europe. ASML (Europe) is the
only producer of extreme UV lithography systems as of 2024: they sell to chip makers.
Silicon is mined and refined in the US, processed into wafers in Japan and South Korea.
Chips are manufactured and packaged in Taiwan and Malaysia. TSMC makes 92% of
global advanced semiconductor chips.

Processors are assembled into electronic products in China.

5.7.11. Institutional Theory in International Business

Institution: a taken-for-granted set of organising principles (‘rules of the game; social scripts’).

Institutional theory was developed to criticise the 19th century ‘economic man’ theory,
explaining how and why business and people behave irrationally. Modern (neo-institutionalism)
theory explores why some organisations of the same type always have a very similar structure
everywhere in the world, due to regulative, normative and cognitive forces driving uniformity.

Examples of institutions: democracy, marriage, banks, places of religious worship, schools...

Properties of institutions: persist for a long time, are collective, are mostly taken for granted,
guide and constrain social behaviour, simplify decision-making, provide order, build trust
and legitimacy, are hard to change (inertia).
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5.7.12. Analysis of Institutional Distance for Internationalisation

Institutions in International Business:

e Institutional arrangements are highly context dependent. They may be literal (geographic), formal
(legal, political, economic) or informal (cultural, religious, linguistic).

e Institutions are incredibly powerful structures: underestimating or misunderstanding ‘the rules of
the game’ while entering a given country may lead to failure. However, it is hard to fully
understand the institutional environment from the outside due to its taken-for-granted nature
(liability of outsidership).

e |f we need to change the institutional environment in order to enter a country, we need to
understand it entirely, and will still be a very challenging task.

Analysing Potential for Internationalisation:

Why is the company successful currently in the home country?

What is their positioning (reputation, service type) in the market?

Identify regulations responsible for forming institutions.

Identify the cultural forces that drive these regulations.

What are the implications of these differences on the current business model? Is adaptation feasible?

O O O O O

Types of Institutional Distance: may be literal (geographic), formal (legal, political, economic)
or informal (cultural, religious, linguistic).

Approaches to Reduce Institutional Distance: adapt to the target, or influence the target?

e Cultural legitimisation (‘glocalisation’): localisation, polycentric pricing, omnichannel marketing,
workforce training, social responsibility. May require ethnographic studies for market research.
Market to the diaspora of the target country, then attract locals (e.g. bubble tea in the West).
Use cultural interests to promote associated products (e.g. K-pop/Korean wave — Asian food
supermarket)

Joint ventures with a local company to gain trust or avoid negative perception of host country.
Institutional entrepreneurship: lobbying to relax regulations, marketing, PR, strategic
collaboration with industry groups.

Example: commerce in the US (e.g. Walmart). Relevant institutional norms in the US include:

Economies of scale: a more capitalist free market allows monopolisation by rapid growth.
Driving culture: can have large stores, spaced apart.

Very high standards of customer service: requires more rigorous management of employees).
Low price guarantees: requires lower wages for employees.

>N

These factors are unlikely to work in Europe (hence Walmart’s failure in Germany) due to institutional
distance: e.g. more government oversight, regulations on employee rights, salaries and
environmentalism, limited store opening hours, stronger unions for employees, mandatory holidays, less
emphasis on customer service and the appearance of friendliness.
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5.7.13. Cross-Cultural Communication

Models for Understanding Culture:

Human mental programming hierarchy: 1) human nature (universal; inherited), 2) culture
(specific to group; learned), 3) personality (specific to person; inherited and learned).

Cultural iceberg: only behaviours and practices are observable. The hidden factors
informing them are the perceptions, attitudes, beliefs, values, which in turn are influenced by
climate, geography, demographics, economics, media, education, ideology, religion.

A nation is often not the best unit to study a culture: the cultural unit may be larger or
smaller, and may not be geographically united.

Dimensions determined by culture (Hofstede and more recent critical work):

>oDn

5.

Individualism vs Collectivism. Integration of people into primary groups. Most significant.
High vs Low power distance. Solutions to basic inequality.

Low vs High uncertainty avoidance. Response to stress in the presence of unknowns.
Motivation towards Achievement / “Masculinity vs Femininity”. Division of emotional and
gender roles in society, into competitive/tough/assertive vs cooperation/relationship building.
Long vs Short term orientation. Focus of people’s efforts in the present or the future.

Other important dimensions are Indulgence vs Restraint (Personal happiness, freedom of
expression, and the importance of leisure) and Perception of Time (Sequential vs Overlapping).

Differences along any of these dimensions can lead to unexpected clashes in many social
interactions while doing business.
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5.7.14. Institutional Voids and Developmental Distances

Developing economies may have a lack of formal institutions (voids): within each dimension
of institutional distance, there is also a developmental distance (informality). Often occurs in:

e Functioning political, economic and legal systems
e Hard infrastructure e.g. roads, rail, airports, seaports, telecomms, energy
e Soft infrastructure (business ecosystems) e.g. talent, logistics, information availability

Conglomerates (highly diversified, often family-founded corporations) tend to perform well in
countries with voids as they provide all necessary services at once, becoming MNCs.

Network Effects: some services become intrinsically better when more people use them.
Commonly exploited by digital companies to cement a monopoly in a void.

Examples: taxi apps (more drivers, more users), e-commerce (more buyers, more sellers),
social media (more users, more engagement), shopping malls (more shops, more buyers).

‘Super-apps’ are all-in-one digital service apps, proving highly successful in ‘recently’
developed countries, combining the benefits of conglomerate-style void-filling and the
network effects. Localisation helps to tailor services to the local market e.g. Grab in
South-East Asia. Super apps are not popular in the West due to anti-competition laws,
already matured institutions, data privacy concerns etc.

Technological leapfrogging: using voids as opportunities by building the service around
what is already there on the ground, not worrying about the necessary infrastructure in
the home country e.g. mobile internet in Africa, mobile fintech, renewable energy in Asia,
electric mobility.
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5.7.15. Business in the Anthropocene Epoch (Climate Change and Pollution)

The ‘anthropocene epoch’ refers to the observation that collective human activity is
impacting the planet itself.

Climate risk: the negative financial effects of climate change on business e.g. supply chain
disruption, higher costs, lower sales, transportation disruption, food shortages, regulatory risk.

Double materiality: the recognition that companies have a significant impact on the climate
and should be held responsible for the waste they produce (rather than the consumer).
Implementations include ESG data reporting (Section 5.7.2), extended producer responsibility
(EPR) schemes, right to repair laws and results-based government funding.

Scopes of climate reporting (e.g. greenhouse gas emissions):

e Operational emissions: company-owned vehicles and facilities.

e Operational resources: purchased heating, cooling, energy, steam...

e Upstream activity (suppliers): assets, employee commuting, purchased goods/services,
business travel, waste, fuel/energy, transport/distribution, capital goods

e Downstream activity (consumers): processing of sold product, use of product, leased
facilities, investments, franchisees activity, end of life treatment (LCA)

Wastage per person is increasing over time due to increased consumerism and illegal
business practices e.g. planned obsolescence, proprietary interfaces, fast fashion, as well as
growth in emerging economies. In developed economies, ‘degrowth’ has become a viable
strategy for decreasing waste without short-term economic loss. Companies producing in
underdeveloped countries are being scrutinised for the ethics of their supply chains e.g.
slavery, poor working conditions, sometimes resulting in supply-chain restructuring.

Recently, advanced technologies have been used to make deep supply chains more
transparent (e.g. blockchain, molecular tagging in cotton supply chains), but this approach may
not be locally suitable. Other methods include supplier code of conduct, monitoring the
workplaces (auditing) of direct suppliers, publishing of supplier details for information
transparency and industry alliances. However, the reputation of segments of the public remains
almost the only incentive to comply, limiting full-scale adoption.

Companies are being pressured to take stances on these issues, as well as some social issues
(‘cancel culture’: more controversial, less universally accepted). Companies must decide
whether they want to risk alienating certain demographics with their choices.
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5.7.16. Important Companies in the Semiconductor Industry

e Arm (UK): designs chips and licences the design as IP to manufacturers e.g.
Nvidia, Intel, TSMC, Apple, Samsung.

e Applied Materials (USA): supplies equipment, services and software for
manufacturing chips.

e Nvidia (USA): fabless tech company producing GPUs widely used to train
large-scale machine learning models.

e ASML (Netherlands): the only producer of ‘extreme UV lithography’ machines,
used to print ICs on silicon for high-performance chips. ASML was formed from
the unification of several industry experts, and they sells their machines to chip
makers, used to surpass the ‘7 nm’ process node from 2019. Its subsidiary, Cymer,
is based in the US.

e TSMC (Taiwan): the world’s largest contract semiconductor manufacturer (foundry),
selling to ‘fabless’ companies who rely on TSMC to produce their chips. TSMC
does not try to compete with its customers. TSMC'’s largest customer is Apple.

e FoxConn (China and Taiwan): a competitor to TSMC, which has much friendlier
relations with the Chinese government, used to a smaller extent by Western
companies.

e Samsung (South Korea): ‘chaebol’ (Korean conglomerate) with in-house
manufacturing for their own electronics products, especially for memory chips.

e Intel (USA): manufactures its own high-end microprocessors and GPUs.
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5.7.2. Income Tax (UK, FY2022):

Tax brackets vary over time and between different countries, as well as various special circumstances.
The table is only useful as an example and should not be relied on.

The annual tax brackets for the fiscal year 2022 (6™ April 2022 - 5™ April 2023) in the UK
using tax code 1257L (single source of fully taxable income) are:

Bracket Taxable range Progressive tax rate
Personal allowance £0-¢£P 0%
£P+1-£50,270 20%
£50,271 - £150,000 40%
Additional rate £150,001 and above 45%

The standard personal allowance P = 12,570, which holds when income is less than
£100,000. If the income I is more than £ 100,000, then P =max {12,570 - 0.5(/ - 100,000), 0}.

Example calculation: if income before tax is £61,000, then the tax payable is
(12,570 - 0) * 0.00 + + =£11,831.40.

Effective tax rate = (tax paid) / (income before tax) (x 100%).
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5.7.3. Supply and Demand

PA D1 D2 s In a perfectly competitive market, per-unit price of a good
varies until quantity demanded equals quantity supplied
(economic equilibrium).

(P: price of product, O: quantity of product sold, S: supply

P curve, D: demand curve)
P1 A

Isoelastic supply curve: Q = k P" (power law expression)

P The graph on the left shows that an increase in demand
QL Q2 & (Dy— Dy)results in an increase in both price P and quantity Q.

Elasticity: sensitivity of demand to variations in environmental factors.
Liquidity: ease of buying/selling quickly and without affecting the price.

5.7.4. Inflation

Inflation is the reduction in value of money and the resulting decrease in consumer
purchasing power.

Hyperinflation is caused primarily by excessive unsustainable growth in the money supply.
Keynesian economics does not suggest moderate inflation directly results from growth, but
rather that it is caused by excessive demand.

1 + nominal rate
1 + inflation rate

Real (inflation adjusted) rate of return=1 + (all expressed as decimals)

5.7.5. Pareto Principle

The Pareto principle (aka the 80-20 rule) is an empirical observation applicable to some
scenarios. It states that 80% of consequences (data) come from 20% of the causes.

It is often used qualitatively, where the goal is to identify the dominant few actions (or
problems to solve) that would generate the most results (profits).
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5.7.6. Inventory Models

In operations research, an inventory model advises on the time and quantity of a supply to
purchase in anticipation of a distribution of orders.

Let p: unit sale price, c¢: unit order cost, 4: unit leftover holding cost, b: unit shortage
penalty, D: random demand, x: initial inventory level, y: base stock level, F,(d) = P(D < d)).

Assuming that p + b > ¢, the optimal order quantity ¢* aims to maximise the expected profits:

¢ =argmax E | —cq +pmin{x + ¢, D} — hmax{x + ¢ — D,0} —bmax{D —x — ¢q,0}
q v . J/ " " N /

-~

TV TV
ordir products sold holding costs shortage penalties
cos

The solution (optimal order up to level) is y = FD_l(-'::Z%;), where y* = max{g*, 0} +x

« ¢* =max{y* - x, 0} and F,," is the inverse cumulative distribution function (ICDF) of D.

p+b—c

Probability of running out of stock = P(D > y*) =1- ptb—h-

If D~N(u ) then y = u + o x (IJ_l(ZI—Z’__;) and the optimal (maximum) profit is

cex+ (p-ou-o((h+c)z*+(p+h+b)Lz*)) where z* = (y* —u)/a=¢_1('LpI£:;) and

L(w) is the loss function defined as L(w) = %f(t - w) e o dt = ¢(w) — w(l — d(w)).
T

For an additional fixed (base) order cost K, the optimal reorder point s is defined as the value

such that when x <s we should order up to level (¢ = ¢*) and when x > s we do not order. The

value of s is the smallest s such that Profit(y*) - Profit(s) = K, which can be solved using the

profit expression above.
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5.7.7. Financial Instruments

Stocks (equities, shares): represent a fixed fraction of a single company’s market
capitalisation (value).

Bonds (fixed income securities): debt instruments with fixed interest rate returns and time to
maturity (repay time to avoid defaulting), issued by governments (gilts / treasury notes) or
corporations.

Commodities: raw materials such as fuels (e.g. crude oil, natural gas), agricultural produce
(e.g. corn, sugar, live cattle), base metals (e.g. lead, copper), precious metals (e.g. gold,
platinum), precious stones (e.g. diamond), lumber, rubber and water rights.

Currencies: the exchange rates of one currency relative to another, including cryptocurrencies,
fluctuating due to national economics.

Derivatives: high-leverage instruments based on an underlying asset, used to hedge risk. May
be contracts to purchase assets for a fixed price in the future (futures, options, forwards), or by
exchanging loans with different interest rates (swaps).

Exchange-Traded Funds (ETFs): a collection of assets, whose price varies throughout the day
as trading occurs.
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5.7.7. Time Series Forecasting

A stock ticker represents time series data of the value of a stock over time. Various statistical and
machine learning methods (e.g. SARIMAX, ES, LSTM, transformer etc) can be used to estimate

-~

(forecast) Xn+1 given X .. X .

n

The return of a stock (5

- 1) is typically more stationary (WSS) than the values X,, and these

n—-1
returns are closer to a Normal or ¢-distribution, making use of standard scaling (Section 5.5.7)
optimal in preprocessing.

Backtesting is used to test a trained model. For a large span of historic data b, split b into a set of
adjacent sliding windows X = [x", x?, ...] and process each x",

Processing involves checking data suitability (e.g. checking for stationarity in ARMA), computing
the forecast, and evaluating the performance using a metric.

Stock tickers which perform well in backtesting can be ranked, with the top selection being used
in real-time trading (diversification helps smooth out random variation).

White noise hypothesis: there is no actual pattern to stock data, and any model is as good as
drawing from a Normal distribution with the same mean and variance as the training data. This is
a good reference to see whether a model outperforms the ‘naive’ estimate.
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